Publication : t10/134

A general and solvable random matrix model for spin decoherence

David F. (CEA, IPhT (Institut de Physique Théorique), F-91191 Gif-sur-Yvette, France)
We propose and solve a simple but very general quantum model of an SU(2) spin interacting with a large external system with N states. The coupling is described by a random hamiltonian in a new general gaussian SU(2)×U(N) random matrix ensemble, that we introduce in this paper. We solve the model in the large N limit, for any value of the spin j and for any choice of the coupling matrix element distributions in the different possible angular momentum channels l (and provided that the internal dynamics of the spin is slow). Besides its mathematical interest as a non-trivial random matrix model, it allows to study and illustrate in a simple framework various phenomena: the decoherence dynamics, the conditions of emergence of the classical phase space for the spin, the properties quantum diffusion in phase space. The large time evolution for the spin is shown to be non-Markovian in general, the Markov property emerging in some specific case for the dynamics and the initial conditions.
Année de publication : 2011
Revue : J. Stat. Mech. 2011 P01001 (2011)
DOI : 10.1088/1742-5468/2011/01/P01001
Preprint : arXiv:1009.1282
Lien :
PACS : 05.40.-a 03.65.Fd 03.65.Yz s 05.60.Gg 02.10.Yn
Keywords : exact results, diffusion, entanglement in extended quantum systems (theory) ,matrix models
Langue : Anglais

Fichier(s) à télécharger :
  • decoherence-10.mp4
  • decoherence-5.mp4
  • decoherence-9.mp4
  • decoherence-12.mp4
  • spin-decoherence-2.pdf
  • JStat_2011_01_P01001.pdf


    Retour en haut