Publication : t06/021

Multicritical continuous random trees

Bouttier J. (CEA, DSM, SPhT (Service de Physique Théorique), F-91191 Gif-sur-Yvette, FRANCE)
Di Francesco P. (CEA, DSM, SPhT (Service de Physique Théorique), F-91191 Gif-sur-Yvette, FRANCE)
Guitter E. (CEA, DSM, SPhT (Service de Physique Théorique), F-91191 Gif-sur-Yvette, FRANCE)
Abstract:
We introduce generalizations of Aldous' Brownian Continuous Random Tree as scaling limits for multicritical models of discrete trees. These discrete models involve trees with fine-tuned vertex-dependent weights ensuring a k-th root singularity in their generating function. The scaling limit involves continuous trees with branching points of order up to k+1. We derive explicit integral representations for the average profile of this k-th order multicritical continuous random tree, as well as for its history distributions measuring multi-point correlations. The latter distributions involve non-positive universal weights at the branching points together with fractional derivative couplings. We prove universality by rederiving the same results within a purely continuous axiomatic approach based on the resolution of a set of consistency relations for the multi-point correlations. The average profile is shown to obey a fractional differential equation whose solution involves hypergeometric functions and matches the integral formula of the discrete approach.
Année de publication : 2006
Revue : J. Stat. Mech. P04004 (2006)
DOI : 10.1088/1742-5468/2006/04/P04004
Preprint : arXiv:math-ph/0603007
Langue : Anglais

Fichier(s) à télécharger :
  • 1742-5468_2006_04_P04004.pdf
  • publi.pdf

  •  

    Retour en haut