Renormalization and Hyperscaling for Self-Avoiding Manifold Models
David F. (
CEA, DSM, SPhT (Service de Physique Théorique), F-91191 Gif-sur-Yvette, FRANCE)
Duplantier B. (
CEA, DSM, SPhT (Service de Physique Théorique), F-91191 Gif-sur-Yvette, FRANCE)
Guitter E. (
CEA, DSM, SPhT (Service de Physique Théorique), F-91191 Gif-sur-Yvette, FRANCE)
Abstract:
The renormalizability of the self-avoiding manifold (SAM) Edwards model is established. We use a new short distance multilocal operator product expansion, which extends methods of local field theories to a large class of models with non-local singular interactions. This validates the direct renormalization method introduced before, as well as scaling laws. A new general hyperscaling relation is derived. Manifolds at the $\Theta$-point and long range Coulomb interactions are briefly discussed.
Année de publication : 1994
Revue : Phys. Rev. Lett.
72 311-315 (1994)
DOI :
10.1103/PhysRevLett.72.311Preprint :
arXiv:cond-mat/9307059 Lien :
http://publish.aps.org/abstract/PRL/v72/p311 PACS : 05.20.-y, 11.10.Gh, 11.17.+y
Langue : Anglais
Fichier(s) à télécharger : publi.pdf