Publication : t00/036

Breakdown of universality in multi-cut matrix models

Bonnet G. (CEA, DSM, SPhT (Service de Physique Théorique), F-91191 Gif-sur-Yvette, FRANCE)
David F. (CEA, DSM, SPhT (Service de Physique Théorique), F-91191 Gif-sur-Yvette, FRANCE)
Eynard B. (CEA, DSM, SPhT (Service de Physique Théorique), F-91191 Gif-sur-Yvette, FRANCE)
Abstract:
We solve the puzzle raised by Br\'ezin and Deo for random $N\times N$ matrices with a disconnected eigenvalues support: their calculation by orthogonal polynomials disagrees with previous mean field calculations. We show that this difference does not stem from a $\mathbb{Z}_2$ symmetry breaking, but from the discretizeness of the number of eigenvalues. This leads to additional terms (quasiperiodic in $N$) which must be added to the naive mean field expression. Our result invalidates the existence of a smooth topological large $N$ expansion and postulated universality properties of correlators. We derive for the general 2-cut case the expressions for the 2-point correlators and for the orthogonal polynomials in the large $N$ limit, and extend our results to any number of cuts and to non-real potentials.
Année de publication : 2000
Revue : J. Phys. A 33 6739-6768 (2000)
Preprint : arXiv:cond-mat/0003324
Lien : http://stacks.iop.org/JPhysA/33/6739
Langue : Anglais

Fichier(s) à télécharger :
  • publi.pdf

  •  

    Retour en haut