Publication : t20/118

Multicritical random partitions

Betea D. (Department of Mathematics, KU Leuven, Belgium)
Bouttier J. (CEA, IPhT (Institut de Physique Théorique), F-91191 Gif-sur-Yvette, France)
Walsh H. (Univ Lyon, ENS de Lyon, Univ Claude Bernard, CNRS, Laboratoire de Physique, F-69342 Lyon)
We study two families of probability measures on integer partitions, which are Schur measures with parameters tuned in such a way that the edge fluctuations are characterized by a critical exponent different from the generic 1/3. We find that the first part asymptotically follows a "higher-order analogue" of the Tracy-Widom GUE distribution, previously encountered by Le Doussal, Majumdar and Schehr in quantum statistical physics. We also compute limit shapes, and discuss an exact mapping between one of our families and the multicritical unitary matrix models introduced by Periwal and Shevitz.
Année de publication : 2021
Revue : Séminaire Lotharingien de Combinatoire 85B #33 (2021)
Conférence - Poster : 31th International Conference on Formal Power Series and Algebraic Combinatorics (FPSAC 2021) ; Ramat Gan ; 2022-01-10 / 2022-01-13
Preprint : arXiv:2012.01995
Lien :
Langue : Anglais

Fichier(s) à télécharger :
  • publi.pdf


    Retour en haut