Publication : t19/018

New edge asymptotics of skew Young diagrams via free boundaries

Betea D. (Institute for Applied Mathematics, Universität Bonn, D-53315 Bonn)
Bouttier J. (CEA, IPhT (Institut de Physique Théorique), F-91191 Gif-sur-Yvette, France)
Nejjar P. (IST Austria, 3400 Klosterneuburg, Austria)
Vuletić V. (Department of Mathematics, University of Massachusetts Boston, 100 William T. Morrissey Boulevard, Boston, MA 02125)
Abstract:
We study edge asymptotics of poissonized Plancherel-type measures on skew Young diagrams (integer partitions). These measures can be seen as generalizations of those studied by Baik--Deift--Johansson and Baik--Rains in resolving Ulam's problem on longest increasing subsequences of random permutations and the last passage percolation (corner growth) discrete versions thereof. Moreover they interpolate between said measures and the uniform measure on partitions. In the new KPZ-like 1/3 exponent edge scaling limit with logarithmic corrections, we find new probability distributions generalizing the classical Tracy--Widom GUE, GOE and GSE distributions from the theory of random matrices.
Année de publication : 2019
Revue : Séminaire Lotharingien de Combinatoire 82B #34 (2019)
Conférence - Communication : par Dan Betea; 31st International Conference on Formal Power Series and Algebraic Combinatorics (FPSAC 2019) ; Ljubljana ; 2019-07-01 / 2019-07-05
Preprint : arXiv:1902.08750
Lien : https://www.mat.univie.ac.at/~slc/wpapers/FPSAC2019/34.html
Langue : Anglais

Fichier(s) à télécharger :
  • publi.pdf

  •  

    Retour en haut