Publication : t04/060

Planar maps as labeled mobiles

Bouttier J. (CEA, DSM, SPhT (Service de Physique Théorique), F-91191 Gif-sur-Yvette, FRANCE)
Di Francesco P. (CEA, DSM, SPhT (Service de Physique Théorique), F-91191 Gif-sur-Yvette, FRANCE)
Guitter E. (CEA, DSM, SPhT (Service de Physique Théorique), F-91191 Gif-sur-Yvette, FRANCE)
Abstract:
We extend Schaeffer's bijection between rooted quadrangulations and well-labeled trees to the general case of Eulerian planar maps with prescribed face valences, in bijection with a new class of labeled trees, which we call mobiles. Our bijection covers all the classes of maps previously enumerated by either the two-matrix model used by physicists or by the bijection with blossom trees used by combinatorists. Our bijection reduces the enumeration of maps to that, much simpler, of mobiles and moreover keeps track of the geodesic distance within the initial maps via the mobiles' labels. Generating functions for mobiles are shown to obey systems of algebraic recursion relations.
Année de publication : 2004
Revue : Electr. J. Combin. 11 R69 (2004)
Preprint : arXiv:math.CO/0405099
Lien : http://www.combinatorics.org/Volume_11/Abstracts/v11i1r69.html
PACS : MSC-class: primary 05C30; Secondary 05A15, 05C05, o5C12, 68R05
Langue : Anglais

Fichier(s) à télécharger :
  • publi.pdf

  •  

    Retour en haut