Hitchin Functionals in Supergravity

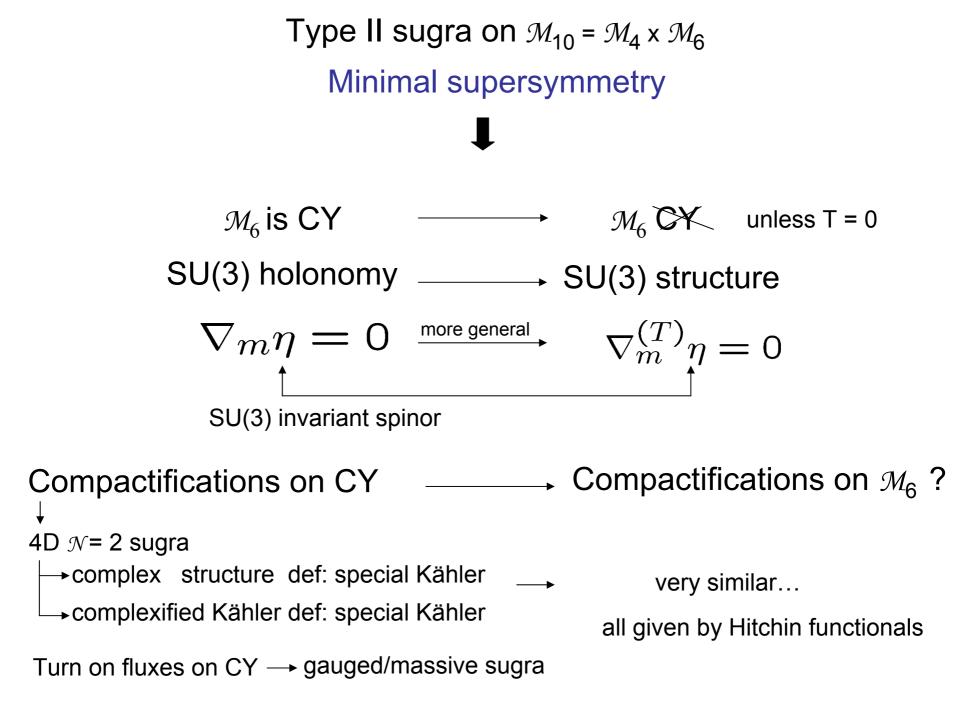
Mariana Graña Ecole Normale Supérieure Ecole Polytechnique

Collaborations with

Ruben Minasian, Michela Petrini, Alessandro Tomasiello Jan Louis, Dan Waldram

hep-th/0406137 hep-th/0503...

Toronto-March 2005



Outline

- SU(3) structure
- Generalized complex geometry
- Hitchin functionals
- Special Kähler structures
- N = 2 superpotentials
- N =1 superpotentials
- Conclusions

To get action similar to 4D N = 2

 Q_{α} must be well-defined on $Y \Rightarrow Y$ must admit globally well defined spinors

reduced structure

• Structure group of a manifold:

group of transformations required to patch the orthonormal frame bundle

Y is Riemannian	\rightarrow	SO(d)
Y is Spin	\rightarrow	Spin(d)
reduced structure	→	G ½ SO(d

A manifold has G-structure if (equivalently)

• The structure group reduces to G

9 globally defined non-vanishing G-invariant tensors

9 globally defined non-vanishing G-invariant spinor
 SU(3) structure in 6 dimensions

SO(6) ! SU(3) Vector 6 ! 3 + 3 A₂ 15 ! 8 + 3 + 3 + 1 J_{mn} A₃ 10 ! 6 + 3 + 1 η Spinor 4 ! 3 + 1 η • SU(3) structure: $r_m^T \eta = 0$) $r \eta \neq 0$ $dJ \neq 0$ $d\Omega \neq 0$

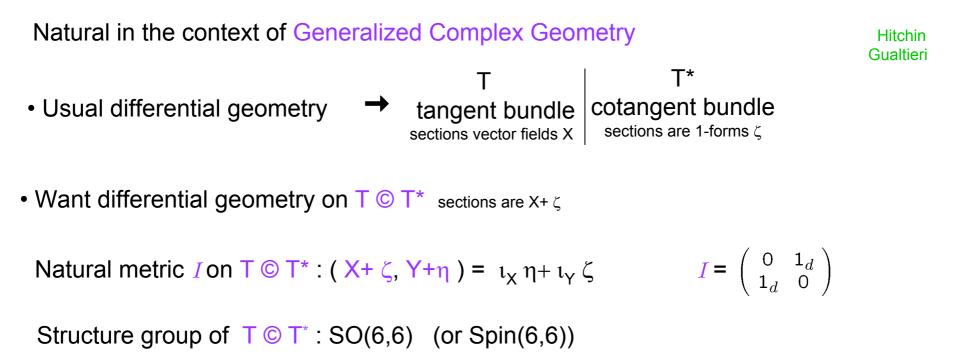
$$\eta^{\dagger}\gamma_{mn}\gamma\eta = i J_{mn}$$

 $\eta^{\dagger}\gamma_{mnp}(1+\gamma)\eta = i \Omega_{mnp}$
as in CY
in CY (SU(3) holonomy): r_m η =0

Torsion: $dJ = Im (W_1 \Omega) + W_4 \not\in J + W_3$ $1 \oplus 1$ $3 \oplus \overline{3}$ $6 \oplus \overline{6}$ $d \Omega = W_1 J^2 + W_5 \not\in \Omega + W_2 \not\in J$ $1 \oplus 1$ $3 \oplus \overline{3}$ $8 \oplus 8$

• We used J and Ω , but one can define the SU(3) structure in terms of real forms (J, ρ) : ρ = Re Ω

• Must be stable: live in open orbit under action of GL(6,R)each element in a neighborhood of ρ is GL(6,R)-equivalent to ρ



		-
	Т	T © T*
	Clifford 6	Clifford (6,6)
Algebra	$\{\gamma^m, \gamma^n\}=g^{mn}$	$\{\Gamma^{m}, \Gamma^{n}\}=\{\Gamma_{m}, \Gamma_{n}\}=0, \{\Gamma^{m}, \Gamma_{n}\}=\delta^{m}{}_{n}$
Representation in terms of forms	γ ^m =dz ^m Æ + g ^{mn} ι _{∂n}	$\Gamma^{m}=dx^{m}\mathcal{A}E$ and $\Gamma_{m}=\iota_{\partial_{m}}$ $\Gamma^{\Sigma}=(\Gamma_{m},\Gamma^{m})$
Clifford vacuum	η_+	$\eta_{\pm}^{\mathbf{y}} - \eta_{\pm} = \Omega \qquad \eta_{\pm} \otimes \eta_{\pm}^{\dagger} = \sum_{k=0}^{6} \frac{1}{k!} \eta_{\pm}^{\dagger} \gamma_{i_1 \dots i_k} \eta_{\pm} \gamma^{i_1 \dots i_k}$
Pure spinor	γ ⁱ η ₊ =0	$\Gamma^{i} \Omega = \Gamma_{\bar{1}} \Omega = 0$
Basis	$\begin{array}{c} \eta_+ \\ \gamma^{\overline{\imath}} \eta_+ \\ \frac{\gamma^{\overline{\imath}j}}{\gamma^{\overline{\imath}jk}} \eta_+ \end{array}$	$ \begin{array}{ll} \Omega : (3,0) & \Omega : (3,0) \\ \Gamma^{\intercal} \Omega : (3,1) & \Gamma_{\natural} \Omega : (2,0) \\ \Gamma^{\intercal j} \Omega : (3,2) & \Gamma_{\imath j} \Omega : (1,0) \\ \overline{\Gamma^{\intercal k}} \Omega : (3,3) & \Gamma_{\imath j k} \Omega : (0,0) \end{array} $
		Spinors \$ (p,q) forms
	Weyl spinors η_{\S}	$S^{\pm} = \Lambda^{ev,odd} T^* \Omega 2 S^-$
	η_	$\eta_{+}{}^{y} - \eta_{+} = e^{iJ} 2 S^{+}$ $e^{iJ} = 1 + iJ - \frac{1}{2}J^{2} - i\frac{1}{3!}J^{3}$
		(Γ _m + i J _{mn} Γ ⁿ) e ^{iJ} =0
9 pure spinor	reduces str. group SU(3)	reduces str. group SU(3,3)
Inner product	$η^y χ$	$ (\bar{\phi}, \rho) \epsilon = \langle \phi, \rho \rangle \langle \langle \phi^+, \rho^+ \rangle = \phi_6 \wedge \rho_0 - \phi_4 \wedge \rho_2 + \phi_2 \wedge \rho_6 - \phi_0 \wedge \rho_6 \rangle \langle \phi^-, \rho^- \rangle = \phi_5 \wedge \rho_1 - \phi_3 \wedge \rho_3 + \phi_1 \wedge \rho_5 $
Inner product	א זוי ג	$ \langle \phi, \rho \rangle \epsilon = \langle \phi, \rho \rangle \langle \langle \phi^-, \rho^- \rangle = \phi_5 \wedge \rho_1 - \phi_3 \wedge \rho_3 + \phi_1 \wedge \rho_5 $ volume form
9 2 pure spinors	reduces str group to SU(2) if η₁ never k η₂	SU(2) ESU(2) if $Muk \overline{I} - \overline{\Gamma} \Sigma I + - \overline{\Omega} \rightarrow I / \overline{\Gamma} \Omega - 0$

- We want to perform a compactification on a manifold with SU(3) structure Problem: \rightarrow Get an effective theory of light modes $dJ = Im (W_1 \Omega) + W_4 \not = J + W_3$ \rightarrow r² J » W² J torsion gives masses to $d \Omega = W_1 J^2 + W_5 \not\in \Omega + W_2 \not\in J$ deformations of J Distinction between light and heavy modes not clear Alternative route: do not compactify truncate the spectrum SO(6) vector bundle admits SU(3) structure $\mathcal{M}_{10} = \mathcal{M}_{4} \times Y$ SO(1,3) vector bundle Spin(1,9) \rightarrow Spin(1,3) £ Spin(6) \Rightarrow T $\mathcal{M}^{1,9}$ = T^{1,3} \otimes F \leftarrow But: $16 \rightarrow (2,4) \oplus (\bar{2},\bar{4}) \rightarrow (2,1) \oplus (2,3) \oplus (\bar{2},1) \oplus (\bar{2},\bar{3})$ Q_a 2 16 + 16 IIA 16 + 16 IIB $16 \rightarrow (2,4) \oplus (\bar{2},\bar{4}) \rightarrow (2,1) \oplus (2,3) \oplus (\bar{2},1) \oplus (\bar{2},\bar{3})$ 8 supercharges are singled out
- Original type II theory formulated on M 1,9 | 16+16
- Demanding: $TM^{1,9} = T^{1,3} \odot F$ and F admits SU(3) structure $\Rightarrow 9 N^{1,9|4+4} \frac{1}{2} M^{1,9|16+16}$

Reformulate the theory on N

The theory on N^{1,9|4+4} ¹/₂ M^{1,9|16+16}

- Has 8 supercharges
- Spin(1,3) preserved

Want to show that although it is 10D

• Has the same structures as 4D \mathcal{N} =2 sugra

 $\rightarrow \mathcal{N}$ = 2 superpotential

Deformations of SU(3) structure

Metric deformations

$$\delta g_{MN}^{10} : \delta g_{\mu\nu}^{10} \quad \delta g_{\mu m}^{10} \quad \delta g_{mn}^{10} \\ 1_2 \quad (3+\bar{3})_1 \quad \underbrace{1_0 + (6+\bar{6})_0 + 8_0}_{21 = \dim \operatorname{GL}(6,\mathbb{R}) / \operatorname{SO}(6)}$$

Consider instead deformations of the SU(3) structure

$$\delta J = \lambda J + v \perp \rho + K$$

$$1 \quad 3 \oplus \overline{3} \quad 8$$

$$\delta \rho = \frac{3}{2} \lambda \rho + \gamma \widehat{\rho} - v \wedge J + M$$

$$1 \quad 6 \oplus \overline{6}$$

$$28 = \dim \operatorname{GL}(6, \mathbb{R}) / \operatorname{SU}(3)$$

$$defs \text{ of SU}(3)$$

$$leave metric invariant$$

Indeed:
$$\delta g_{mn}^{10} = \lambda g_{mn}^{10} - J_m{}^p K_{pn} - \frac{1}{2} \rho_m{}^{pq} M_{pqn}$$

Consider deformations of ρ, J and then both together special Kähler manifolds Hitchin

	F	F © F [*]	
	η ₊ SU(3) structure	$\phi^{\S} 2 S^{\S} \cong \Lambda^{\text{even/odd}} F^*$ real Each ϕ : SU(3,3) structure if stable	each element in a neighborhood of φ is GL(6,R)-equivalent to φ
2-form	$\eta_{+}^{\dagger}\gamma_{mn}\eta_{+} = iJ_{mn}$	$\bar{\phi}\Gamma_{\Sigma\Pi}\phi=\mathcal{J}_{\Sigma\Pi}$	
	$J_{mn} J^{mn} = 6$	$\mathcal{J}_{\Sigma\Pi} \mathcal{J}^{\Sigma\Pi} \neq 12$	

F © F^{*}

 $\lambda(\phi) \equiv \frac{1}{12} \mathcal{J}_{\Sigma \Pi} \mathcal{J}^{\Sigma \Pi}$ Hitchin: ϕ is stable if $\lambda > 0$ Want to show that there is a special Kähler structure on U vertice symplectic structure prepotential

Hitchin

$$\lambda(\phi) \equiv \frac{1}{12} \mathcal{J}_{\Sigma \Pi} \mathcal{J}^{\Sigma \Pi} \qquad \langle \phi^+, \rho^+ \rangle = \phi_6 \wedge \rho_0 - \phi_4 \wedge \rho_2 + \phi_2 \wedge \rho_6 - \phi_0 \wedge \rho_6$$
$$\langle \phi^-, \rho^- \rangle = \phi_5 \wedge \rho_1 - \phi_3 \wedge \rho_3 + \phi_1 \wedge \rho_5$$
$$h(\phi) = \sqrt{\frac{1}{12}} \langle \phi, \Gamma_{\Pi\Sigma} \phi \rangle \langle \phi, \Gamma^{\Pi\Sigma} \phi \rangle \in \Lambda^6 F^* \implies h(\phi) = \sqrt{\lambda} \epsilon$$

$$\lambda \ \epsilon \otimes \epsilon$$

Ex: for $\phi = \rho \implies \langle \phi, \Gamma_{\Pi\Sigma}\phi \rangle \quad \langle \phi, \Gamma^{\Pi\Sigma}\phi \rangle = (\rho \wedge e^m \wedge i_n \rho)(\rho e^n \wedge i_m \rho)$
$$= \rho_{a[i_1i_2}\rho_{i_3i_4i_5}\rho_{i_6][j_1j_2}\rho_{j_3j_4j_5}\delta_{j_6]}^{\ a}$$
$$\downarrow$$
$$h = \sqrt{\epsilon^{i_1i_2i_3i_4i_5i_6}\epsilon^{j_1j_2j_3j_4j_5j_6}\rho_{j_6i_1i_2}\rho_{i_3i_4i_5}\rho_{i_6j_1j_2}\rho_{j_3j_4j_5}} \ \epsilon$$

Define
$$\hat{\phi} \equiv \frac{Dh}{D\phi} = \frac{1}{6\sqrt{\mathcal{J}^2/12}} \mathcal{J}^{\Pi\Sigma} \Gamma_{\Pi\Sigma} \phi \in S^{\pm}$$
 $\hat{\phi} = \frac{Dh}{D\phi}$ and *h* homogeneous of degree 2 in ϕ
Combine ϕ and $\hat{\phi}$ into complex Spin(6,6) spinor
$$\Phi = \phi + i\hat{\phi}$$
Pure spinor ! Ex: $\phi = \rho = Re\Omega$) $\hat{\phi} = *\phi = Im\Omega$ and then
 $\Phi = \Omega$

Want to show that there is a special Kähler structure on U

 $U = \{ \phi \in S^{\pm} \ st \ \lambda(\phi) > 0 \}$ space of stable Spin(6,6) spinors $f \\ S^{\S} \cong \Lambda^{\text{even/odd}} : 32 \text{ dim vector space }) \quad T_{\phi} U \cong S^{\S} \quad \phi: \text{ coordinate on } U \\ \text{ vector field on } U$

Symplectic structure:

Spinor norm

$$\langle \phi, \rho \rangle \equiv w(\phi, \rho) \epsilon \implies w(\phi, \rho) = \bar{\phi}\rho = w_{\alpha\beta} \phi^{\alpha} \rho^{\beta}$$

Complex structure

symplectic structure

$$I^{\alpha}{}_{\beta} = -\frac{\partial \widehat{\phi}^{\alpha}}{\partial \phi^{\beta}} = -\partial_{\beta} \widehat{\phi}^{\alpha} = -(w^{-1})^{\alpha\beta} \partial_{\alpha} \partial_{\beta} h$$

Using
$$\hat{\phi} = \frac{Dh}{D\hat{\phi}} = -\phi$$
 can show that $I^2 = -1_{32 \times 32}$

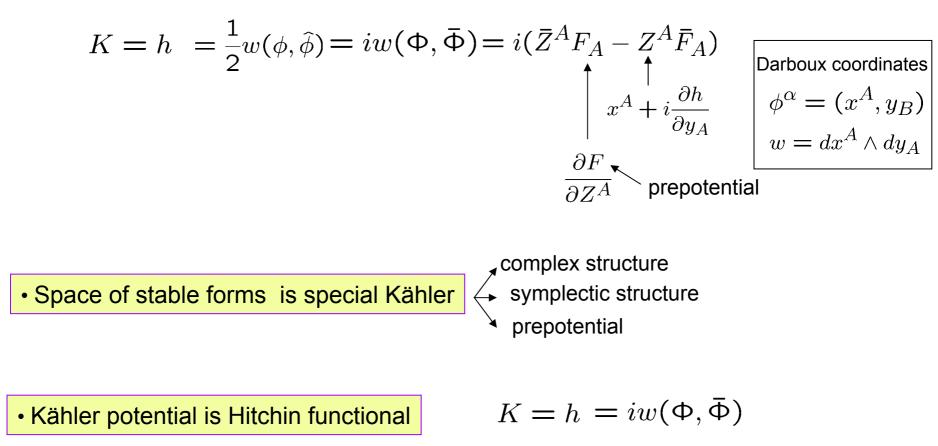
Symplectic and complex structures are integrable

Metric
$$G = (w_{\alpha\gamma}I^{\gamma}{}_{\beta})d\phi^{\alpha}d\phi^{\beta} = \partial_{\alpha}\partial_{\beta}h\,d\phi^{\alpha}d\phi^{\beta}$$

 $= \partial_{\alpha}\partial_{\bar{\beta}}h\,d\Phi^{\alpha}d\bar{\Phi}^{\bar{\beta}}$

h: Kähler potential

 ϕ^{α} \leftarrow 1, ..., 32



Local special Kähler geometry : mod out by ϕ ! $\lambda \phi$, λ 2 C^*

$$K = -\ln h = -\ln (iw(\Phi, \bar{\Phi}))$$

For $\phi = \rho 2 S^{-1}$

Special Kähler structure for complex structure deformations

Hitchin functional:
$$h = \sqrt{\epsilon^{i_1 i_2 i_3 i_4 i_5 i_6} \epsilon^{j_1 j_2 j_3 j_4 j_5 j_6} \rho_{j_6 i_1 i_2} \rho_{i_3 i_4 i_5} \rho_{i_6 j_1 j_2} \rho_{j_3 j_4 j_5}} \epsilon$$

Pure spinor: $\hat{\phi} \equiv \frac{Dh}{D\rho} = *\rho = Im\Omega \Rightarrow \Phi = \phi + i\hat{\phi} = \Omega$
 \uparrow pure spinor
Kähler potential: $K = -\ln h = -\ln (iw(\Omega, \overline{\Omega}))$
 \uparrow
For ϕ = Re (c e^{ij}) 2 S⁺
 $w(\Omega, \overline{\Omega}) \epsilon = \Omega \land \overline{\Omega}$
Exactly as for CY !

Special Kähler structure for "Kähler" deformations

Hitchin functional:
$$h = \frac{1}{3} |c|^2 J \wedge J \wedge J$$

Pure spinor: $\hat{\phi} \equiv \frac{Dh}{D\rho} = *\phi = Im(ce^{iJ}) \Rightarrow \Phi = \phi + i\hat{\phi} = ce^{iJ}$

Kähler potential: $K = -\ln h = -\ln iw(c e^{iJ}, \overline{c} e^{-iJ})$ $iw(e^{iJ}, e^{-iJ})\epsilon = J \wedge J \wedge J$ Exactly as for CY ! The theory on N ^{1,9} $\stackrel{4+4}{\bullet}$ $\stackrel{1}{\sim}$ M ^{1,9} $\stackrel{16+16}{\bullet}$ has the same structures as 4D \mathcal{N} =2 sugra

internal spinor is SU(3) singlet

Demanding $TM^{1,9} = T^{1,3} \odot F$ and F admits SU(3) structure

Moduli space of deformations of J and ρ are special Kähler $\sqrt{}$

 \mathcal{N} = 2 superpotential

 \mathcal{N} =2 superpotential

Torsion and fluxes generate scalar potential

 $\mathcal{N}=2$ $V \sim |\delta\psi|^2 + |\delta\lambda|^2 + |\delta\xi|^2$

gravitino

Gravitino transformation contains all the information about V

hyperino

gaugino

$$\implies$$
 We want to compute $\delta \psi_{\mu}$ on N ^{1,9 | 4+4}

Under SU(3)
Spinor : 4 ! 3 + 1

$$\tilde{\Psi}_{\mu} = \psi_{\mu} \otimes \eta + \text{triplets}$$

 $\overset{1_{3/2}}{\underbrace{}^{\text{``4D" gravitino}}} \overset{3_{3/2}}{\underbrace{}^{\text{``4D" gravitino}}}$

Subtletly: kinetic term not diagonal in Ψ_{μ} and Ψ_{m}

 \Rightarrow to diagonalize, need redefinition:

$$\tilde{\Psi}_{\mu} = \Psi_{\mu} + \frac{1}{2} \gamma_{\mu} \,^{m} \Psi_{m}$$

$$\delta\psi^A_\mu = D_\mu \epsilon^A + i\gamma_\mu S^{AB} \epsilon_B$$

Given susy transformations

torsion and NSNS flux $\sim S^{11}$

To extract $\delta\psi_{\mu}$ apply projector $\Pi = 1 \otimes (\eta_{+} \otimes \eta_{+}^{\dagger})$

Get
$$H_{mnp}\eta^{\dagger}_{+}\gamma^{mnp}\eta_{-} = H_{mnp}\Omega^{mnp}$$

Notice $\langle H_3, \Omega \rangle = i H_{mnp}\Omega^{mnp} \epsilon_V$

All terms in $\begin{subarray}{c} \Pi \delta { ilde \Psi}_{\mu} \end{array}$ can be written in terms of Mukai pairs

Compare to: $\delta \psi^A_\mu = D_\mu \epsilon^A + i \gamma_\mu S^{AB} \epsilon_B$ In 10D theory, S^{AB} is naturally a 6-form

$$S^{AB} = -\frac{i}{2} e^{\frac{1}{2}K_V} \begin{pmatrix} -\mathcal{P}^1 + i\mathcal{P}^2 & \mathcal{P}^3 \\ \mathcal{P}^3 & \mathcal{P}^1 + i\mathcal{P}^2 \end{pmatrix}$$

IIA	IIB	
$e^{\frac{1}{2}K_J}(\mathcal{P}^1+i\mathcal{P}^2) = \frac{1}{4}\left\langle de^{B+iJ},\Omega\right\rangle$	$e^{rac{1}{2}K_{\Omega}}(\mathcal{P}^{1}+i\mathcal{P}^{2})=rac{1}{4}\left\langle de^{B+iJ},\Omega ight angle$	
$e^{\frac{1}{2}K_J}\mathcal{P}^3 = \frac{1}{4} e^{\phi} \left\langle F_{2n}, e^{B+iJ} \right\rangle$	$e^{\frac{1}{2}K_{\Omega}}\mathcal{P}^{3} = \frac{1}{4}e^{\phi}\left\langle F_{2n+1},\Omega\right\rangle$	
Depend on $e^B e^{iJ} \rightarrow B$ -transform If Φ pure) $e^B \Phi$ pure		
$\mathcal{P}^{3} \sim \left\langle F^{\pm}, \Phi^{\pm} \right\rangle \qquad \mathcal{P}^{1} + i\mathcal{P}^{2} \sim \left\langle d\Phi^{+}, \Phi^{-} \right\rangle$		
RRsector	NSNS sector	
IIA \$ IIB	$\left\langle d\Phi^{+},\Phi^{-} ight angle$	
F ⁺ \$ F ⁻	ym under exchange Φ + \$ Φ -	
Φ ⁺ \$ Φ ⁻	when integrated	

exchange of two pure spinors -- action of mirror symmetry

more details in Minasian & Tomasiello's talks

 \mathcal{N} =1 superpotential

• Want to break SU(2)_R into U(1)

• Look at $L^{1,9|2+\bar{2}} \subset N^{1,9|4+\bar{4}} \subset M^{1,9|16+16}$

• In \mathcal{N} = 1 language $S^{AB} = -\frac{i}{2}e^{\frac{1}{2}K_V} \begin{pmatrix} -\mathcal{P}^1 + i\mathcal{P}^2 & \mathcal{P}^3 \\ \mathcal{P}^3 & \mathcal{P}^1 + i\mathcal{P}^2 \end{pmatrix}$

 \mathcal{N} =1 superpotential

D-term

But this assumes a particular breaking of $SU(2)_R$

(a particular way of embedding L in N)

Gauge invariant statement: * P k U(1) gives D-term.

* Other *P*'s combine into $\mathcal{N}=1$ superpotential

 \mathcal{N} =1 susy parameter

Parameterize gauge choice by two complex numbers a and b $\begin{pmatrix} \epsilon_1 \\ \epsilon_2 \end{pmatrix} = \begin{pmatrix} a \\ b \\ b \\ \epsilon \end{pmatrix}$

Look at what SU(2) generator leaves this spinor invariant $U(1) \frac{1}{2} SU(2)$

\mathcal{N} =1 superpotential

IIA

$$e^{K}\mathcal{W} = e^{-i\beta} \sin^{2} \alpha (\bar{H} + i\bar{W}) - e^{i\beta} \cos^{2} \alpha (H - iW) + \sin(2\alpha) \bar{F}_{A}$$

IIΒ

$$e^{K}\mathcal{W} = (e^{i\beta}\cos^{2}\alpha - e^{-i\beta}\sin^{2}\alpha)H + i(e^{i\beta}\cos^{2}\alpha + e^{-i\beta}\sin^{2}\alpha)W - \sin(2\alpha)F_{B}$$

$$W = i \left\langle de^{iJ}, \Omega \right\rangle \quad H = \left\langle H_3, \Omega \right\rangle \quad F_A = e^{\phi} \left\langle F_A, e^{B+iJ} \right\rangle \qquad F_B = e^{\phi} \left\langle F_B, \Omega \right\rangle$$
$$= W_1 \epsilon_V$$
$$\tan \alpha = \frac{|a|}{|b|} \qquad e^{i\beta} = \frac{a \overline{b}}{|ab|}$$

- Depend on two angles \rightarrow parameterize breaking SU(2)_R ! U(1)_R
- Contains known cases so far: In IIB $\alpha = \pi/4$, $\beta = -\pi/2$: $\langle F_3 ie^{-\phi}H_3, \Omega \rangle$ GVW Gukov, Vafa, Witten, Taylor

In IIA
$$\alpha = \beta = 0$$
 $\langle H + idJ, \Omega \rangle$ Heterotic
IIB Becker, Becker, Dasgupta, Green

General \mathcal{N} = 1 superpotential for manifolds with SU(3) structure

Conclusions

• Type II theories on manifolds admiting SU(3) structure

special Kähler moduli spaces \mathcal{N} = 2 superpotential

- Kähler potential is Hitchin functional
- Superpotential given by inner products of pure spinors and flux / torsion
- N = 1 superpotential given by inner products of pure spinors and flux / torsion depend on two angles which define U(1)_R $\frac{1}{2}$ SU(2)_R

Hitchin functionals (generalized complex geometry) at core of $\mathcal{N}=2$ / $\mathcal{N}=1$ "compactifications" of type II

More on this in upcoming talks...

IIA:

$$(\mathcal{P}^{1} + iP^{2}) = \frac{1}{4} e^{\phi} e^{\frac{1}{2}K_{\Omega}} X^{A} (e_{AK} Z^{K} + m_{A}^{K} F_{K})$$
$$\mathcal{P}^{3} = -\frac{1}{4} e^{2\phi} \left(X^{A} (e_{AK} \xi^{K} + m_{A}^{K} \tilde{\xi}_{K}) + (X^{A} e_{RRA} + F_{A} m_{RR}^{A}) \right)$$
IIB:

$$(\mathcal{P}^{1} + i\mathcal{P}^{2}) = \frac{i}{4} e^{\phi} e^{\frac{1}{2}K_{J}} (Z^{K} e_{AK} X^{A} + F_{K} m_{A}^{K} X^{A})$$

$$\mathcal{P}^{3} = -\frac{1}{4} e^{2\phi} [Z^{K} (e_{RRK} - e_{AK} \xi^{A}) + F_{K} (m_{RR}^{K} - m_{A}^{K} \xi^{A})]$$

$$\Omega = Z^{K} \alpha_{K} - F_{L} \beta^{L} \qquad B + iJ = t^{a} w_{a} \qquad X^{A} = (1, t^{a})$$

$$dw^{a} = m_{a}{}^{K} \alpha_{K} + e_{aL} \beta^{L} \qquad d\alpha_{K} = e_{a}{}^{K} \tilde{w}^{a} \qquad d\beta_{L} = -m_{a}{}^{K} \tilde{w}^{a}$$

$$F_{2} = m_{RR}^{a} w_{a} \qquad e_{AK} = (e_{0 K}, e_{a K})$$

$$F_{4} = e_{a RR} \tilde{w}^{a} \qquad m_{A}{}^{K} = (m_{0} K, m_{a} K)$$

$$F_{3} = m_{RR}^{K} \alpha_{K} + e_{K RR} \beta^{K} \qquad m_{A}{}^{K} = (m_{0} K, m_{a} K)$$

$$H_{3} = m_{0}^{K} \alpha_{K} + e_{K 0} \beta^{K} \qquad \xi^{A} = (l, c^{a} - lb^{a}) \qquad A_{3} = \xi^{K} \alpha_{K} + \tilde{\xi}_{L} \beta^{L}$$