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Motivation

- One of the most important unanswered question in string theory:

What is the structure of the vacuum we live in?

— One possibility being intensively explored: compactifications with
background fluxes

Structure of the talk

* Introduction to string theory
* Traditional compactifications
* Flux compactifications

« Conclusions and open problems



Introduction to string theory. Why do we need to compactify?

« String: 1d object moving in D space-time dimensions
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Its evolution is given by 2d theory on the world-sheet
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XM (o,7): space-time coordinates of the string

Yo : world-sheet metric
LYY : Minkowski metric in space-time
1 1

ornal | 272 . string tension



* Action gives equations of motion
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 Action can be quantized

M :
o, . creation operators
n = [o),aR] = ndpyan’?

a]yn: anihilation operators
 Quantized states of mass
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 Massless states

center of mass momentum - k2 = 0 = Jframe s.t.K = (k, k, O, ....,0)
N

CMgNa]lw&]l\qO; k > Positive norm if C’ k= g k = () :states classified.by SO(D-2)
representation

28w Sn = g 2 S Min + Spuing
graviton! dilaton B -field
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Insert in path integral
1

4ol

7 = / DXDrye S = / DX Drye=% (1 4 / dodr A 7P Ry n0a X Magx N + >

coherent state of gravitons = curved background

* Consider the “o-model” action
1

4o

S =—

/dadTﬁ (v*Parn (X) + i By (X)) 0 X M g X N 40/ DR

— —
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Conformal invariance
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where...

1
5%4]\/ =a (RMN + 2V VNP — ZHMPQHN PQ) +O(0/2) —» EOM for metric: Einstein’s eq.

1
B _ P P 12
Bun =« <—§V Hpyn +V CDHPMN) +O0(@) 5 EOM for B-field: general. of Maxwell’s eq.

D—-26 1 1
B® =d ( — — EVQCD +Vpvie — 2—4HMNPHMNP>+O(Q'2) —» EOM for dilaton:
o D=26!

H3 — dBQ is the field-strength of the B-field

* Conformal invariance of 2d theory =

— Fixes space-time dimension: D =26
— Gives EOM for massless fields to lowest order in o’

L» Can be derived from effective space-time action

1 1
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 Gravity is described by coherent state of massless closed strings

» Gauge fields are described by coherent states of massless open strings:
XM(r,0) ~ Y aple™cos(no) (Neumann bdy cond 90X (7,0) = 9, X (,7) = 0)

Massless state ¢ |0; k > —» gauge field Ay,

* Where is the matter? (electrons, quarks...) — space-time fermions
!

need world-sheet fermions
PM  superpartner of XM

t $

supersymmetry ==p SUperstring

World-sheet action — EOM  + 2 possible bdy conditions

Ramond -R- (integer modes)
\IJJW(T7 O) — :|:\|J‘]w(7'7 271') {lp'l{W) ¢£V} — {QZ'){W’ 12:;\[} — nMN(ST—l—S

\

‘ Conformal anomaly cancellation = D = 10

Neveu - Schwarz -NS- (half integer modes)




* Quantized states of mass

0 for R, 1/2 for NS

M? = (Z o - o n-{—err Y_r — a + same with tllde)
o/

n=1

 Massless states

w0,k > w100 |0,k > W) U1)000 k >
- - -

R®R NS®R NS®NS

boson fermion boson

{%Mwév} = nMN6r_|_S = 1)), obeys Clifford algebra = lpOM =M k=0
v K=

, . 1 1 1 1
Ramond ground states form a representation of gamma matrix algebra |s >= |+ > ii’ iﬁ’ i§>

space-time fermion

16ess+§c/

to get space-time
_ SUSY (GSO)
NS: \Ul/QIO, k> transformsin 8, —> space-time boson



Closed strings massless spectrum

w0,k > w1510,k > W) U1)000 k >
- - -

R®R NS®R NS®NS

boson fermion boson

ReR : type lIB 8s X 8 = [O]EB[Q]@M-]_'_ = 1@28@35+:Co@02@04+
type IIA 85 ® 8. = [1] @ [3] = 8v @ 56¢ =C; b C3

type |IB even RR potentials
type IIA odd RR potentials

NS®R: type B 8, ® 8 = 8 @ 56, = \ & \/|th ReNS typellB 8, ® 8, = 8; @ 56

gravitino

type A 8, @ 8. = 8D 56¢  lgiatino type llA 85 ® 8, = 85 P 56

type |IB two dilatinos & gravitinos of same chirality
type IIA two dilatinos & gravitinos of opposite chirality

NS®NS types IA&IIB 8, ® 8, = [0] @ [2] {2} =14 284 35 = d; ® By ® Gy N
A

metric

dilaton
Dilaton, B-field and metric for type IIB and 1A ‘ B-field



Open string spectrum

M : .
Massless state  ¥1/210;k > —» gauge field A,
w(])\/l|0; k > —» fermion [s>

Dirichlet boundary conditions -> fixed extrema: attached to D-brane

Open strings: can have MSSM spectrum:

U(N) gauge field & gaugino (y*, ,, y*,)
g@ Open strings< (excitations along brane)

D3 Matter (boson & fermion) in adjoint of U(N): (™, ,, Y™,)
(excitations orthogonal to brane)

Stacks of D-branes — U(N) — SU(3)x SU(2) x U(1)
D-branes at singularity chiral matter of MSSM



Superstring theory

— Gravity: d graviton, interaction at low energy reduces to general relativity

— Consistent theory of quantum gravity: interaction of 1 dim object is smeared out

_ _ no nonrenormalizable divergencies
o
Interaction expansion

T . 1 4 : 5 ¢
..‘-‘ - ) i - .u' i
/S > : _ . ¢ <
L

— Supersymmetry

— String coupling constant: VEV of dilaton

— Chiral matter & Grand unification: MSSM comes from U(N) — SU(3) x SU(2) x U(1)
—* Extra dimensions

—» Uniqueness

Consider M,,=Mg x g1 Momentum along S' = n/R

symmetric under

Bdy condition XM(t, 2rt)=XM(t,0)+ 2rmR n =< ”/‘ -
o T duality
2 2 p2 -
L m<R 2 ~ R
M*= st —p + (N+N-2) X+ Xpe X — Xp

85 <« 8 forright movers

lIA and IIB are related by T duality

lIA <= 1IB




Other “theories” -- all related by dualities

M-theory

S0O(32) heterotic

Eg x Eg heterotic

Type |



Compactifications of [IA and IIB in the low energy limit (o’ — 0 )

* Massless states .
» Graviton gy

NSNS -+ B-field B,

> Dilaton ¢ | NSR/¢éM,w§M,Aé,A§intypeIIA
RR<:C1+C3 intype 1A RNS\wéM,wﬁM,Aé,Aiintype||B

Cy + C, +C,, in type 1IB

. TOWMS - M2 = ﬁ/
(8%

» Conformal anomaly —» space-time equations of motion
— effective space-time action : /N\"'= 2 supersymmetry in 10D

* Look for solutions to the equations of motion

- M, =M, x Mg
—» preserve some supersymmetry: guaranteed to be stable

—> have background internal fluxes



Where do these fluxes come from?

* [n 4d: AM (= A,) potential for the EM field.
F =0, A, (F,=dA,) field strength.

Magnetic flux: /2 Fro=m
T (TN S

: : : . Electric flux: —
Electric and magnetic sources for A, are 0-dimensional 1C X /S *Fy =e

Consider A, : dA,=F;= = F,= » dA, f

surrounds source

* In type Il theories, 10d

Co,— Fi electric source D1-brane

F
C,— F,« 3 magnetic source D5-brane
gz — :z3<— IR H._, | electric source F1-string
C3 : F4:: NSI\?S magnetic source NS5-brane| /A and 1B
4 5
RR
Fluxes for F; and H.: /A:‘_5 F3=m] 53 3= ef

h?1: topological data of manifold

Consistent compactifications with (m',e') = 0




Supersymmetric solutions with fluxes
SUSY vacuum: <0 [{Q,, x| 0>=0=<0| O, Ap | 0 >

y l
. g per . . _
Fermionic fields' §P$e;{/?rfrf]rimon%'%ﬁ> <, yly>=0
e dilatinoA' — <o, A'>=0

66¢M = VME _I_ Han’ynPE + e¢z Fn,-yME’ f’n — Fa,l,.,a,nfyall.”an
mn
n=1,3,5 for IIB

L\werpointilgeeand dyy = 0 = Ve = 011 0> =<0 | {QQ}L0,> are guadratic)

SolgSug¥ mBigpcsyy = (5 2 DM for the fluxes ( dF = d«F = 0) - sol EOM
0,0 =0, @ is a constant spinor in 4d

— —> =
€ 0 n Ve 0 <:Vm77 =0," is a covariantly constant spinor on

!
Mg has reduced holonomy: SU(3)

Mg is Calabi-Yau

SO(6) — SU(E) Hol 6d manifold Riemannian C SO(6)
\S/Sicr;[g:z 2 : g:?xn Smaller holonomy group, more special manifold
A, 15 _s g+3+3+1%7 SUSY — Hol a4, C SU(3)

A; 10 — 6+3+1x%2

1 _ pl :
62_92@77 > Myg= My x CYg : N=2 in4d
e =0“"Qn



Moduli space of CY compactifications

o ; QL — A\
A3 377 PN
o gmn — [A|%gmn

h21: topological data of manifold

— — @ yolume
[ =[go=
Wy Wwgq

of 2-cycles
A

a=1,. h"
h'1: topological data of manifold

- Dilaton ¢ — <e®>=g,

LU=, h2!
complex structure moduli

“shape” moduli
(i=0: overall volume)

ca=1,...,h"1
o Kahler moduli
“size” moduli

-1 dilaton

- h%1 shape moduli
- h'.1 size moduli

Typical h%1, h1 ~ 100 = 200 massless scalars in 4d effective theory!

Need to understand mechanism of moduli fixing



Turn on fluxes
0y = Ve +HarnpY"™Pe +e? Frane +e? Fayne +e© Fsyae

Contributions from H; and F5 cancel if

€¢>I<6F3=H3
! and €0 = ™0 =
€¢€,LF=miI{

But Bianchiidfor F;: d F, =d «F;=H; AF; =0 » Fluxes act like electric-magnetic source

EOM (effective D3-charge)
Einstein’s eq ' Ryy =9,y Hppp F™ > Fluxes have effective tension
v
[ 240y, 0
F5 — (1 —I_ *)VOZL], VAN dA and IMN — ( 0 e_QA(y)ﬁmn(y) > M10=9‘/I4 XW Mﬁ

v

1 Mg conformal CY

1 2
SUSY<23%>:VM<ZQ>+/:5’7M<21)zo > eleQ
v N=2 — N=1 Easiest solution with fluxes

Apply powerful tools of CY

ce=02eY%y » Vmn=0 +» Gmn isCY!

Turning on eg = mgl » Break SUSY completely in a stable way (solution to EOM)



Applications

Moduli stabilization

Moduli fixing from susy conditions:

Given H3,F3 » 3A;,B; such that et — mH is satisfied ? Ha = m!
7 7 A3 3 1
* Fixes relative size and orientation of A;, B; » ¢complex structure fixed Z Fy — oF
“shape” moduli B3 3T €
(2

* Fixes dilaton

v
_ _ _ size moduli _ _ .
Fluxes induce potential for moduli =) dilaton and shape moduli stabilized
| >

. size moduli unfixed
shape moduli ) i} _
dilaton no-scale” solution

Size moduli can be fixed by non-perturbative effects



Most general solution with fluxes

* GP class (e® *F;= H;)correponds to “minimal” back-reaction of fluxes on % (CY — conformal CY)

What is the most general susy solution with fluxes ?

* Susy requires topological condition on

OnlyHs. 0¢m = Vm + Hypyn = 0 (Hm = Hmnpy"™?)

f
;o 7) is covariantly constant M, has SU(3) structure
Vi=V+H in a connection with torsion -’ ° ©)
torsion <« flux
V'’ has SU(3) holonomy SU,(3) Invariant ,

spinorn  notcov constin LCV
2-formdJ » cov const in V’
3-form Q VJi~WJ

dQ=0,dd=0
W and H are decomposed in SU(3) representations

SUSY allows to turn on only certain SU(3) representations of H ~ W

Fluxes:
Only flux in certain SU(3) representations turned on. For ex. IIB no singlets for F; and Hy: eg = g = 0

Manifold:

SU(3) structure is a necessary condition (topological requirement). Can we get sufficient conditions (differential) ?



Most general solution with fluxes (conditions on %)

complex (define complex coordinates in patches,or almost complex structure. If integrable -> complex)
symplectic (3 nondegenerate closed 2-form: dJ,=0 - Integrable symplectic structure)

No fluxes: Mg CY <]

Seprr = Vare + Hypnpy™o e + €2 FuynsPae, SUE) dJ = Im (W, Q) + W, A J+ W,
n

~We+ He + Fe =0 Torsion:  go=w, J2 +W, AQ+W,AJ

Torsion + fluxes = 0 Cancelation works representation by representation

101 3®3 6cd6 8® 8
Torsion 1 (W, 2 (W,Wo) (1 (W) |1 (W)
H, 1 1 1 0
IA: F,, 2 (Fo.F,.F) |2 (F,,F,) |0 1 (F, Fy)
IB: Fypry |1 (F3) |3 (Fy.FaFg) |1 (F3) |0

— N (integrability of
In 1IB W2 - O(;omplex structure) In 1A W3 ~ H®) (m(;

If also W,=0 = [IB: dQ =W ;A Q Mg is complex
(true in all susy vacua)

IA: dJ = W, A J + H®) Mg is “twisted symplectic”

Is there a mathematical construction that extémids complex and symplectic geometry?



Most general solution with fluxes (conditions on %)
No fluxes (or GP solution): 94 is (conformal) CY
Complex: define complex coordinates in patches: almost complex structure. If integrable =
CY < complex manifold
Symplectic: 3 nondegenerate closed 2-form: dJ,=0

Found that in most general SUSY solution:

: - To describe IIA and IIB vacua on the same footing need mathematical
lIB — 9 is complex ) : ,

, , construction that contains complex and symplectic geometry
lIA — M is symplectic

Generalized Complex Geometry /tanaﬂt botatigent bundle

Define complex coordinates in THM & T"# :12 dimensional space
X+ §

Generalized complex structure

Generalized Calabi-Yau is a generalized complex M with additional constraint
All susy vacua are generalized Calabi-Yau’s !

(Also restrictions on the allowed fluxes)



Generalized Complex Geometry

* In almost complex manifolds 3 almost complex structure (ACS)
JTM— T, ﬁ=-1d 4» I basis 7= ( Jgf E)i LP@j%gﬁbpﬁmg (1 + i J)project onto holo/antiholo

vectors

Integrability of ACS (condition for'}%@ggi@S): VXY € TM: n_[rn, X, w, Y]=0 = Mis complex

* In Generalized Complex Geometry
T TMETM - TMB T M, 72=-1,4, ,g—> Projectors: TI,.= (1£1i7)
X+ g
Integrability: V X+&, Y+C € T @ T o TL [I1, X+E, I1, Y+ C]=0 = M is Generalized Complex

* If  admits integrable J — integrable J = ( g _Ojt )

« If ¢ has closed 2-form J — integrable 7 = ( 3 —{)“1 )

Generalized Calabi-Yau is a generalized complex M with additional constraint
All susy vacua are twisted generalized Calabi-Yau’s !

NSNS: twists the differential operator d = d+H A - [, ]c = [, ] isted

Fluxes <
RR: act as a defect for integrability of second generalized complex structure



Summary / Open problems

String theory is beautiful and unique (all “theories” are connected by dualities)

It has many solutions!!

Which enkii®relevart/fontus?s??

Discussed supersymmetric solutions with fluxes

Break part or all susy

Stabilize some moduli (in conformal CY solution fluxes fix shape and dilaton moduli)

Is there a way
to fix size moduli
Applications in AdAS/CFT correspondance perturbatively ?

Explicit examples? Do we have control
over corrections ?
complex 1B }

symplectic 1A

Fluxes
Used to construct dS solutions / cosmological solutions

generalized

Conditions on general susy solution : 9‘/16< complex manifolds

M-theory
Generalized complex geometry SO(32) heterotic
is the right tool for systematic =~ wem
decription of flux backgrounds

what are the moduli spaces of GCY ?
? _ adding extra fluxes stabilizes them ?
Fe 7 g heterofic consistent compactifications ?
susy breaking ?

Type IB

Type |

Long term goal: understand how Einstein gravity and SM emerge as low-energy limits of string theory
Flux compactifications seems to be a necessary ingredient in the answer !




