String Theory Compactifications with Background Fluxes

Mariana Graña

Service de Physique Théorique CEA / Saclay

Journées Physique et Mathématique – IHES -- Novembre 2005

Motivation

One of the most important unanswered question in string theory:
 What is the structure of the vacuum we live in?

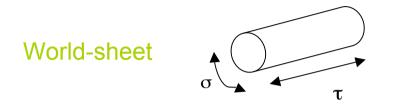
One possibility being intensively explored: compactifications with background fluxes

Structure of the talk

- Introduction to string theory
- Traditional compactifications
- Flux compactifications
- Conclusions and open problems

Introduction to string theory. Why do we need to compactify?

• String: 1d object moving in D space-time dimensions



Its evolution is given by 2d theory on the world-sheet

$$S = -\frac{1}{4\pi\alpha'} \int \mathrm{d}\sigma \mathrm{d}\tau \sqrt{\gamma} \,\gamma^{\alpha\beta} \eta_{MN} \partial_{\alpha} X^M \partial_{\beta} X^N$$

 $X^{M}(\sigma,\tau)$: space-time coordinates of the string

 $\gamma^{\alpha\beta}$: world-sheet metric

 η_{MN} : Minkowski metric in space-time

 $\frac{1}{2\pi \alpha'} = \frac{1}{2\pi l_s^2} = T$: string tension

Action gives equations of motion

$$\left(\frac{\delta^2}{\delta \sigma^2} - \frac{\delta^2}{\delta \tau^2} \right) X^M(\tau, \sigma) = 0 \quad \Longrightarrow \quad X^M(\tau, \sigma) \sim \underbrace{\sum_{n} \tilde{\alpha}_n^M e^{2in\sigma^-}}_{X_R^M(\sigma^-)} + \underbrace{\sum_{n} \alpha_n^M e^{2in\sigma^+}}_{X_L^M(\sigma^+)} + \underbrace{\sum_{n} \alpha_n^M e^{2in\sigma^+}}_{X_L^M(\sigma^+)} \right)$$

- + bdy cond: $X^{\mathbb{M}}(\tau, 2\pi) = X^{\mathbb{M}}(\tau, 0)$
- Action can be quantized α_n^M : creation operators α^{M}_{-n} : anihilation operators

$$\bullet \quad [\alpha_n^P, \alpha_m^Q] = n\delta_{m+n}\eta^{PQ}$$

 $\tau - \sigma$

• Quantized states of mass

$$M^{2} = \frac{2}{\alpha'} \left(\sum_{n=1}^{\infty} \alpha_{n} \cdot \alpha_{-n} + \tilde{\alpha}_{n} \cdot \tilde{\alpha}_{-n} - 2 \right)$$

Massless states

$$\zeta_{M} \tilde{\zeta}_{N} \alpha_{1}^{M} \tilde{\alpha}_{1}^{N} | 0; k \stackrel{\checkmark}{>} \text{Positive norm if } \zeta \cdot k = \tilde{\zeta} \cdot k = 0 \text{ : states classified by SO(D-2)}$$

$$2 \zeta_{M} \widetilde{\zeta}_{N} = \zeta_{\{MN\}}^{0} + 2 \zeta_{t} \eta_{MN} + \zeta_{[MN]}$$

graviton! dilaton B -field

Insert in path integral

$$Z = \int \mathcal{D}X \mathcal{D}\gamma e^{-S} = \int \mathcal{D}X \mathcal{D}\gamma e^{-S_0} \left(1 + \frac{1}{4\pi\alpha'} \int \mathrm{d}\sigma \mathrm{d}\tau \sqrt{\gamma} \,\gamma^{\alpha\beta} h_{MN} \partial_\alpha X^M \partial_\beta X^N + \dots \right)$$

coherent state of gravitons = curved background

 \bullet Consider the " $\sigma\text{-model"}$ action

$$S = -\frac{1}{4\pi\alpha'} \int \mathrm{d}\sigma \mathrm{d}\tau \sqrt{\gamma} \left(\gamma^{\alpha\beta} g_{MN}(X) + i\epsilon^{\alpha\beta} B_{MN}(X) \right) \partial_{\alpha} X^{M} \partial_{\beta} X^{N} + \alpha' \Phi R_{\mathrm{metric}} \right) \overset{\mathrm{d}\sigma}{\underset{\mathrm{metric}}{\overset{\mathrm{d}\sigma}{\underset{\mathrm{B-field}}{\overset{\mathrm{B-field}}{\underset{\mathrm{B-field}}{\overset{\mathrm{B-field}}{\underset{\mathrm{B-field}}{\overset{\mathrm{B-field}}{\underset{\mathrm{B-field}}{\underset{\mathrm{B-field}}{\overset{\mathrm{B-field}}{\underset{\mathrm{B-field}}{\overset{\mathrm{B-field}}{\underset{\mathrm{B-field}}{\underset{\mathrm{B-field}}{\overset{\mathrm{B-field}}{\underset{\mathrm{B-field}}{\overset{\mathrm{B-field}}{\underset{\mathrm{B-field}}{\overset{\mathrm{B-field}}{\underset{\mathrm{B-field}}{\overset{\mathrm{B-field}}{\underset{B-field}}{\underset{\mathrm{B-field}}{\underset{B-field}}{\underset{B-field}}{\underset{B-field}}{\underset{B-field}}{\underset{B-field}}{\underset{B-field}}{\underset{B-field}}{\underset{B-field}}{\underset{B-field}}{\underset{B-field}}{\underset{B-field}}{$$

Conformal invariance

$$T^{\alpha}_{\alpha} = \frac{1}{\sqrt{-\gamma}} \frac{\delta S}{\delta \gamma_{\alpha\beta}} \gamma_{\alpha\beta} = 0$$

$$-2\alpha' T^{\alpha}{}_{\alpha} = \beta^{g}_{MN} \gamma^{\alpha\beta} \partial_{\alpha} X^{M} \partial_{\beta} X^{N} + i\beta^{B}_{MN} \epsilon^{\alpha\beta} \partial_{\alpha} X^{M} \partial_{\beta} X^{N} + \beta^{\Phi} R$$

where...

$$\beta^{g}_{MN} = \alpha' \left(R_{MN} + 2\nabla_{M} \nabla_{N} \Phi - \frac{1}{4} H_{MPQ} H_{N}{}^{PQ} \right) + \mathcal{O}(\alpha'^{2}) \rightarrow \text{EOM for metric: Einstein's eq.}$$

$$\beta^{B}_{MN} = \alpha' \left(-\frac{1}{2} \nabla^{P} H_{PMN} + \nabla^{P} \Phi H_{PMN} \right) + \mathcal{O}(\alpha'^{2}) \rightarrow \text{EOM for B-field: general. of Maxwell's eq.}$$

$$\beta^{\Phi} = \alpha' \left(\frac{D - 26}{\alpha'} - \frac{1}{2} \nabla^{2} \Phi + \nabla_{P} \nabla^{P} \Phi - \frac{1}{24} H_{MNP} H^{MNP} \right) + \mathcal{O}(\alpha'^{2}) \rightarrow \text{EOM for dilaton:}$$

$$D = 26 !$$

 $H_3 = dB_2$ is the field-strength of the B-field

- Conformal invariance of 2d theory \Rightarrow
 - Fixes space-time dimension: D = 26
 - Gives EOM for massless fields to lowest order in α '

└ Can be derived from effective space-time action

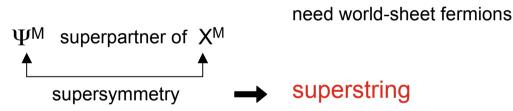
$$S = \frac{1}{\kappa_0} \int d^{26} X \sqrt{-g} e^{-2\Phi} \left(R + 4\nabla_M \Phi \nabla^M \Phi - \frac{1}{12} H_{MNP} H^{MNP} + \mathcal{O}(\alpha') \right)$$

- Gravity is described by coherent state of massless closed strings
- Gauge fields are described by coherent states of massless open strings:

$$X^{M}(\tau,\sigma) \sim \sum_{n} \alpha_{n}^{M} e^{in\tau} cos(n\sigma) \quad \text{(Neumann bdy cond } \partial_{\sigma} X^{M}(\tau,0) = \partial_{\sigma} X^{M}(\tau,\pi) = 0\text{)}$$

Massless state $\zeta_M \alpha^M_{-1} | 0; k > \rightarrow$ gauge field A_M

• Where is the matter? (electrons, quarks...) → space-time fermions



World-sheet action \rightarrow EOM + 2 possible bdy conditions

• Quantized states of mass

$$M^{2} = \frac{1}{\alpha'} \left(\sum_{n=1}^{\infty} \alpha_{n} \cdot \alpha_{-n} + \sum_{r} r \psi_{r} \cdot \psi_{-r} - a + \text{same with tilde} \right)$$

Massless states

$$\underbrace{\Psi_0^M \tilde{\Psi}_0^N | 0, k >}_{\substack{\mathsf{NS} \otimes \mathsf{R} \\ \text{boson}}} \underbrace{\Psi_{1/2}^M \tilde{\Psi}_0^N | 0, k >}_{\substack{\mathsf{NS} \otimes \mathsf{NS} \\ \text{fermion}}} \underbrace{\Psi_{1/2}^M \tilde{\Psi}_{1/2}^N | 0, k >}_{\substack{\mathsf{NS} \otimes \mathsf{NS} \\ \text{boson}}}$$

$$\{\psi_r^M \psi_s^N\} = \eta^{MN} \delta_{r+s} \implies \psi_0$$
 obeys Clifford algebra $\Rightarrow \psi_0^M \cong \Gamma^M$

$$|\mathbf{s}>=|\pm\frac{1}{2},\pm\frac{1}{2},\pm\frac{1}{2},\pm\frac{1}{2}\rangle$$

ζ_M·k = 0

space-time fermion

$$\mathbf{16} \rightarrow \mathbf{8}_{\mathrm{s}} + \mathbf{8}_{\mathrm{c}}$$

to get space-time SUSY (GSO)

NS: $\Psi_{1/2}^{M}|0,k>$ transforms in $\mathbf{8}_{v} \longrightarrow$ space-time boson

Closed strings massless spectrum

$\Psi^M_0 ilde{\Psi}^N_0 0,k>$	$\Psi^M_{1/2} ilde{\Psi}^N_0 0,k>$	$\Psi^M_{1/2} ilde{\Psi}^N_{1/2} 0,k>$
R⊗R	NS⊗R	NS⊗NS
boson	fermion	boson

_{R \otimes R:} type IIB $8_s \otimes 8_s = [0] \oplus [2] \oplus [4]_+ = 1 \oplus 28 \oplus 35_+ = C_0 \oplus C_2 \oplus C_{4+}$

type IIA $8_s \otimes 8_c = [1] \oplus [3]$ $= 8_v \oplus 56_t$ $= C_1 \oplus C_3$

	type IIB even RR potentials	;	
	type IIA odd RR potentials		
	$egin{aligned} 8_v \otimes 8_s &= 8_s \oplus 56_s = \lambda \oplus \mathbf{\Psi}^M \ & \uparrow & \uparrow & \uparrow & \uparrow & gravitino \ 8_v \otimes 8_c &= 8_c \oplus 56_c & \downarrow & dilatino \end{aligned}$		$8_s \otimes 8_v = 8_s \oplus 56_s$ $8_s \otimes 8_v = 8_s \oplus 56_s$
type IIB two dilatinos & gravitinos of same chirality type IIA two dilatinos & gravitinos of opposite chirality		/	

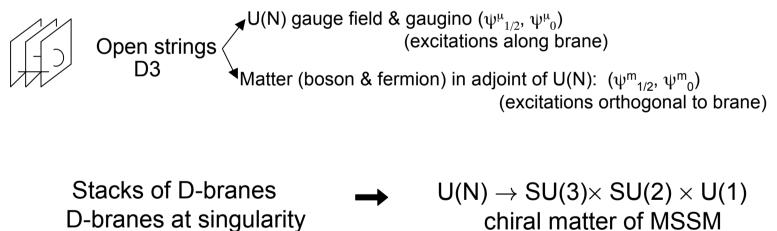
NS \otimes NS types IIA & IIB $8_v \otimes 8_v = [0] \oplus [2] \oplus \{2\} = 1 \oplus 28 \oplus 35 = \bigoplus_{\uparrow} \oplus \bigoplus_{\uparrow} B_2 \oplus G_{MN}$ dilaton metric **B-field**

Dilaton, B-field and metric for type IIB and IIA

Open string spectrum

Dirichlet boundary conditions -> fixed extrema: attached to D-brane

Open strings: can have MSSM spectrum:



chiral matter of MSSM

Superstring theory

- → Gravity: ∃ graviton, interaction at low energy reduces to general relativity
- Consistent theory of quantum gravity: interaction of 1 dim object is smeared out

- Supersymmetry
- → String coupling constant: VEV of dilaton
- → Chiral matter & Grand unification: MSSM comes from $U(N) \rightarrow SU(3) \times SU(2) \times U(1)$
- Extra dimensions
- → Uniqueness

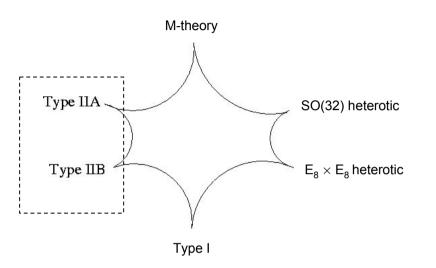
symmetric under

 $||A \leftrightarrow ||B|$

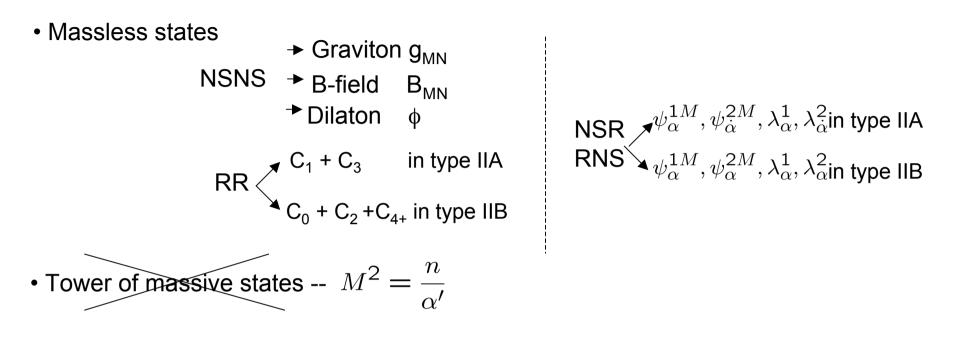
Consider
$$M_{10}=M_9 \times S^1$$
 Momentum along $S^1 = n/R$
Bdy condition $X^{M}(\tau, 2\pi)=X^{M}(\tau, 0)+2\pi mR$ $n \Leftrightarrow m$
 $R \leftrightarrow \frac{\alpha'}{R}$! T duality
 $M^2 = \frac{n^2}{R^2} + \frac{m^2 R^2}{\alpha'^2} + \frac{2}{\alpha'}(N + \tilde{N} - 2)$ $X_L + X_R \leftrightarrow X_L - X_R$
 $\mathbf{8}_S \leftrightarrow \mathbf{8}_C$ for right movers

IIA and IIB are related by T duality

Other "theories" -- all related by dualities



Compactifications of IIA and IIB in the low energy limit ($\alpha' \rightarrow 0$)



Conformal anomaly
 → space-time equations of motion

- → effective space-time action : \mathcal{N} = 2 supersymmetry in 10D
- Look for solutions to the equations of motion
 - \rightarrow M₁₀ = M₄ × M₆
 - → preserve some supersymmetry: guaranteed to be stable
 - → have background internal fluxes

Where do these fluxes come from?

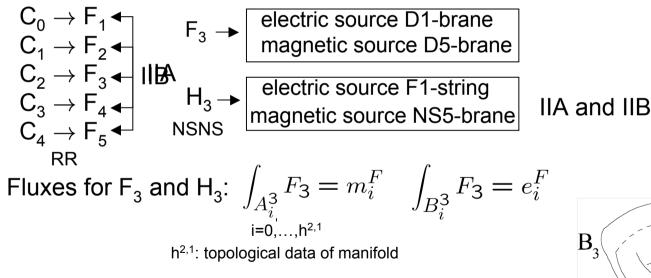
• In 4d: $A_{\mu} (\equiv A_1)$ potential for the EM field. $F_{\mu\nu}=\partial_{[\mu}A_{\nu]} (F_2=dA_1)$ field strength.

Electric and magnetic sources for A₁ are 0-dimensional

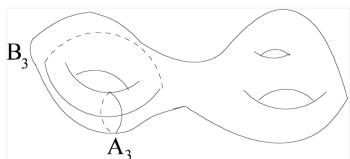
Consider A_2 : $dA_2 = F_3 = *F_1 = *dA_0$

• In type II theories, 10d

Magnetic flux: $\int_{S^2} F_2 = m$ Electric flux: $\int_{S^2} *F_2 = e$



Consistent compactifications with $(m^i, e^i) \neq 0$

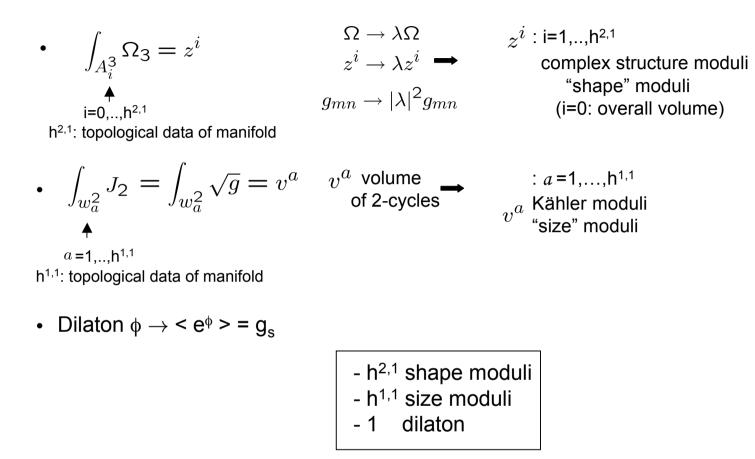


Supersymmetric solutions with fluxes

SUSY vacuum:
$$<0 | \{Q_{\alpha}, \chi_{\beta}| 0 > = 0 = <0 | \delta_{\epsilon_{\alpha}} \chi_{\beta} | 0 >$$

Fermionic fields: Fermionic field itermionic field

Moduli space of CY compactifications



Typical $h^{2,1}$, $h^{1,1} \sim 100 \Rightarrow 200$ massless scalars in 4d effective theory!

Need to understand mechanism of moduli fixing

Turn on fluxes

$$\delta\psi_M = \nabla_M \epsilon + H_{Mnp} \gamma^{np} \epsilon + e^{\phi} \not F_1 \gamma_M \epsilon + e^{\phi} \not F_3 \gamma_M \epsilon + e^{\phi} \not F_5 \gamma_M \epsilon$$

Contributions from H₃ and F₃ cancel if

$$e^{\phi} *_{6} F_{3} = H_{3}$$

 \downarrow and $e_{0}^{F} = m_{0}^{H} = 0$
 $e^{\phi} e_{i}^{F} = m_{i}^{H}$

If
$$F_1 = F_5 = 0 \Rightarrow \nabla_M \epsilon = 0 \Rightarrow CY$$

But Bianchi id for F_5 : d F_5 = d $*F_5$ = H₃ \wedge F₃ \neq 0 \rightarrow Fluxes act like electric-magnetic source EOM (effective D3-charge)

Einstein's eq : $R_{\mu\nu} = g_{\mu\nu} H_{mnp} F^{mnp}$ + Fluxes have effective tension

$$F_5 = (1+*)Vol_4 \wedge dA \quad \text{and} \quad g_{MN} = \begin{pmatrix} e^{2A(y)}\eta_{\mu\nu} & 0\\ 0 & e^{-2A(y)}\tilde{g}_{mn}(y) \end{pmatrix} \quad \mathcal{M}_{10} = \mathcal{M}_4 \times_w \mathcal{M}_6$$

 \mathcal{M}_{c} conformal CY

$$\begin{split} \mathsf{SUSY} \begin{pmatrix} \delta \psi_M^1 \\ \delta \psi_M^2 \end{pmatrix} &= \nabla_M \begin{pmatrix} \epsilon^1 \\ \epsilon^2 \end{pmatrix} + \mathscr{F}_5 \gamma_M \begin{pmatrix} \epsilon^2 \\ \epsilon^1 \end{pmatrix} = 0 \quad \bullet \quad \epsilon^1 = \epsilon^2 \\ & \mathscr{N} = 2 \rightarrow \mathscr{N} = 1 \end{split} \qquad \begin{aligned} & \mathcal{M}_6 \text{ conformal CY} \\ & \bullet \qquad & \mathscr{N} = 2 \rightarrow \mathscr{N} = 1 \end{aligned} \qquad \begin{aligned} & \mathsf{Easiest solution with fluxes} \\ & \mathsf{Apply powerful tools of CY} \end{aligned}$$

Turning on $e_0^F = m_0^H \rightarrow$ Break SUSY completely in a stable way (solution to EOM)

Applications

Moduli stabilization

Giddings, Kachru, Polchinski 01

Moduli fixing from susy conditions:

Given $H_3, F_3 \rightarrow \exists A_i, B_i$ such that $e^{\phi} e_i^F = m_i^H$ is satisfied? • Fixes relative size and orientation of $A_i, B_i \rightarrow \text{complex structure fixed}$ • Fixes dilaton • Fixes dilaton • Fixes dilaton

Fluxes induce potential for moduli shape moduli dilaton dilato

Size moduli can be fixed by non-perturbative effects

Most general solution with fluxes

• GP class ($e^{\phi} * F_3 = H_3$) correponds to "minimal" back-reaction of fluxes on \mathcal{M}_6 (CY \rightarrow conformal CY) What is the most general susy solution with fluxes?

• Susy requires topological condition on \mathcal{M}_6

Gauntlett, Martelli, Pakis, Waldram 02

Only
$$H_{3:} \ \delta \psi_m = \nabla_m \eta + H_m \eta = 0$$
 $(H_m = H_{mnp} \gamma^{np})$
 $\nabla' = \nabla + H$ η is covariantly constant
in a connection with torsion
torsion \leftrightarrow flux
 ∇' has SU(3) holonomy
W and H are decomposed in SU(3) representations
 $(H_m = H_{mnp} \gamma^{np})$
 η is covariantly constant
in a connection with torsion
torsion \leftrightarrow flux
 ∇' has SU(3) holonomy
 $(H_m = H_{mnp} \gamma^{np})$
 $(H_m = H_{mnp} \gamma^{np$

and it are decomposed in SO(S) representatio

SUSY allows to turn on only certain SU(3) representations of H \sim W

Fluxes:

Only flux in certain SU(3) representations turned on. For ex. IIB no singlets for F_3 and H_3 : $e_0 = m_0 = 0$

Manifold:

SU(3) structure is a necessary condition (topological requirement). Can we get sufficient conditions (differential)?

Most general solution with fluxes (conditions on \mathcal{M}_6)

No fluxes: \mathcal{M}_6 CY $\overset{\bullet}{\checkmark}$ complex (define complex coordinates in patches, or almost complex structure. If integrable -> complex) $\overset{\bullet}{\checkmark}$ symplectic (\exists nondegenerate closed 2-form: dJ₂=0 - Integrable symplectic structure)

$$\begin{split} \delta_{\epsilon}\psi_{M} &= \nabla_{M}\epsilon + H_{Mnp}\gamma^{np}\sigma^{3}\epsilon + e^{\phi}\sum_{n} \not F_{n}\gamma_{M}\mathcal{P}_{n}\epsilon \,, & \qquad \mathsf{dJ} = \mathsf{Im} \, (\mathsf{W}_{1} \, \Omega) + \mathsf{W}_{4} \wedge \mathsf{J} + \mathsf{W}_{3} \\ &\sim W\epsilon + H \, \epsilon \, + F \, \epsilon \, = 0 & \qquad \mathsf{SU}(3) \\ &\sim W\epsilon + H \, \epsilon \, + F \, \epsilon \, = 0 & \qquad \mathsf{Torsion:} \quad \mathsf{d} \, \Omega = \mathsf{W}_{1} \, \mathsf{J}^{2} \, + \mathsf{W}_{5} \wedge \Omega + \mathsf{W}_{2} \wedge \mathsf{J} \,. \end{split}$$

Torsion + fluxes = 0

Cancelation works representation by representation

	1 \oplus 1	3 ⊕ 3	6 \oplus 6	8 ⊕ 8		
Torsion	1 (W ₁)	2 (W_4, W_5)	1 ($W_{\overline{3}}$)	1 (W ₂)		
H ₃	1	1	1	0		
IIA: F _{2n}	2 (F ₀ ,F ₂ ,F ₄)	2 (F ₂ , F ₄)	0	1 (F ₂ , F ₄)		
IIB: F _{2n+1}	1 (F ₃)	3 (F ₁ ,F ₃ ,F ₅)	1 (F ₃)	0		
$In IIB W_{2} = 0_{complex structure}^{(integrability of complex structure)} In IIA W_{3} \sim H^{(6)} (symplectic geometry)$ If also $W_{1}=0 \rightarrow IIB: d\Omega = W_{5} \wedge \Omega$ $\mathcal{M}_{6} \text{ is complex}$ $IIA: dJ = W_{4} \wedge J + H^{(6)}$ $\mathcal{M}_{6} \text{ is "twisted symplectic"}$						

Is there a mathematical construction that contenids complex and symplectic geometry?

Most general solution with fluxes (conditions on \mathcal{M}_6)

MG, Minasian, Petrini, Tomasiello 04

No fluxes (or GP solution): \mathcal{M}_6 is (conformal) CY

Complex: define complex coordinates in patches: almost complex structure. If integrable \Rightarrow CY < CY

Symplectic: \exists nondegenerate closed 2-form: $dJ_2=0$

```
Found that in most general SUSY solution:
```

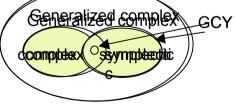
 $\begin{array}{l} \text{IIB} \rightarrow \mathcal{M} \text{ is complex} \\ \text{IIA} \rightarrow \mathcal{M} \text{ is symplectic} \end{array}$

➡ To describe IIA and IIB vacua on the same footing need mathematical construction that contains complex and symplectic geometry

Generalized Complex Geometry tangent butailgent bundle	Hitchin 02
Define complex coordinates in $T\mathcal{M} \oplus T^*\mathcal{M}$:12 dimensional space	Gualtieri 03
X+ξ	

Generalized complex structure

Generalized complex manifolds: generalized complex structure is integrable



Generalized Calabi-Yau is a generalized complex M with additional constraint

All susy vacua are generalized Calabi-Yau's !

(Also restrictions on the allowed fluxes)

Generalized Complex Geometry

In almost complex manifolds
 almost complex structure (ACS)

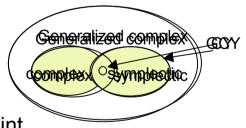
 $\widetilde{J}: T_{\mathcal{M}} \to T_{\mathcal{M}}, \widetilde{J}^2 = -1_{d \times d} \to \exists \text{ basis } \widetilde{J} = \begin{pmatrix} +i & 0 \\ o \uparrow & -i \end{pmatrix}$ Projectors: $\overline{\mathcal{T}}_{\text{hief}} = (1 \pm i \widetilde{J})$ project onto holo/antiholo Integrability of ACS (condition for $\overset{holosorphic}{\mathsf{CS}}$): $\forall X, Y \in T\mathcal{M}$: $\pi_{-}[\pi_{+} X, \pi_{+} Y]=0 \Rightarrow \mathcal{M}$ is complex

In Generalized Complex Geometry

$$\begin{array}{c} \mathcal{J} : \mathsf{T}\mathcal{M} \oplus \mathsf{T}^*\mathcal{M} \to \mathsf{T}\mathcal{M} \oplus \mathsf{T}^*\mathcal{M}, \ \mathcal{J}^2 \texttt{=-1}_{\mathsf{2d} \times \mathsf{2d}} & \rightarrow \\ \mathsf{X} + \ \xi \end{array}$$
 Projectors: $\Pi_{\pm} \texttt{=} (\mathsf{1} \pm \mathsf{i} \ \mathcal{J})$

Integrability: $\forall X + \xi, Y + \zeta \in T \mathcal{M} \oplus T^* \mathcal{M}$: $\Pi_{-} [\Pi_{+} X + \xi, \Pi_{+} Y + \zeta]_{C} = 0 \Rightarrow \mathcal{M}$ is Generalized Complex

- If \mathcal{M} admits integrable $\tilde{J} \to \text{integrable} \quad \mathcal{J} = \begin{pmatrix} \tilde{J} & 0 \\ 0 & -\tilde{J}^t \end{pmatrix}$
- If \mathcal{M} has closed 2-form $J \to \text{integrable}$ $\mathcal{J} = \begin{pmatrix} 0 & -J^{-1} \\ J & 0 \end{pmatrix}$



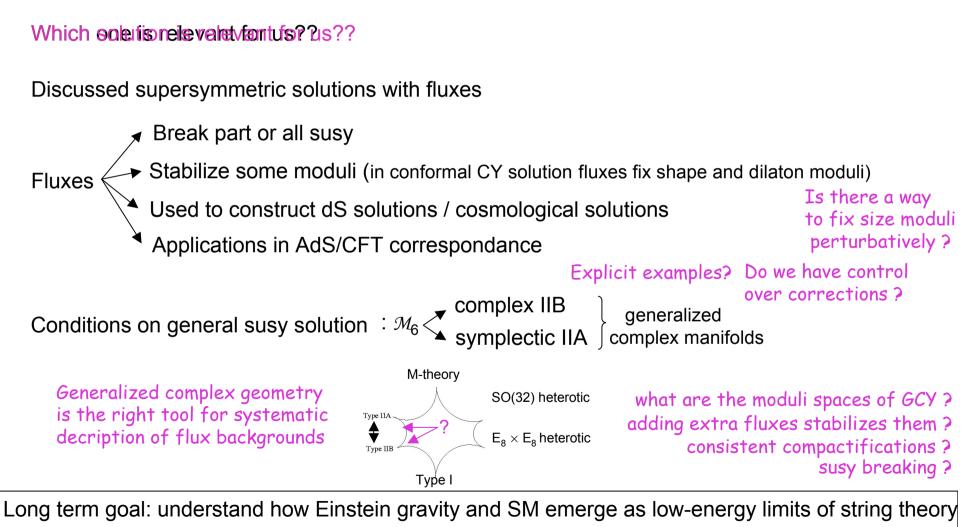
Generalized Calabi-Yau is a generalized complex M with additional constraint All susy vacua are twisted generalized Calabi-Yau's !

Fluxes RR: act as a defect for integrability of second generalized complex structure

Summary / Open problems

String theory is beautiful and unique (all "theories" are connected by dualities)

It has many solutions!!



Flux compactifications seems to be a necessary ingredient in the answer !