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• One of the most important unanswered question in string theory: 
  

Motivation

What is the structure of the vacuum we live in?

One possibility being intensively explored: compactifications with 
                                                                    background fluxes 

Structure of the talk

• Introduction to string theory

• Traditional compactifications

• Flux compactifications

• Conclusions and open problems



Introduction to string theory. Why do we need to compactify?

• String: 1d object moving in D space-time dimensions

World-sheet
σ τ

Its evolution is given by 2d theory on the world-sheet

γαβ       : world-sheet metric
ηMN            : Minkowski metric in space-time 

XM (σ,τ): space-time coordinates of the string

: string tension



• Action gives equations of motion τ−σ τ+σ

+ bdy cond:  XM(τ, 2π)=XM(τ,0)

• Action can be quantized
:   creation operators

:  anihilation operators

• Quantized states of mass

• Massless states

 2 ζM ζN = ζ0
{MN} + 2 ζt ηMN + ζ[MN]   

graviton! dilaton B -field

Positive norm if  

center of mass momentum --

: states classified by SO(D-2)
         representation

~



ηMN → ηMN + hMN

∝ ζMN

Insert in path integral

coherent state of gravitons = curved background 

• Consider the “σ-model” action

    metric B-field dilaton

Conformal invariance



where...

EOM for metric: Einstein’s eq.

is the field-strength of the B-field

EOM for B-field: general. of Maxwell’s eq.

EOM for dilaton: 
       D = 26 ! 

• Conformal invariance of 2d theory ⇒

Fixes space-time dimension: D = 26

Gives EOM for massless fields to lowest order in α’

Can be derived from effective space-time action



• Gravity is described by coherent state of massless closed strings

• Gauge fields are described by coherent states of massless open strings:

(Neumann bdy cond )

Massless state gauge field AM

• Where is the matter? (electrons, quarks...) space-time fermions

need world-sheet fermions
ΨM superpartner of XM

supersymmetry

World-sheet action → EOM + 2 possible bdy conditions

superstring

Ramond -R- (integer modes)

Neveu - Schwarz -NS- (half integer modes)

Conformal anomaly cancellation ⇒ D = 10



• Quantized states of mass

• Massless states

0 for R, 1/2 for NS

R⊗R NS⊗R NS⊗NS

⇒ ψ0 obeys Clifford algebra ⇒ ψ0
M ≅ ΓM

Ramond ground states form a representation of gamma matrix algebra 

space-time fermion

boson bosonfermion

16 → 8s + 8c

to get space-time
   SUSY  (GSO)

NS: transforms in 8v space-time boson

ζM • k = 0



R⊗R : type IIB

type IIA

NS⊗NS

NS⊗R: type IIB

type IIA

R⊗NS type IIB

type IIA

types IIA & IIB

 type IIB even RR potentials

R⊗R NS⊗R NS⊗NS
boson bosonfermion

Closed strings massless spectrum

dilatino
gravitino

type IIB two dilatinos & gravitinos of  same chirality  
type IIA two dilatinos & gravitinos of opposite chirality  

 type IIA  odd RR  potentials

dilaton
B-field

metric
Dilaton, B-field and metric for type IIB and IIA 



Open string spectrum

Open strings: can have MSSM spectrum:

Open strings
Matter (boson & fermion) in adjoint of U(N):  (ψm

1/2, ψm
0)

                                                  (excitations orthogonal to brane) 

U(N) gauge field & gaugino (ψµ
1/2, ψµ

0) 
                                   

 Stacks of D-branes
D-branes at singularity
 

U(N) ! SU(3)£ SU(2) £ U(1)
       chiral matter of MSSM

(excitations along brane) 
D3

Massless state gauge field AM

fermion |s>

Dirichlet boundary conditions -> fixed extrema: attached to D-brane



Superstring theory

Gravity: ∃ graviton, interaction at low energy reduces to general relativity

Consistent theory of quantum gravity: interaction of 1 dim object is smeared out 
                                                                    no nonrenormalizable divergencies

Chiral matter & Grand unification: MSSM comes from U(N) → SU(3) × SU(2) × U(1) 

Extra dimensions

Supersymmetry

String coupling constant: VEV of dilaton

point particle 
  interaction

    string
interaction

    stringy loop
     expansion

Uniqueness
Consider M10=M9 × S1

Bdy condition XM(τ, 2π)=XM(τ,0)+ 2πmR
Momentum along S1 = n/R

symmetric under

n ↔ m

! T duality

for right movers

IIA ↔ IIB
IIA and IIB are related by T duality



Other “theories” -- all related by dualities

M-theory

SO(32) heterotic

E8 £ E8 heterotic

Type I



• Tower of massive states --

Compactifications of IIA and IIB in the low energy limit (α’ → 0 )

RR

Graviton gMN

B-field    BMN
Dilaton    φ

C1 + C3        in type IIA

C0 + C2 +C4+ in type IIB

NSNS

NSR
RNS

in type IIA

in type IIB

• Massless states

• Conformal anomaly space-time equations of motion
effective space-time action : N = 2 supersymmetry in 10D

• Look for solutions to the equations of motion

M10 = M4 × M6

preserve some supersymmetry: guaranteed to be stable

have background internal fluxes



     electric source F1-string
   magnetic source NS5-brane 

   electric source D1-brane
   magnetic source D5-brane

  Electric and magnetic sources for A1 are 0-dimensional
 

IIA

• In 4d: Aµ (´ A1) potential for the EM field. 
   Fµν=∂[µAν] (F2=dA1) field strength. 

Where do these fluxes come from?

   Consider A2 : dA2=F3= * F1= * dA0

• In type II theories, 10d 

C0 ! F1
C1 ! F2
C2 ! F3
C3 ! F4
C4 ! F5

IIB
H3 IIA and IIB

Fluxes for F3 and H3: 

                  i=0,…,h2,1

   h2,1: topological data of manifold 

Consistent compactifications with (mi,ei) ≠ 0

RR
NSNS

Magnetic flux:

Electric flux: 

surrounds source

F3



SO(6) !  SU(3)

spinor

• Without fluxes

• dilatino λi      !  < δε λi > = 0
Fermionic fields: • gravitino ψi

M  ! < δε ψi
M > = 0

Sol to SUSY + Bianchi identity and EOM for the fluxes ( dF = d*F = 0) ! sol EOM 

Supersymmetric solutions with fluxes

SUSY vacuum: < 0 | {Qα, χβ}| 0 > = 0 = < 0 | δεα χβ | 0 >

supercharge
fermionic field

n=1,3,5 for IIB

Linear in fields and derivatives  ( EOM < 0 | H | 0 > = < 0 | {Q,Q} | 0 > are quadratic)

M10= M4 £ M6

is a constant spinor in 4d
is a covariantly constant spinor on M6

M6 has reduced holonomy

Hol 6d manifold Riemannian µ SO(6) 
Smaller holonomy group, more special manifold

SUSY ! Hol M6 µ SU(3)

: SU(3)
M6 is Calabi-Yau

vector 6     !   3+3
4 !   3+1

N = 2  in 4dM10= M4 £ CY6  :

Candelas, Horowitz, Strominger, Witten 85

A2 15   !  8+3+3+1
A3 10   !   6+3+1



                   : i=1,..,h2,1 
       

       =1,..,h1,1

h1,1: topological data of manifold

Moduli space of CY compactifications

           i=0,..,h2,1

     h2,1: topological data of manifold

   volume 
 of 2-cycles

              : a =1,…,h1,1       
              Kähler moduli
              “size” moduli  

•

•

• Dilaton φ ! < eφ > = gs 

- h2,1 shape moduli
- h1,1 size moduli
- 1    dilaton  

Typical h2,1, h1,1 ~ 100 ) 200 massless scalars in 4d effective theory!

Need to understand mechanism of moduli fixing

 complex structure moduli
      “shape” moduli
    (i=0: overall volume)



N =2 ! N =1

         M6 conformal CY
SUSY 

 Turn on fluxes

Contributions from H3 and F3 cancel if MG, Polchinski 00

and

If F1 = F5 = 0 CY

But Bianchi id for F5: d F5 = d *F5 = H3 Æ F3 ≠ 0
EOM

Fluxes act like electric-magnetic source 
             (effective D3-charge)

Einstein’s eq           :  Rµ ν = gµ ν Hmnp Fmnp Fluxes have effective tension

and M10=M4 £w M6

is CY !

Easiest solution with fluxes
 Apply powerful tools of CY

Turning on Break SUSY completely in a stable way (solution to EOM) 



dilaton and shape moduli stabilized
            size moduli unfixed

Moduli fixing from susy conditions: 

Applications

Moduli stabilization

Giddings, Kachru, Polchinski 01

Fluxes induce potential for moduli

shape moduli
     dilaton

size moduli
V

Given                such that is satisfied ?

• Fixes dilaton

Fixes relative size and orientation of complex structure fixed
  “shape” moduli

•

“no-scale” solution

Size moduli can be fixed by non-perturbative effects



What is the most general susy solution with fluxes ?

Most general solution with fluxes

• GP class (eφ *F3= H3)correponds to “minimal” back-reaction of fluxes on M6 (CY ! conformal CY)

• Susy requires topological condition on M6

Only H3: 

       is covariantly constant 
in a connection with torsion
          torsion $ flux

r’ has SU(3) holonomy

M6 has SU(3) structure

SU(3) invariant 
spinor η
2- form J 
3-form  Ω 

not cov const in LC r
           cov const in r’
               r J ~ W J 
          d Ω ≠ 0, dJ ≠ 0

Gauntlett, Martelli, Pakis, Waldram 02

 SUSY allows to turn on only certain SU(3) representations of H ~ W

Only flux in certain SU(3) representations turned on. For ex. IIB no singlets for F3 and H3:

W and H are decomposed in SU(3) representations

SU(3) structure is a necessary condition (topological requirement). Can we get sufficient conditions (differential) ?

Fluxes:

Manifold:



1     (F3)3   (F1,F3,F5)1       (F3)IIB: F2n+1

1   (F2, F4)2     (F2, F4)2  (F0,F2,F4)    IIA: F2n

111H3

1    (W2)1     (W3)2     (W4,W5)1     (W1)Torsion
8 © 86 © 63 © 31 © 1

dJ = Im (W1 Ω) + W4 Æ J+ W3
                      
d Ω= W1 J2   + W5 Æ Ω + W2 Æ J  

 SU(3)
Torsion:
 

If also W1=0       IIB: dΩ = W5 Æ Ω
(true in all susy vacua)

                          IIA: dJ = W4 Æ J + H(6)

M6 is complex

M6 is “twisted symplectic”

Is there a mathematical construction that               complex and symplectic geometry?

    (integrability of
   complex structure)In IIB W2 = 0 (symplectic 

  geometry)
In IIA W3 » H(6)

contains
 

0

0
0

extends

Torsion + fluxes = 0 Cancelation works representation by representation

Most general solution with fluxes (conditions on M6)
complex (define complex coordinates in patches,or almost complex structure. If integrable -> complex)
symplectic (9 nondegenerate closed 2-form: dJ2=0 - Integrable symplectic structure)No fluxes: M6 CY



GCYGeneralized complex

complex symplectic

Generalized Calabi-Yau is a generalized complex M with additional constraint

To describe IIA and IIB vacua on the same footing need mathematical
construction that contains complex and symplectic geometry

Most general solution with fluxes (conditions on M6)

All susy vacua are generalized Calabi-Yau’s !

  Hitchin 02
Gualtieri 03

CY 
Complex: define complex coordinates in patches: almost complex structure. If integrable ⇒ 

       complex manifold
                                                                                
Symplectic: 9 nondegenerate closed 2-form: dJ2=0

 
IIB ! M is complex
IIA ! M is symplectic

No fluxes (or GP solution): M6 is (conformal) CY

Found that in most general SUSY solution:

Generalized Complex Geometry  

Generalized complex

complex symplecti
c

CY

TM © T*M
       

MG, Minasian, Petrini, Tomasiello 04

(Also restrictions on the allowed fluxes)

Define complex coordinates in :12 dimensional space

 : generalized complex structure is integrable  Generalized complex manifolds

tangent bundle

X +  ξ

cotangent bundle

Generalized complex structure



: 8 X,Y 2 TM: π- [π+ X, π+ Y]=0

Projectors: π±= (1 ± i J) 

  Hitchin 02
Gualtieri 03• In almost complex manifolds 9 almost complex structure (ACS) 

J: TM ! TM, J2=-1d £ d
~

9 basis

holomorphic 
   vectors

antiholomorphic 
   vectors

~ project onto holo/antiholo

• In Generalized Complex Geometry

 J :                   ! TM © T*M, J 2=-12d £ 2d
         

Integrability: 8 X+ξ, Y+ζ 2 TM © T*M:

    • If M admits integrable
     

Generalized Complex Geometry  

Projectors: Π±= (1± i J )

• If M has closed 2-form    

~

Integrability of ACS (condition for ACS ! CS) )  M is complex

TM © T*M
    X +  ξ

Π- [Π+ X+ξ, Π+ Y+ ζ]C=0) M is Generalized Complex

! integrable

! integrable

Fluxes

Generalized complex

complex symplectic

Generalized Calabi-Yau is a generalized complex M with additional constraint

All susy vacua are twisted generalized Calabi-Yau’s !

Generalized complex

complex symplectic

CYGCY

RR: act as a defect for integrability of second generalized complex structure

NSNS: twists the differential operator  d → d + H ∧   --   [ , ]C → [ , ] twisted



Summary

Discussed supersymmetric solutions with fluxes

Fluxes Stabilize some moduli (in conformal CY solution fluxes fix shape and dilaton moduli)

Used to construct dS solutions / cosmological solutions

Conditions on general susy solution : M6 
complex IIB
symplectic IIA

        generalized
     complex manifolds

Is there a way
to fix size moduli 
 perturbatively ?

Explicit examples? 

what are the moduli spaces of GCY ?
adding extra fluxes stabilizes them ?

consistent compactifications ?
susy breaking ?

Flux compactifications seems to be a necessary ingredient in the answer ! 

Do we have control
over corrections ?

Long term goal: understand how Einstein gravity and SM emerge as low-energy limits of string theory 

/ Open problems

M-theory

SO(32) heterotic

E8 £ E8 heterotic

Type I

Generalized complex geometry
is the right tool for systematic
decription of flux backgrounds ?

String theory is beautiful and unique (all “theories” are connected by dualities) 

It has many solutions!!

Which one is relevant for us??

Break part or all susy

Applications in AdS/CFT correspondance

Which solution is relevant for us??


