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Type |l sugra on M,y = M, x Mg
Geometry <=9 Fluxes

Minimal supersymmetry

|
ﬂ/l6 |S CY Turn on fluxes g 9‘/[6%
Effacton  SU(3) holonomy » SU(3) x SU(3) structure
Vacua CY » Generalized CY

Generalized complex geometry

Application on twisted tori



Supersymmetric solutions with fluxes preserving Poincare invariance

Can be obtained by variations of the superpotential (4D analysis) or directly in 10 D.

Separ = Ve + Hyppy™Pe + €2 Faypyote, Frn = Faq..any®tn
n

n=1,3,5 for IIB
3 Susy requires topological condition on %

* Preserved susy requires differential condition on 9

Only H3: 5¢m —_ an —I_ HmT] =0 (Hm - Hmnp,ynp)

A
;_ 7] is covariantly constant Mg has SU(3) structure
Vi=V+H in a connection with torsion -’ °
torsi fl
orin & T or SU(2) or... SU(3) x SU(3)
1 __ 1
A= 1 et =abyp®ny tec F = 0 = relation between a and b

. 2
e” =604 ®@n3 +cc Orientifolds or D-brane susy: €2 = yL ¢!

|a|:|b|: eA/Z

2 24 2 Rel phase of a and b depends on the D-brane
dSlO = e (y)n/wdw“d:v” __I__ ds6(y) (D3 a=ib / D5 a=b)



We were given enough motivation to use framework of GCG, but let’s give some more...

0Ym = Vmn + Hmn+ Fymn =0
(W + H+ F)n=0

W and F are H decomposed in representations of the structure group

Torsion ~ flux : representation by representation

Let's look at simplest case: SU(3)



torsions

l

dJ = Im (W, Q) + Wi+ W, A J

scalar: 1 @ 1 f
primitive (2,1): 6 & 6

dQ =W, J2+ WS AJ+ W AQ

W1=W2=0 <«» complex (complex structure integrable)
W1=W3=W4=0 <«» symplectic

W1=W2=W3=W4=0 <« Kahler

W1=W2=W3=W4=W5=0 > CY

In flux vacua, W ~ F
W, is even form, W, is odd form —> W, ~F, [IBvacua are complex

W, ~F;  llA vacua are symplectic

To describe vacua of type Il, we need
a mathematical construction that @xtesiels complex and symplectic geometry



Hitchin
Generalized complex geometry Gualtieri

* Differential geometry on T & T" sectionsarev +¢

Spinors ® of O(6,6) : = p-forms

Weyl: positive chirality S* ~ A®even . :
P y Clifford action: (v+ C) s =vm D+ dxMA O
negative chirality S~ A°dd ¢ _

——

P+ d-
Pure spinor: annihilator space is maximal ( 6-dimensional)

(V) eT T st.(v+C) D=0

On a manifold of SU(3) structure
O =Q,=dz' AdZ2AdZ? = EdZAQz=0and vViy Q =0 =P Qjispure

Pr=eV=1+id-P+ . = ym( i, dX"A) el =0 = eispure

—

—

EJ
1-1 correspondance between pure spinors and generalized almost complex structures g

d © = (v+E) @ forsome v, & «—» J, integrable generalized complex manifold
do=0 —» J, integrable generalized Calabi-Yau manifold



dS23 = Wy A €23 Complex manifolds —

have integrable GCS
dJ =20 Symplectic manifolds "

Generalized complex

e But GACS have more...

Complex: locally equivalent to Cd9/2
Symplectic: locally equivalent to (R9,J); J =dx' A dx2 + ...+ dxd-1 A dxd

Generalized complex: locally equivalent to Ck @ (IR9-2k, J) k: rank. k=0 for symplectic
k=d/2 for complex

* How do we see the rank?  Any pure spinor can be written

_ A =
D =€ A Qﬁ such that A% A ) Ay, # 0 k : rank
complex holomorphic <CT>, CD> 7’_& 0
2-form k-form

D= Q, hasrank 3 43 = 0 — manifold is GCY (complex)

®+=e¥ hasrank 0 e/ = 0 — manifold is GCY (symplectic)



0O(6,6) spinors are tensor products of O(6) spinors

6
1 i1
O, =n', il = kX_:O Eﬁi%l...z’kniv LTk
sum of forms
O(6) 0(6,6)
n =1, ®Nn'=Q; Ot =1, @ n,i=eV
rank 3 rank O .
n', n? static SU(2)
) . I (cre™ +icS22) A (v + iv') cank 1
Nt = n3 +cL(v+w)my"n- X A (1+3+5-form)

. . J,Qind4dplane Lv,V
orientifolds: 12 =yt n'

c, =0 — SU(3) structure b, = (re~ ¥ —jci Q) A e WAV rank 2
wCy (3) + = (qe ic| S22) Ne o)
™S ¢ =0 — static SU(2) structure

d®, ®_reduces structure
some orientifolds only one choice SU(3,3) — SU(3) x SU(3)
03: SU(3) only
O4: static SU(2) only
B 4 =0 d®, =0 or d®=0 locally
GCY  Vn.=0 (CY:dd, =0and db=0 )  C*® (R%,J)

SU(3) and SU(2) structures on T are particular cases of SU(3) x SU(3)on T T



Pure spinors and orientifold projection

holomorphic in |IB
Qs 0< : .
antiholomorphic in lIA

different O-planes (O3 vs O5)

!

o B 023 = ££23 ce M =

A 03 =403 oce W =¢

Can write this in general for SU(3) x SU(3) as an action on the pure spinors
B: o(PT) =EXNDPT)  o(PT) = +N(DT)

A (D) =+NPT) o(PT) = FA(dT)



B-field

A 2-form B acts on ® by eB ® = (1+B+..) A ©

®- and ®- compatible, determine metric and B field on the manifold

_,—1 —1 -1
G=']q)+]q)_=< g _B g_1> ex: -9, 9,= <I?J IJO >

Twisting by H =dB
 If ®is closed, d(eBd)=HAeBd =»(d-HA)(eB &)=0

d - H A : twisted exterior derivative

* Courant bracket can be modified to include H

Twisted Integrability [d —HA Jp = 0 = Assuditei GRCSiinttagetiewit [T, ]Ik |o.=),



1 _ 1
SU(3) x SU(3) structure and #=1 vacua er =0, ®ny +cec
g2 = 0y ® 773_ + c.c.

What does SUSY tell us about integrability of the pure spinors?

2
DL = ni ®77iT

1 1 2
n n n
: 56 m = Vm +Hmn np( >_|_q5 nm( +):O
SUSY: ety <£ ) P —n%i e Enj Ay (—1)Imt(n/2y1

2 2
d(nt @2 = da™ A Vin(n} @ n21)

n

Use also dilatino and space-time gravitino equations to simplify



A 11=]

(d— HN)®T =0 (d— HA) DT =i« Fg+dAADT
(d—HN)®™ =ix Fqg+dAND™ (d— HA)®~ =0
P is twisted closed ST, &~ is twisted closed

mirror symmetry

Susy vacua are all twisted generalized Calabi-Yau's !

M is symplectic (R3*2, J)in SU(3) M is complex (C3) in SU(3)

is hybrid C2 @ (R, J) is hybrid C' ® (R2*2, J)
in static SU(2) in static SU(2)



Example: twisted torus structure constants of Lie algebra

v

algebra nilpotent: G/T" compact

(e, e?, e3, e4, e, e9) de® = —fr.. LN 34 classes of 6D nilmanifolds
2
O = (e'+ie?) A (e3+ied) A (e5+ies) d* = exp[i(e'Ae? + e3ne? + edneb )] compatible
rank 3 rank O
O = (e'+ie?) expli(e3A ie4+ e5 A eb)]) D = (e3+ie4) A (e5+ies) exp[i e'Ae?]] compatible
rank 1 rank 2

On a torus, all ® ‘s are closed

On a twisted torus, not all closed 6D nimaniiolds Calvacanti and Gualtier 04

generalized complex

©

All generalized Calabi-Yau'’s
But very few N = 1 solutions...!
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Type Il and SU(3) x SU(3) structure

duli
FeANS o e
Eitso

IIA vacua

— FB
o900 —— )
/ lIB vacua (d-HA)®,
3 1 2x2
generalized Kahler Coor C' ® (R*4, J)
N=2

All &v=1 vacua are generalized Calabi-Yau’s !




Summary

* Type Il on SU(3) x SU(3): pure spinors define geometry and B-field

« =1 supersymmetric vacua are generalized Calabi-Yau's

* NS fluxes twist the pure spinor bundle

* RR fluxes act as obstruction for integrability of one algebraic structure

Explicit compact examples?

SU(3) x SU(3) structure is the most natural for type Il on 6D manifolds.

Generalized complex geometry is tailor-made for a systematic description

of flux backgrounds.



