Generalized geometries and N=1 vacua

Mariana Graña CEA / Saclay France

In collaboration with

Ruben Minasian, Michela Petrini, Alessandro Tomasiello

hep-th/0505212 hep-th/0608...

Ahrenshoop - August 2006

Generalized complex geometry

Application on twisted tori

Supersymmetric solutions with fluxes preserving Poincare invariance

Can be obtained by variations of the superpotential (4D analysis) or directly in 10 D.

$$\delta_{\epsilon}\psi_{M} = \nabla_{M}\epsilon + H_{Mnp}\gamma^{np}\epsilon + e^{\phi}\sum_{n} \not F_{n}\gamma_{M}\sigma^{1}\epsilon, \qquad \qquad \not F_{n} = F_{a_{1}...a_{n}}\gamma^{a_{1}...a_{n}}$$

$$n=1,3,5 \text{ for IIB}$$

- \exists Susy requires topological condition on \mathcal{M}_{6}
- Preserved susy requires differential condition on \mathcal{M}_6

Only
$$H_{3:} \ \delta \psi_m = \nabla_m \eta + H_m \eta = 0$$
 $(H_m = H_{mnp} \gamma^{np})$
 $\nabla' = \nabla + H$ η is covariantly constant
in a connection with torsion
torsion \leftrightarrow flux or SU(2) or... SU(3) x SU(3)
 $\mathcal{N}=1$ $\varepsilon^1 = a \theta_+ \otimes \eta_+^1 + c.c.$ $F \neq 0 \Rightarrow$ relation between a and b
 $\varepsilon^2 = b \theta_+ \otimes \eta_+^2 + c.c.$ Orientifolds or D brane super $\varepsilon^2 = \pi + \varepsilon^1$

 $F \neq 0 \Rightarrow$ relation between a and b

Orientifolds or D-brane susy:
$$\epsilon^2 = \gamma^{\perp} \epsilon^1$$

|a|=|b|= e^{A/2}

 $ds_{10}^2 = e^{2A(y)} \eta_{\mu\nu} dx^{\mu} dx^{\nu} + ds_6^2(y)$

Rel phase of a and b depends on the D-brane (D3: a=ib / D5: a=b)

We were given enough motivation to use framework of GCG, but let's give some more...

$$\delta \psi_m = \nabla_m \eta + H_m \eta + \not F \gamma_m \eta = 0$$

(W + H + F) $\eta = 0$

W and F are H decomposed in representations of the structure group

Torsion ~ flux : representation by representation

Let's look at simplest case: SU(3)

$$d \Omega = \mathcal{W}_1 J^2 + \mathcal{W}_2 \wedge J + \mathcal{W}_5 \wedge \Omega$$

- W1=W2=0 W1=W3=W4=0 W1=W2=W3=W4=0 W1=W2=W3=W4=W5=0
- ← complex (complex structure integrable)
- ↔ symplectic
- ↔ Kähler
- ↔ CY

In flux vacua, W ~ F W_2 is even form, W_3 is odd form $\rightarrow W_2 \sim F_2$ IIB vacua are complex $W_3 \sim F_3$ IIA vacua are symplectic

To describe vacua of type II, we need

a mathematical construction that contenids complex and symplectic geometry

Generalized complex geometry

• Differential geometry on $T \oplus T^*$ sections are v + ζ

Spinors Φ of O(6,6) : = p-forms

```
Weyl: positive chirality S^+ \sim \Lambda^{even}
negative chirality S^- \sim \Lambda^{odd}
```

Clifford action: $(v + \zeta) \cdot \Phi = v^m \iota_m \Phi + \zeta_m dx^m \wedge \Phi$ $\Phi^+ \Phi^-$

Pure spinor: annihilator space is maximal (6-dimensional)

 $(\vee + \zeta) \in \mathsf{T} \oplus \mathsf{T}^*$ s.t. $(\vee + \zeta) \bullet \Phi = 0$

On a manifold of SU(3) structure

$$\Phi^{-} = \Omega_{3} = dz^{1} \wedge dz^{2} \wedge dz^{3} \rightarrow \underbrace{\xi_{i} dz^{i} \wedge \Omega_{3} = 0 \text{ and } v^{I} \iota_{I} \Omega_{3} = 0}_{E_{\Omega}} \rightarrow \Omega_{3} \text{ is pure}$$

$$\Phi^{+} = e^{iJ} = 1 + iJ - J^{2} + \dots \rightarrow \underbrace{v^{m} (\iota_{m} + i J_{mn} dx^{n} \wedge)}_{E_{J}} e^{iJ} = 0 \rightarrow e^{iJ} \text{ is pure}$$

1-1 correspondance between pure spinors and generalized almost complex structures \mathcal{I}

d
$$\Phi = (v+\xi) \Phi$$
 for some v, $\xi \leftrightarrow \mathcal{J}_{\phi}$ integrable generalized complex manifold
d $\Phi = 0 \qquad \longrightarrow \mathcal{J}_{\phi}$ integrable generalized Calabi-Yau manifold

• But GACS have more...

Complex: locally equivalent to $\mathbb{C}^{d/2}$

Symplectic: locally equivalent to (\mathbb{R}^d ,J); J = dx¹ \wedge dx² + ...+ dx^{d-1} \wedge dx^d Generalized complex: locally equivalent to $\mathbb{C}^k \otimes (\mathbb{R}^{d-2k}, J)$ k: rank. k=0 for symplectic k=d/2 for complex

• How do we see the rank? Any pure spinor can be written

$$\Phi = e^{A} \wedge \Omega_{k} \qquad \text{such that } A^{6-k} \wedge \Omega_{k} \wedge \overline{\Omega}_{k} \neq 0 \qquad k : \text{ rank}$$

$$\stackrel{\text{complex holomorphic}}{\underset{2-\text{form k-form}}{\text{ holomorphic}}} \langle \overline{\Phi}, \Phi \rangle \neq 0$$

 $\Phi_{-}=\Omega_{3}$ has rank 3 $d\Omega_{3}=0 \rightarrow$ manifold is GCY (complex)

 $\Phi_+=e^{iJ}$ has rank 0 $de^{iJ}=0 \rightarrow$ manifold is GCY (symplectic)

O(6,6) spinors are tensor products of O(6) spinors

$$\begin{aligned} \Phi_{\pm} = \eta^{1}_{+} \otimes \eta^{2}_{\pm}^{\dagger} &= \sum_{k=0}^{6} \frac{1}{k!} \eta^{2}_{\pm}^{\dagger} \gamma_{i_{1} \dots i_{k}} \eta^{1}_{+} \gamma^{i_{1} \dots i_{k}} \\ & \text{sum of forms} \end{aligned}$$

$$\begin{aligned} & 0(6) \\ & \eta \\ & \eta^{1}, \eta^{2} \\ & \eta^{1}, \eta^{2} \\ & \eta^{2}_{+} = c_{\parallel} \eta^{1}_{+} + c_{\perp} (v + iv')_{m} \gamma^{m} \eta^{1}_{-} \\ & \text{orientifolds: } \eta^{2} = \gamma^{\perp} \eta^{1} \\ & \bullet c_{\perp} = 0 \rightarrow \text{SU}(3) \text{ structure} \\ & \bullet c_{\parallel} = 0 \rightarrow \text{static SU}(2) \text{ structure} \\ & \text{some orientifolds only one choice} \\ & O(3: SU(3) \text{ only} \\ & O(4: \text{ static SU}(2) \text{ only} \end{aligned}$$

$$\begin{aligned} & \Phi_{\pm} = (\overline{c}_{\parallel} e^{-ij} - ic_{\perp} \Omega_{2}) \wedge (e^{-iv \wedge v'} \\ & \Phi_{\pm} = (\overline{c}_{\parallel} e^{-ij} - ic_{\perp} \Omega_{2}) \wedge e^{-iv \wedge v'} \end{aligned}$$

$$\begin{aligned} & \Phi_{\pm} = (\overline{c}_{\parallel} e^{-ij} - ic_{\perp} \Omega_{2}) \wedge e^{-iv \wedge v'} \\ & \oplus_{\pm} = (\overline{c}_{\parallel} e^{-ij} - ic_{\perp} \Omega_{2}) \wedge e^{-iv \wedge v'} \end{aligned}$$

$$\begin{aligned} & \Phi_{\pm} = (\overline{c}_{\parallel} e^{-ij} - ic_{\perp} \Omega_{2}) \wedge e^{-iv \wedge v'} \\ & \oplus_{\pm} = (\overline{c}_{\parallel} e^{-ij} - ic_{\perp} \Omega_{2}) \wedge e^{-iv \wedge v'} \end{aligned}$$

$$\begin{aligned} & \Phi_{\pm} = (\overline{c}_{\parallel} e^{-ij} - ic_{\perp} \Omega_{2}) \wedge e^{-iv \wedge v'} \\ & \oplus_{\pm} = (\overline{c}_{\parallel} e^{-ij} - ic_{\perp} \Omega_{2}) \wedge e^{-iv \wedge v'} \end{aligned}$$

$$\end{aligned}$$

SU(3) and SU(2) structures on T are particular cases of SU(3) x SU(3) on T \oplus T*

Pure spinors and orientifold projection

$$\Omega_{\rm WS} \sigma$$
 holomorphic in IIB antiholomorphic in IIA

$$\downarrow^{\text{different O-planes (O3 vs O5)}}$$

$$\downarrow^{\text{CY}}$$
IIB: $\sigma\Omega_3 = \pm\Omega_3 \quad \sigma e^{-iJ} = e^{-iJ}$
IIA: $\sigma\Omega_3 = \pm\bar{\Omega}_3 \quad \sigma e^{-iJ} = e^{iJ}$

Can write this in general for $SU(3) \times SU(3)$ as an action on the pure spinors

IIB:
$$\sigma(\Phi^-) = \pm \lambda(\Phi^-)$$
 $\sigma(\Phi^+) = \pm \lambda(\bar{\Phi}^+)$
IIA: $\sigma(\Phi^-) = \pm \lambda(\bar{\Phi}^-)$ $\sigma(\Phi^+) = \pm \lambda(\Phi^+)$

B-field

A 2-form B acts on Φ by $e^{B} \Phi = (1+B+...) \land \Phi$

 Φ^- and Φ^- compatible, determine metric and B field on the manifold

$$\mathbf{G} = -\mathcal{J}_{\Phi^+} \mathcal{J}_{\Phi^-} = \begin{pmatrix} -g^{-1}B & g^{-1} \\ g - Bg^{-1}B & Bg^{-1} \end{pmatrix} \qquad \text{ex:} \quad -\mathcal{J}_{\mathbf{J}} \mathcal{J}_{\mathbf{\Omega}} = \begin{pmatrix} 0 & IJ^{-1} \\ I^tJ & 0 \end{pmatrix}$$

Twisting by H = dB

• If Φ is closed, $d(e^{B} \Phi) = H \wedge e^{B} \Phi \rightarrow (d - H \wedge) (e^{B} \Phi) = 0$

d - H \wedge : twisted exterior derivative

Courant bracket can be modified to include H

Twisted Integrability $[d - H \land]\varphi = 0 \Rightarrow Associated GACS integrable with [\Pi_{\pm}]_{c}\Pi_{\pm}$] $_{c},=$] $_{H}$

SU(3) x SU(3) structure and $\mathcal{N}=1$ vacua

$$\varepsilon^{1} = \theta_{+} \otimes \eta^{1}_{+} + c.c.$$

$$\varepsilon^{2} = \theta_{+} \otimes \eta^{2}_{+} + c.c.$$

What does SUSY tell us about integrability of the pure spinors?

$$\Phi_{\pm} = \eta_{\pm}^{1} \otimes \eta_{\pm}^{2\dagger}$$
susy: $\delta_{\epsilon}\psi_{m} = \nabla_{m} \left(\begin{array}{c} \eta_{\pm}^{1} \\ \eta_{\pm}^{2} \end{array} \right) + H_{mnp}\gamma^{np} \left(\begin{array}{c} \eta_{\pm}^{1} \\ -\eta_{\pm}^{2} \end{array} \right) + e^{\phi}\sum_{n} \mathcal{F}_{n}\gamma_{m} \left(\begin{array}{c} \eta_{\pm}^{2} \\ (-1)^{Int(n/2)}\eta_{\pm}^{1} \end{array} \right) = 0$

$$d(\eta^{1} \otimes \eta_{\pm}^{2\dagger}) = dx^{m} \wedge \nabla_{m}(\eta_{\pm}^{1} \otimes \eta_{\pm}^{2\dagger})$$

$$= dx^{m} \wedge \left(-H_{mnp}\gamma^{np}\eta_{\pm}^{1} - e^{\phi}\sum_{n} \mathcal{F}_{n}\gamma_{m}\eta_{\pm}^{2} \right) \otimes (\eta_{\pm}^{2\dagger}) + dx^{m} \wedge \eta_{\pm}^{1} \otimes \nabla_{m}(\eta_{\pm}^{2\dagger})$$

Use also dilatino and space-time gravitino equations to simplify

 ${\mathcal M}$ is symplectic (${\mathbb R}^{3x2}$, J) in SU(3) is hybrid ${\mathbb C}^2 \otimes ({\mathbb R}^{1x2}$, J) in static SU(2)

 \mathcal{M} is complex (\mathbb{C}^3) in SU(3) is hybrid $\mathbb{C}^1 \otimes (\mathbb{R}^{2x^2}, J)$ in static SU(2)

rank 1

Minasian's talk

Type II and SU(3) x SU(3) structure

All \mathcal{N} = 1 vacua are generalized Calabi-Yau's !

Summary

- Type II on SU(3) x SU(3): pure spinors define geometry and B-field
- \mathcal{N} = 1 supersymmetric vacua are generalized Calabi-Yau's
- NS fluxes twist the pure spinor bundle
- RR fluxes act as obstruction for integrability of one algebraic structure

Explicit compact examples?

 $SU(3) \times SU(3)$ structure is the most natural for type II on 6D manifolds.

Generalized complex geometry is tailor-made for a systematic description

of flux backgrounds.