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 Type II sugra on M10 = M4 x M6 
   
    

    SU(3) x SU(3) structureSU(3) holonomy

 M6 CYM6 is CY

CY Generalized CY

Turn on fluxes

Minimal supersymmetry

  Generalized complex geometry
                          

Fluxes  Geometry

Eff action

Vacua

Application on twisted tori



Supersymmetric solutions with fluxes preserving Poincare invariance

n=1,3,5 for IIB

Can be obtained by variations of the superpotential (4D analysis) or directly in 10 D. 

• 9 Susy requires topological condition on M6

Only H3: 

       is covariantly constant 
in a connection with torsion
          torsion $ flux

M6 has SU(3) structure

or SU(2) or... SU(3) x SU(3)

F ≠ 0 ) relation between a and bN = 1
Orientifolds or D-brane susy: ε2 = γ? ε1 
                          |a|=|b|= eA/2

Rel phase of a and b depends on the D-brane
                                   (D3: a=ib / D5: a=b)

• Preserved susy requires differential condition on M6



W and F are H decomposed in representations of the structure group

Torsion ~ flux : representation by representation

Let’s look at simplest case: SU(3)

We were given enough motivation to use framework of GCG, but let’s give some more...



extends

W1=W3=W4=0                               symplectic 

 dJ  = Im (W1 Ω) + W3+ W4 Æ J

d Ω = W1 J2 + W2 Æ J + W5 Æ Ω

W1=W2=0                                        complex  (complex structure integrable)

W1=W2=W3=W4=0                           Kähler
W1=W2=W3=W4=W5=0                      CY 

torsions

scalar: 1 © 1

primitive (2,1) : 6 © 6

             a mathematical construction that               complex and symplectic geometrycontains
 

W2 is even form, W3 is odd form
In flux vacua, W ~ F

W2 ~ F2 

W3 ~ F3

IIB vacua are complex 

IIA vacua are symplectic 

To describe vacua of type II, we need 



Generalized complex geometry
         Hitchin
       Gualtieri

• Differential geometry on T © T*  sections are v + ζ

Spinors Φ  of O(6,6) : = p-forms

Weyl: positive chirality S+ ~ Λeven    
          negative chirality S- ~ Λodd    

Clifford action: (v+ ζ) • Φ = vm ιm Φ + ζm dxm Æ Φ

 Φ+  Φ− 

Pure spinor: annihilator space is maximal ( 6-dimensional)

(v+ ζ) 2 T © T*  s.t. (v+ ζ)  • Φ = 0 

On a manifold of SU(3) structure

Φ- = Ω3 = dz1 Æ dz2 Æ dz3 ξi dzi Æ Ω3 = 0 and  vĪ ιĪ   Ω3   = 0 Ω3 is pure

Φ+ = eiJ = 1+ iJ- J2 + ...     vm (ιm + i Jmn dxn Æ) eiJ = 0 eiJ is pure

EΩ

EJ

1-1 correspondance between pure spinors and generalized almost complex structures J

d Φ = (v+ξ) Φ for some v, ξ Jφ  integrable
d Φ = 0 Jφ  integrable

generalized complex manifold

generalized Calabi-Yau manifold



• But GACS have more…
Generalized complex

complex sympl.

Kahler
Complex: locally equivalent to Cd/2

Symplectic: locally equivalent to (Rd,J);   J = dx1 Æ dx2 + …+ dxd-1 Æ dxd 

Generalized complex: locally equivalent to Ck ­ (Rd-2k, J)  k: rank. k=0 for symplectic 
                                                                                                                                    k=d/2 for complex
                                                                                                                                       

Complex manifolds
have integrable GCS

! manifold is GCY (symplectic)

• How do we see the rank?     Any pure spinor can be written

complex 
 2-form

holomorphic 
   k-form

such that : rank 

Φ+=eiJ

! manifold is GCY (complex)

has rank 0

has rank 3Φ-= Ω3

Symplectic manifolds



Φ± = η1
+ ­ η2

±
†

 O(6,6) spinors are tensor products of O(6) spinors

sum of forms

η Φ-= η+ ­ η†
-= Ω3 Φ+ = η+ ­ η+

†=e-iJ

η1
 , η

2

J, Ω in 4d plane ⊥ v , v’

        rank 1 
  (1+3+5-form)

  9 Φ+ , Φ-  reduces structure
   SU(3,3) !  SU(3) x SU(3) 
   

SU(3) and SU(2) structures on T are particular cases of SU(3) x SU(3) on T © T*

CY r η+ =0G dΦ =0 dΦ+ =0  or  dΦ-= 0
( CY: dΦ+ =0 and  dΦ-=0   )

   rank 2
(2+4+6-form)

    locally
Ck ­ (Rd-2k, J)

O(6) O(6,6)

orientifolds: η2 = γ? η1 

c? =0 → SU(3) structure  

some orientifolds only one choice
           O3: SU(3) only
           O4: static SU(2) only

c|| =0 → static SU(2) structure

static SU(2)
rank 3 rank 0



Pure spinors and orientifold projection

ΩWS σ
holomorphic in IIB

antiholomorphic in IIA

CY 

IIA: 

IIB: 

different O-planes (O3 vs O5)

Can write this in general for SU(3) x SU(3) as an action on the pure spinors

IIB:

IIA:



Associated GACS integrable with [  ,   ]C ! [  ,  ]HAssociated GACS integrable: Π¨ [Π± , Π±  ]C =0 

• If Φ is closed,  d(eB Φ)= H Æ eB Φ

Twisting by H = dB

d - H Æ : twisted exterior derivative

(d - H Æ) (eB  Φ ) =0  

• Courant bracket can be modified to include H  

IntegrabilityTwisted

A 2-form B acts on Φ by  eB Φ = (1+B+...) ∧ Φ 

B-field 

Φ−  and Φ− compatible, determine metric and B field on the manifold 

G = - JΦ+ JΦ− = ex:  - JJJ JΩ = 



What does SUSY tell us about integrability of the pure spinors?

SUSY:

Use also dilatino and space-time gravitino equations to simplify

SU(3) x SU(3) structure and  N =1 vacua



IIA IIB

Susy vacua are all twisted generalized Calabi-Yau’s !

           is twisted closed         is twisted closed
      

  generalized

mirror symmetry

M is symplectic (R3x2, J) in SU(3) M is complex (C3) in SU(3)

             is hybrid C2 ­ (R1x2, J)
                            in static SU(2)

is hybrid C1 ­ (R2x2, J)
           in static SU(2) 
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Example: torus

(e1, e2, e3, e4, e5, e6)   

structure constants of Lie algebratwisted

Φ- = (e1+ie2) Æ (e3+ie4) Æ (e5+ie6) Φ+ = exp[i(e1Æe2 + e3Æe4 + e5Æe6 )]
rank 3 rank 0

compatible

Φ- = (e1+ie2) exp[i(e3Æ ie4+ e5 Æ e6)]) Φ+ = (e3+ie4) Æ (e5+ie6) exp[i e1Æe2 ]]
rank 1 rank 2

compatible

On a torus, all Φ ‘s are closed 

algebra nilpotent: G/Γ compact
   34 classes of 6D nilmanifolds

On a twisted torus, not all closed 
6D nilmanifolds

rank 1
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All generalized Calabi-Yau’s

But very few N = 1 solutions...!
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                   Minasian’s talk



(d - H Æ ) Φ-

(d – H Æ) Φ+

FB

FA

• • • •
IIB vacua

IIA vacua

•
•

•

C3 or C1 ­ (R2x2, J)

Type II and SU(3) x SU(3) structure

 generalized Kähler
         N = 2

All  N = 1 vacua  are generalized Calabi-Yau’s !

 (R3x2, J) or  C2 ­ (R1x2, J) moduli
 space



• Type II on SU(3) x SU(3): pure spinors define geometry and B-field

 

Summary

• N = 1 supersymmetric vacua are generalized Calabi-Yau’s

 • NS fluxes twist the pure spinor bundle

•  RR fluxes act as obstruction for integrability of one algebraic structure

Explicit compact examples?

 SU(3) x SU(3) structure is the most natural for type II on 6D manifolds.

  

Generalized complex geometry is tailor-made for a systematic description 
                               
                                    of flux backgrounds. 

 


