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Introduction



Exact calculations in supersymmetric gauge theories

Non-perturbative methods in N = 4 SYM have been
developing rapidly

In particular, two efficient approaches are known:

Localization

BPS, non-planar

Example: 〈Wcircle〉 = 2√
λ
I1(
√
λ)

[Erickson, Semenoff, Zarembo’00], [Drukker, Gross’00],

[Pestun’12]

Integrability

Planar, Non-BPS

Example: tr
[
ZDSZ

]
→ I1(

√
λ)

I2(
√
λ)

[Basso’11]

? 
Is there any non-trivial observable accessible from both approaches?



Quark-Antiquark Potential/Cusped Wilson Line.

W = Tr P exp

∫
dt
[
iA · ẋq + ~Φ · ~n |ẋq|

]
Two Wilson line configurations related by a conformal map

〈W 〉 = e−TV
〈W 〉 ∼

(
ΛIR
ΛUV

)Γcusp

Conformal invariance ⇒ V = Γcusp



The Cusped Wilson Line: Turning on more parameters

Cusp angle φ

Angle θ between the couplings to scalars on two rays

R-charge L of a local operator inserted at the cusp

’t Hooft coupling λ

For θ2 − φ2 = 0 this observable is protected. We will be working in
the near-BPS limit φ ≈ θ.



Relation to other physical quantities

Cusp anomalous dimension is related to a variety of physical
quantities, as

IR divergences of scattering amplitudes, iφ is a boost angle
for massive particles and iφ→∞ for massless.

Bremsstrahlung function — radiation of a moving particle
(φ→ 0)

The quark-antiquark potential in the flat space (φ→ π)



Known results

For L = 0 the Γcusp is known from localization
[Correa at al.’12],[Fiol, Garolera, Lewkowycz’12]

Γcusp(λ) = − 1

4π2
(φ2 − θ2)

√
λI2

(√
λ
√

1− θ2

π2

)
I1

(√
λ
√

1− θ2

π2

)
arbitrary L, θ = 0, φ� 1 — solved in [Gromov, Sever’12] using
integrability.

Γcusp is expressed through determinants made of In
(√

λ
)

.

We will get the result for finite θ ≈ φ, arbitrary L and λ from
integrability.



Calculation of the cusp
anomalous dimension.



Thermodynamical Bethe Ansatz

The standard method to attack the problem from integrability
point of view is TBA

[Bombardelli, Fioravanti,
Tateo’09],
[Gromov et al’09],
[Arutyunov, Frolov’09],
[Gromov, Kazakov, Vieira’09],
[Correa et al’12],

[Gromov, Sever’12].

Infinite system of nlin integral equations for Ya,s(u)

The indices of (a, s) of Y-functions live on a T-shaped hook.

The energy can be expressed through Ya,0



The Y-functions and their near-BPS expansion

In near-BSP limit we expand Y-functions in ε = (φ− θ) tan φ+θ
2

a

s



Simplified TBA

A system for the coefficients of expansion Φ,Ψ,Ya,Xa,Ca

Φ−Ψ = πCaK̂a(u),

Φ + Ψ = s ∗
[
−2

X2

1 + Y2
+ π(K̂+

a − K̂−a )Ca − πδ(u)C1

]
,

log Y1,m = s ∗ Im,n log (1 + Y1,n)− δm,2s∗̂
(

log
Φ

Ψ
+ ε (Φ−Ψ)

)
− επsCm,

∆a = [R(10)
ab + B(10)

a,b−2]∗̂ log
1 + Yb
1 +Ab

+R(10)
a1 ∗̂ log

(
Ψ

1/2

)
−

− B(10)
a1 ∗̂ log

(
Φ

1/2

)
,

Ca = (−1)a+1a
sin aθ

tan θ

(√
1 +

a2

16g2
− a

4g

)2+2L

F (a, g)e∆a ,



Why do we hope to solve it?

Even simplified in the near-BPS regime system looks nasty,
but

From localization we know the result at L = 0 is extremely

simple ΓL(g) ∼ λ̃−1/2I2

(√
λ̃
)
/I1

(√
λ̃
)

Hope for a drastic simplification?



Why do we hope to solve it?

Even simplified in the near-BPS regime system looks nasty,
but

From localization we know the result at L = 0 is extremely

simple ΓL(g) ∼ λ̃−1/2I2

(√
λ̃
)
/I1

(√
λ̃
)

Hope for a drastic simplification?



Why do we hope to solve it?

Even simplified in the near-BPS regime system looks nasty,
but

From localization we know the result at L = 0 is extremely

simple ΓL(g) ∼ λ̃−1/2I2

(√
λ̃
)
/I1

(√
λ̃
)

Hope for a drastic simplification?



Step1: From TBA to FiNLIE

Thermodynamical
Bethe Ansatz

systemVofVnlinVintegralVeqs

Finite system of nlin integral equations (FiNLIE)

UsingVtheVrelationVbetweenVY-systemV
andVintegrableVHirotaVdynamics

[Gromov,VKazakov,VVieira'09]



Ansatz for Y-functions through T-functions

Y1,m =
T+

1,mT
−
1,m

T1,m+1T1,m−1
− 1.

The general solution for T is given by

T1,s = C

∣∣∣∣∣ Q[s]
1 Q̄

[−s]
1

Q
[s]
2 Q̄

[−s]
2

∣∣∣∣∣ .
The non-trivial part is finding Q1,2



The “twisted” ansatz

Our ansatz for Q1,2 is

Q1 = Q̄1 = e+θ(u−iG(u)),

Q2 = Q̄2 = e−θ(u−iG(u)),

The resolvent G has a short cut and a series of poles

G(u) =
1

2πi

2g∫
−2g

dv
ρ(v)

u− v
+ ε
∑
a6=0

ba
u− ia/2

.

This generates for T-functions

Ts =
sin (s−G[s] +G[−s])θ

sin θ
.



FiNLIE

Everything is expressed in terms of ρ(u), η(u),Ca

η
sin θρ

sin θ
= −

∑
a

πCaK̂a,

η
cos θρ cos (2−G+ +G−)θ − cos (2/G−G+ −G−)θ

sin θ sin (2−G+ +G−)θ
=

= s ∗
[
−2

X2

1 + Y2
+ π(K̂+

a − K̂−a )Ca − πδ(u)C1

]
,

Ca = (−1)aaTa(0)

(√
1 +

a2

16g2
− a

4g

)2+2L

exp

[
K̃a∗̂ log

(
η

sinh 2πu

2πu

)]
.



Step 2: Analytical ansatz for FiNLIE quantities

The way to solve FiNLIE is to make certain assumptions about its
analytical properties
Assumptions:

η(u)2 is meromorphic in the whole complex plane

η has simple poles at ia/2

Then the goal is to express the FiNLIE quantities in terms of zeros
of η. Introduce a bookkeeping function

Q±(x) =
∏
k 6=0

xk,± − x
xk,±

, Q̃±(x) = Q±(1/x)

where we use Zhoukovsky transform of u: u/g = x+ 1/x.
Consequences:

eiθρ =

√
Q+Q̃−

Q−Q̃+

, η = cos θ

√
Q+Q−Q̃+Q̃−

C̃ sinh 2πu
2πu

.
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The zeros

-0.05 0.05

5

10

15



Effective Baxter equation

FiNLIE+Analyticity assumptions

The zeros satisfy effective “crossing” Bethe equations, which can
be solved by introducing a Baxter polynomial.

Roots of the Baxter polynomial The algebraic curve

Classical limit



The result

Cusp anomalous dimension for arbitrary L, finite θ ≈ φ and any
value of ’t Hooft coupling

ΓL(λ) =
φ− θ

4
∂θ log

detM2L+1

detM2L−1

MN =


Iθ1 Iθ0 · · · Iθ2−N Iθ1−N
Iθ2 Iθ1 · · · Iθ3−N Iθ2−N
...

...
. . .

...
...

IθN IθN−1 · · · Iθ1 Iθ0
IθN+1 IθN · · · Iθ2 Iθ1



Iθn = 1
2In

(√
λ
√

1− θ2

π2

)[(√
π+θ
π−θ

)n
− (−1)n

(√
π−θ
π+θ

)n]
.
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2In

(√
λ
√
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π2

)[(√
π+θ
π−θ

)n
− (−1)n

(√
π−θ
π+θ

)n]
.



Tests: L = 0

ΓL(λ) =
φ− θ

4
∂θ log

detM2L+1

detM2L−1

Γ0(λ) = − 1

2π
(φ− θ)θ

√
λ√

π2 − θ2

I2

(√
λ̃
)

I1

(√
λ̃
)

The localization result is reproduced!



Tests: Strong coupling

ΓL(λ) =
φ− θ

4
∂θ log

detM2L+1

detM2L−1

The limit L ∼
√
λ→∞ matches perfectly with the energy of a

classical open string

g =
√
λ

4π
Copyright N.Drukker



Matrix model reformulation
and the classical limit.



Classical Limit

Γcusp is related to the energy of a classical open string in the
limit L ∼ g →∞

How to take the L→∞ limit of detM2L+1?

The technique of expansion in 1 over the size of the matrix is
well developed in matrix models
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Matrix Model reformulation

Using

Iθn =
1

2πi

∮
dx

xn+1
sinh(2πg (x+ 1/x)) e2gθ(x−1/x)

for every element of

MN =


Iθ1 Iθ0 · · · Iθ2−N Iθ1−N
Iθ2 Iθ1 · · · Iθ3−N Iθ2−N
...

...
. . .

...
...

IθN IθN−1 · · · Iθ1 Iθ0
IθN+1 IθN · · · Iθ2 Iθ1


we obtain

detMN =

∮ N+1∏
i=1

dxi

2πixN+2
i

∆2(xi)

(N + 1)!
sinh

[
2πg

(
xi +

1

xi

)]
e

2gθ
(
xi− 1

xi

)
.



Saddle-point approximation

In the quasi-classical approximation the value of the integral∫
dxie

−S[xi]

is given by (
S′′[x∗i ]

)−1/2
e−S[x∗i ],

where x∗ is a solution of a saddle-point equation ∂S
∂xi

= 0.

In the case of L ∼ g →∞ limit of detM2L+1 the
saddle-point equation is

−θ
x2
j + 1

x2
j − 1

+
L

g

xj
x2
j − 1

−1

g

x2
j

x2
j − 1

2L+1∑
i 6=j

1

xj − xi
= π sgn(Re(xj)).



The distribution of the roots at L� 1

-2 -1 0 1 2
-2

-1

0

1

2

Re x

Im x

Figure : Distribution of roots on the complex plane for θ = 0 (gray) and
θ = 1.5 (black). In the continuum limit the roots condense to cuts.



The classical quasimomentum

Introduce the quantum quasimomentum p(x)

p(x) = −θ x
2 + 1

x2 − 1
+
L

g

x

x2 − 1
− 2L

g

x2

x2 − 1
GclL(x),

where

GclL(x) =
1

2L

2L+1∑
k=1

1

x− xk
.

The saddle-point equation then is

1

2
(p(xi + iε) + p(xi − iε)) = π sgn(Re(xi)).

As L→∞, the roots aggregate into two cuts and p(x) becomes a
classical algebraic curve with two cuts.



The classical algebraic curve

In the classical limit p(x) becomes the classical algebraic curve.
[V.A.Kazakov, A.Marshakov, J.A.Minahan, K.Zarembo, hep-th/0402207]

Properties:

p(x) = −p(−1/x)

p(0) = −p(∞) = θ

Two cuts with branch-points parametrized by
{−reiφ,−re−iφ, 1/reiφ, 1/re−iφ}
p(xbp) = ±π
Simple poles at x = ±1

Start with an ansatz for p′:

p′(x) =
A1x

4 +A2x
3 +A3x

2 +A4x+A5

(x2 − 1)2
√
x+ reiφ

√
x+ re−iφ

√
x− 1

re
iφ
√
x− 1

re
−iφ

.

To get p(x) we integrate and fix Ai and the integration constant
using the properties above.



The classical algebraic curve

p(x) = π − 4 iE(a2 sin2(φ))F1 + 4 iK(a2 sin2(φ))F2

− a

(
x+ 1

re
−iφ

x+ reiφ

)(
2 r eiφ

x2 − 1

)
y(x)K(a2 sin2(φ)),

[Valatka&Sizov, to appear]

where

F1 = F

sin−1

√√√√a

(
x− 1

re
−iφ

x+ reiφ

)(
2 r e2iφ

e2iφ − 1

) ∣∣∣∣∣∣ a2 sin2(φ)

 ,

F2 = E

sin−1

√√√√a

(
x− 1

re
−iφ

x+ reiφ

)(
2 r e2iφ

e2iφ − 1

) ∣∣∣∣∣∣ a2 sin2(φ)

 ,

and

a =
2 r

r2 + 1
.



The parameters of the cuts

The parameters of the curve r, φ are related to L/g, θ by

L

g
=

4

a

(
K(a2 sin2(φ))− E(a2 sin2(φ))

)
θ = −π +

4 r2eiφK
(
a2 sin2(φ)

)
r2 + 1

− 4iK
(
a2 sin2(φ)

)
E

sin−1

√ e2iφr

−1 + e2iφ

√
r +

1

r

∣∣∣∣∣∣ a2 sin2(φ)


+ 4iE

(
a2 sin2(φ)

)
F

sin−1

√ e2iφr

−1 + e2iφ

√
r +

1

r

∣∣∣∣∣∣ a2 sin2(φ)

 .



The classical energy

The energy can be expressed as an expectation value in the matrix
model

∂θ log detML =

〈
2g

2L∑
i=1

(xi − 1/xi)

〉
In the saddle-point approximation due to the symmetry x→ −1/x
only one term matters. We can express it through G(0) ∝

∑
i

1
xi

,

so Γcusp = −(φ− θ)g
2

2 ∂Lp
′′
L(0). Using the explicit formula for p we

get

Γcusp
φcusp − θcusp

= g

(
r − 1

r

)
cosφ

Notice: all the elliptic functions in p(x) got cancelled out when
expressed through r and φ.
The same result we get considering the conserved charge of the
corresponding classical string solution.



Expansion around the classical solution

Expansion in L, g →∞ with L/g fixed

ΓL(g) = (φ− θ)
∑
k=0

g−kbk (L/g)

We checked that the leading terms are reproduced by our
solution

The symmetry ΓL(g) = −Γ−L−1(−g) of the large L expansion
[Beccaria&Macorini 1305.4839] implies that b1 = g

2∂Lb0. Thus we found

b1/b0 =
g

4

∣∣r2e2iφ + 1
∣∣2K1 − r2

∣∣r + 1
r + eiφ − e−iφ

∣∣2E1,∣∣(r + 1
r

)
(r2e2iφ − 1)E1 −

(
r − 1

r

)
(r2e2iφ + 1)K1

∣∣2
where E1 = E

(
4r2 sin2 φ
(r2+1)2

)
, K1 = K

(
4r2 sin2 φ
(r2+1)2

)
.

Next corrections can be generated by topological recursion —
work in progress by I.Kostov,N.Gromov,S.Valatka,G.S.



Conclusions

Results

We calculated the cusp anomalous dimension in the near-BSP
limit at any coupling

Using matrix model reformulation we have found the
corresponding algebraic curve and the classical limit of the
cusp anomalous dimension

Remarks

The result in a general near-BPS case φ ≈ θ is simpler than
the degenerate θ = 0 case

Analyticity assumption gives a key to solving TBA

This analyticity can be derived from the novel P − µ
system[Gromov et al 1305.1935].

The strong coupling expansion has a form of a matrix model
expectation value

The form of the result hints it can be derived from
localization.



Further directions

The curve is related to the eigenvalues of monodromy of a flat
connection around the worldsheet, though the exact procedure
for an open string is not yet established

Knowing the classical algebraic curve allows to calculate the
corrections to the classical energy

Topological recursion can be implemented for these purposes

The relation to P − µ system allows to calculate further
corrections in φ− θ, which may help to see a structure of the
full result.


