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Introduction



Exact calculations in supersymmetric gauge theories

m Non-perturbative methods in ' = 4 SYM have been
developing rapidly
m In particular, two efficient approaches are known:

Integrability

m BPS, non-planar m Planar, Non-BPS
2
B Bample: (Weircle) = \/_XIl(\/X) B Example: tr [ZDSZ] — %
[Erickson, Semenoff, Zarembo'00], [Drukker, Gross'00], [Basso'11] ?

[Pestun’12]

Is there any non-trivial observable accessible from both approaches?



Quark-Antiquark Potential /Cusped Wilson Line.
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Two Wilson line configurations related by a conformal map
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Conformal invariance = V' = I'cysp



The Cusped Wilson Line: Turning on more parameters

St

Cusp angle ¢
Angle 6 between the couplings to scalars on two rays

R-charge L of a local operator inserted at the cusp

't Hooft coupling A

For 02 — ¢? = 0 this observable is protected. We will be working in
the near-BPS limit ¢ =~ 6.



Relation to other physical quantities

Cusp anomalous dimension is related to a variety of physical
quantities, as

m IR divergences of scattering amplitudes, i¢ is a boost angle
for massive particles and i¢ — oo for massless.

m Bremsstrahlung function — radiation of a moving particle
(¢ —0)

m The quark-antiquark potential in the flat space (¢ — 7)



Known results

m For L = 0 the I'¢;sp is known from localization

[Correa at al.’12],[Fiol, Garolera, Lewkowycz'12]
2
Vin (Vayi-5)
2
I <ﬁ - 2.2)

1
472

FCUSP()‘) = (¢2 - 92)

m arbitrary L, 0 =0, ¢ < 1 — solved in [cromov, sever12] USING
integrability.
Icusp is expressed through determinants made of I, (ﬁ)

m We will get the result for finite 8 =~ ¢, arbitrary L and A\ from
integrability.



Calculation of the cusp
anomalous dimension.



Thermodynamical Bethe Ansatz

The standard method to attack the problem from integrability
point of view is TBA

Yia 1+Yim 1+ Y o1 .
log=— = Kpn_1 *lo; +—»’+’R—(a)*]oalqu
[Bombardelli, Fioravanti, J Y ! g 1+ Y, L+ Yot 1 5 ( 0)
Tateo'09], - —
[Gromov et al 09], log LM = Kn1+log 14+ Vim +}_1’"' 1+ Yot Y,'"‘l + B +log(1 + Yap)
[Arutyunov, Frolov'09], Yoo 14+ Yim 1+ )m“ ,0)

[Gromov, Kazakov, Vieira'09], 3

[Correa et al'12], Iog_;,—l" = —K, 141 *log 11 i l_(“ — K,_{*log 11 +%1‘1

[Gromov, Sever'12]. ,1': 1+ Y:,: 1+ Yif
log—— = —K, 141+ log = — K, 1¥log —=
*Y. ot T Y, ! 1+Yas

+ [Rfj},“ + Bf,”_‘;‘b] +log(1 + Yip)

m Infinite system of nlin integral equations for Y, s(u)
m The indices of (a, s) of Y-functions live on a T-shaped hook.

m The energy can be expressed through Y, o



The Y-functions and their near-BPS expansion

In near-BSP limit we expand Y-functions in € = (¢ — 6) tan ¢+9

a

Ya,l = ya (1 - EXa)
1/Ya, = —1 — 2ed
1/}/1,5 = ys (1 + eXs)




Simplified TBA

A system for the coefficients of expansion &,V Y, X,, C,

D — U = 1CK,(u),
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Why do we hope to solve it?

m Even simplified in the near-BPS regime system looks nasty,
but
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m From localization we know the result at L = 0 is extremely

simple T'(g) ~ A~/2L, <\[5\) /I (\6)



Why do we hope to solve it?

m Even simplified in the near-BPS regime system looks nasty,
but

m From localization we know the result at L = 0 is extremely

simple T'(g) ~ A~/2L, <\[5\) /I (\6)

m Hope for a drastic simplification?



Stepl: From TBA to FiNLIE

log ;‘ = Kt ~]og%ll " :{,"‘" + R s log(1 + Yap)
1,1 . tm L+ Ymt
0 - 7
Thermodynamical .7 . .o lDeloe poni
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o0 system of nlin integral eqs Y Va2
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Using the relation between Y-system

and integrable Hirota dynamics
[Gromov, Kazakov, Vieira'09]

Finite system of nlin integral equations (FINLIE)



Ansatz for Y-functions through T-functions

+ -
Tl,mTl,m

= 1.
T m+1T1,m—1

Yim

)

The general solution for T is given by

1

Q[QS] Q[Zfs]

The non-trivial part is finding Q12

s 5l '
1



The “twisted” ansatz

Our ansatz for Q12 is

Q1 = Ql — 6-H9(u—iG’(u))7
Qs = QQ _ e—@(u—iG(u)),

The resolvent G has a short cut and a series of poles

29
1 p(v) b,
Glu) = 2mi /dvu—v+62u—ia/2 )
9 a#0

This generates for T-functions

sin (s — Gl - G~y

T —
5 sin 0



FiNLIE

Everything is expressed in terms of p(u),n(u),C,

s1n«9,0 _ ZWC g,

sm 0

cosfpcos(2—GT+G7) —cos(2¢f —GT —G7)
K sinfsin(2 -Gt +G~)f N

o)
1+

= s [_2 + (K} — K;)C, — ﬂé(u)Cl] :
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" a? a - sinh 27w\
Ca=(-1) a7;<o>( 1+1692—49> exp [Ka*log(n 2 )




Step 2: Analytical ansatz for FINLIE quantities

The way to solve FiNLIE is to make certain assumptions about its
analytical properties
Assumptions:

m 7(u)? is meromorphic in the whole complex plane

m 1) has simple poles at ia/2
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The way to solve FiNLIE is to make certain assumptions about its
analytical properties
Assumptions:

m 7(u)? is meromorphic in the whole complex plane

m 1) has simple poles at ia/2
Then the goal is to express the FINLIE quantities in terms of zeros
of 7. Introduce a bookkeeping function

Qu(2) = [] 5, Qxle) = Q(1/2)
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where we use Zhoukovsky transform of u: u/g = x + 1/x.



Step 2: Analytical ansatz for FINLIE quantities

The way to solve FiNLIE is to make certain assumptions about its
analytical properties
Assumptions:

m 7(u)? is meromorphic in the whole complex plane

m 1) has simple poles at ia/2
Then the goal is to express the FINLIE quantities in terms of zeros
of 7. Introduce a bookkeeping function

Qu(2) = [] 5, Qxle) = Q(1/2)

iio Tk

where we use Zhoukovsky transform of u: u/g = x + 1/x.
Consequences:

oo _ /Q+(§)_, ) — \/Q+Q Q+Q—
Q-Q+

sinh 27y
C 2mu



The zeros

-:'1:;:'3
o ° —0.0.5 . . . . ?.05 ® .



Effective Baxter equation

FiNLIE+Analyticity assumptions

4

The zeros satisfy effective “crossing” Bethe equations, which can
be solved by introducing a Baxter polynomial.

Roots of the Baxter polynomial The algebraic curve

~

L~vVA>1

a
A

)

=

Classical limit




The result

Cusp anomalous dimension for arbitrary L, finite 6 =~ ¢ and any
value of 't Hooft coupling

¢—0 det Mop 1

T = |
L()\) 4 Op log det Moy 1




The result

Cusp anomalous dimension for arbitrary L, finite 6 =~ ¢ and any
value of 't Hooft coupling

¢—0 det Mop 1
T = 1
L()\) 4 Op log det Moy 1
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The result

Cusp anomalous dimension for arbitrary L, finite 6 =~ ¢ and any

value of 't Hooft coupling

r =T 791
L()\) 4 Op log det Moy 1

nooI e Iy Iy
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Iy Iy oo
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The localization result is reproduced!



Tests: Strong coupling

0

91 det Mor 1

¢ — og
det Moy, _1

4

INARY)

The limit L ~ v/XA — 0o matches perfectly with the energy of a

classical open string
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Matrix model reformulation
and the classical limit.



Classical Limit

m ['¢ysp is related to the energy of a classical open string in the
limit L ~ g — 00
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Classical Limit

m ['¢ysp is related to the energy of a classical open string in the
limit L ~ g — 00

m How to take the L — oo limit of det Mop 417

m The technique of expansion in 1 over the size of the matrix is
well developed in matrix models



Matrix Model reformulation

Using

1 dx

0 __
In - ; 1l

: 290(x—1/x)
57 sinh(27g (x + 1/z)) e

for every element of
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det M Nﬁl (1‘@) inh |2 . l 2g9< 77)
N = 27TzacN+2 (N +1)! i oA Z;




Saddle-point approximation
m In the quasi-classical approximation the value of the integral

/ dxiefs[mi]

is given by
(Sll[xf])*1/2 675[962‘]7

where z* is a solution of a saddle-point equation % = 0.

m In the case of L ~ g — oo limit of det Msr 11 the
saddle-point equation is

2  2L+1

2
“v+1 L 1 1

-0 e g = msgn(Re(z;)).
2 2 2 A J
xj—l ga:j—l g:cj—l#j Tj — T



The distribution of the roots at L > 1

Im x

Rex




The classical quasimomentum

Introduce the quantum quasimomentum p(x)

»2+1 L =z 2L a2

— 0 - e~ Gcl
p(l’) 22— 1 g:c2—1 g 2 1 L(x)a
where
2L+1
1 1
cl =
GLlz) = 2L ; T —xy

The saddle-point equation then is
1 ) .
5 (p(x; + i€) + p(x; — i€)) = wsgn(Re(z;)).

As L — oo, the roots aggregate into two cuts and p(z) becomes a
classical algebraic curve with two cuts.



The classical algebraic curve

In the classical limit p(z) becomes the classical algebraic curve.
[V.A.Kazakov, A.Marshakov, J.A.Minahan, K.Zarembo, hep-th/0402207]
Properties:

m p(z) = —p(—1/x)

= p(0) = —p(c0) =0

m Two cuts with branch-points parametrized by
{—re'® —re= 1/rel® 1/re”1}

m p(ay,) = £7

m Simple poles at x = +1

Start with an ansatz for p':
A1x4 + A2x3 + A33§'2 =+ A43§' =+ A5
(22 — 1)2Vx + reid/x + re‘i‘b\/ — %ei‘b\/:c — %e‘id’

plx) =

To get p(z) we integrate and fix A; and the integration constant
using the properties above.



The classical algebraic curve

p(z) =1 — 4iE(a®sin?(¢)) F1 + 41 K(a?sin?(¢)) Fy
x4+ lemi ret?
< i )(2 ) vl K(a2sin* (),

T + rei® 2 -1

[Valatka&Sizov, to appear]

where

_1lo—ig 2i¢
L T 2re .
Fy =F | sin~? a( :U+rrei¢ > <62i¢—1> a?sin?(¢) | ,

_ 1. 2i¢
x e 2re .
; ) <62i¢> -1 > a’2 Sln2(¢) )

IFy sin™
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Q
7 N
8
+
=
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©

and



The parameters of the cuts

The parameters of the curve r, ¢ are related to L/g, 0 by

L 4 (Rt (6) - Basind(0)
4r2e? K (a® sin® ¢
0 = —m+ 7'2(+1 ())

, : - e2idr 1
+ 4iE (a®sin®*(¢)) F (sm ! (W\/q:)

a? sin2(¢)>
a? sin2(¢))




The classical energy

The energy can be expressed as an expectation value in the matrix
model

2L
Oplog det M, = <2g Z(l‘l - 1/1’1)>
i=1
In the saddle-point approximation due to the symmetry x — —1/x
only one term matters. We can express it through G(0) o< >_ L,
Z. 7

50 Leysp = — (¢ — 0)%8Lp}i(0). Using the explicit formula for p we
get

11cusp < 1 >
—  =g|r—=)coso
¢cusp - gcusp r

Notice: all the elliptic functions in p(x) got cancelled out when
expressed through r and ¢.

The same result we get considering the conserved charge of the
corresponding classical string solution.



Expansion around the classical solution

Expansion in L, g — oo with L/g fixed

Tr(g) = (¢—0)> g "k (L/g)

k=0

m We checked that the leading terms are reproduced by our
solution

m The symmetry I'1.(g) = —T'_1_1(—g) of the large L expansion
[Beccaria&Macorini 1305.4839] implies that by = %8[]70. Thus we found

‘r262’¢+1‘ Ky — 2‘r+%+ei¢—e_i¢}2E1,

)
b1/bo = A|(r+ 1) (r2e2i0 —1) By — (r — 1) (r2e2 +1) K |

2

2 .92 2 in2
where £ = E (4(7;2?_?)5)) , Ki=K (4(7;2?—?)5))'

m Next corrections can be generated by topological recursion —
work in progress by |.Kostov,N.Gromov,S.Valatka,G.S.



Conclusions

Results
m We calculated the cusp anomalous dimension in the near-BSP
limit at any coupling
m Using matrix model reformulation we have found the

corresponding algebraic curve and the classical limit of the
cusp anomalous dimension

Remarks

m The result in a general near-BPS case ¢ = 6 is simpler than
the degenerate § = 0 case

m Analyticity assumption gives a key to solving TBA

m This analyticity can be derived from the novel P — p
System|Gromov et al 1305.1935].

m The strong coupling expansion has a form of a matrix model
expectation value

m The form of the result hints it can be derived from
localization.



Further directions

m The curve is related to the eigenvalues of monodromy of a flat
connection around the worldsheet, though the exact procedure
for an open string is not yet established

m Knowing the classical algebraic curve allows to calculate the
corrections to the classical energy
m Topological recursion can be implemented for these purposes

m The relation to P — u system allows to calculate further
corrections in ¢ — 6, which may help to see a structure of the
full result.



