A simple, yet subtle, invariance of the two-body decay kinematics

Roberto Franceschini (University of Maryland)

arXiv:1209.0772 with K.Agashe and D.Kim arXiv:1212.5230 with K.Agashe, D.Kim, K. Wardlow

WHAT DOES IT LOOK LIKE IN ANOTHER FRAME?

IN GENERAL WE KNOW THE ANSUER IF THE FRAME OF THE OBSERVER AND THAT OF PEST OF THE MOTHER ARE CONNECTED BY A BOOST ß $E_1 = E_1^* Y + P_1^* Y \beta \cos 9^*$ Pd Langhter · .. 1301

BUT IN MOST CASES WE DO NOT KNOW THE BOOST OF THE MOTHER

TO MAKE AN INVARIANT MASS YOU NEED TWO FOUR-VECTORS WITH BOTH ENERGY AND ANGLES

o DEMANDING

- UNIVERSAL (SPECIAL RELATIVITY IS THE SAME FOR ALL PARTICLES)
- · SIMPLE TO UNDERSTAND
- · CONSERVED EVENT BY EVENT

Solution to overcome the UNLYMM BOOST USE BOOST INVARIANT QUANTITIES

GENERICALLY THEY ARE FUNCTION OF SEVERAL QUANTITIES

SITUATIONS HAS SOME INVARIANCE

THE ENERGY DISTRIBUTION IN PHENOMENOLOGICALLY RELEVANT

THE OBSERVED ENERGY DEPENDS ON THE FRAME

FOR INSTANCE:

LORENTZ VARIANT QUANTITIES WITH SOME KIND OF PHENOMENDLOGKAL INVARIANCE TO ACCESS INARIANTS OF THE DECKY

IN THIS TAK:

IF THE MOTHER, IS A SCALAR, cost is that from -1 to 1

IN THE LAB $E_{J} = E_{J}^{*} (\chi_{M} + \cos^{3}\beta_{M}\chi_{M})$

• THE DAUGHTER MOMENTUM IS AT AN ANGLE 9 W.R.T. BM

- IMAGINE THE MOTHER HAS A BOOST By IN THE LAB FRAME
- DAUGTHER & IS MASSLESS (for how)

GENERALIZATIONS:

INSTEAD OF A SCALAR MOTHER ONE CAN TAKE AN UNPOLARIZED ENSEMBLE OF PARILCLES WITH SPIN

• THE DAUGHTER, CAN BE MASSIVE $|F_{3}(\delta) = 0 \quad for \quad \delta > 2\delta^{*} - 1$ WHERE $Y^* = \frac{E_d^*}{m_d}$ m_ + m_ E 2mm

ビッモン E=E; is THE PEAK THE FRAME-DEPENDENT ENERGY DISTRIBUTION ENCODES THE INVARIANT E' IN A VERY SIMPLE WAY

ADVANTAGES (GENERAL: ALMOST ONLY KINEMATICS)

THE GNLY DYNAMICAL ASSUMPTION WAS THE MOTHER TO BE NOT POLARIZED

THE RESULT APPLIES FOR BOTH KNOW PARTICLES OF THE SM AND FOR NEW PHYSICS

(OVER INVARIANT MAS FOR INSTANCE)

PEAK $AT \\ E_{J} = E_{J}^{*}$ E. E*

• NO NEED TO KNOW ANYTHING ABOUT THE REST OF THE EVENT

χ° Ď

SOME MORE INSIGHTS BY GOING THROUGH AN ANALYTIC PROOF:

$$X := \frac{E_d}{E_d^*}$$

(MASSEES DAUGHER)

 $f(x) = \frac{1}{\Gamma} \frac{d\Gamma}{dx} = \int_{1}^{\infty} \frac{dV}{dx} \frac{f(x)}{\frac{1}{2}(x+\frac{1}{x})} \frac{f(x)}{\frac{1}{2}\sqrt{x^{2}-1}}$ $f'(x) = \frac{\operatorname{sigh}(1-x)}{2x} g\left(\frac{1}{2}(x+\frac{1}{x})\right)$

g(i) = 0 $g(i) \neq 0$ the desinitive changes sign ≤ 1

SOME MORE INSIGHTS BY GOING THROUGH AN ANALYTIC PROOF:

$$X := \frac{E_d}{E_d^*}$$

(MASSESS ZAUCHTER)

$f(x) = \frac{1}{\Gamma} \frac{d\Gamma}{dx} = \int_{\frac{1}{2}(x+\frac{1}{x})}^{\infty} \frac{g(x)}{\sqrt{x^{2}-1}}$ $f'(x) = \frac{sigh(1-x)}{2x} g\left(\frac{1}{2}(x+\frac{1}{x})\right)$

g(Y) = 0IN A PANGE $[I, Y^{c}]$

WHEN AND WHY THIS BREAKS DOWN?

1 BOOST DISTRIBUTION 2 THE OF THE MOTHER WITH SPECIAL FEATURES

(MANY MINIMA, LARGE FLAT PORTIONS, ...)

RESOLVABLE RADIATION CAN BE VETOED

HARD RADIATION MAY BE RESOLVABLE AND EFFECTIVELY GIVE RISE TO A THREE-BODY DECAY

- JET CLUSTERING SOLVES THIS ISSUE TO SOME EXTENT
- IF THE FINAL STATES ARE COLORED M -> 1 X + gluons
- IS TWO BODY ONLY UP TO EXTRA RADIATION
- $M \rightarrow dX$
- CAVEAT :

WHEN AND WHY THIS BREAKS DOWN ?

WHEN AND WHY THIS BREAKS DOWN? 3 THE DAUGHTER'S MASS

$E'_{d} = E'_{d}\chi_{n} + \cos^{2}\chi_{n}\beta_{n}\beta_{n}$

THE MINIMUM OF THIS QUANTITY AT $\vartheta^{M} = TI$ (BOOST ANTI-PARALLEL TO THE MOMENTUM OF d) IF $P_{d}^{*} = E_{d}^{*}$ (MASSLESS DAUGHTER) E_{d}^{I} , man = E_{d}^{*} ($\vartheta_{n} - \sqrt{\vartheta_{n}^{2}} - 1$) < E_{d}^{*}

• THE DAUGHTER'S MASS

$E'_{d} = E'_{d} \chi_{n} + \cos^{2} \chi_{n} \rho_{n} \rho_{d}$

THE MINIMUM OF THIS QUANTITY AT 8 = T (BOOST ANTI-PARALLEL TO THE MOMENTUM OF d) IF Pat SEt (MASSIVE DRUCHTER) $P_{d}^{*} \rightarrow 0 \quad E_{d}^{*} \rightarrow m_{d}$ $E_d = m_d \mathcal{S}_m + \dots$ FOR YM LARGE GIVES RECTANGLES E J, min > EJ

FOR YM LARGE GIVES RECTANGLES E Juin 2 EJ

 $P_{d}^{*} \rightarrow 0 \quad E_{d}^{*} \rightarrow m_{d}$ $E_{d} = m_{d} \delta_{m} + \dots$

IF Pat SET (MASSIVE DOUGHTER)

THE MINIMUM OF THIS QUANTITY AT 8 = T (BOOST ANTI-PARALLEL TO THE MOMENTUM OF d)

 $E'_{d} = E''_{d}\chi_{n} + \cos^{2}\chi_{n}\rho_{n}\rho_{d}$

• THE DAUGHTER'S MASS

WHEN AND WHY THIS BREAKS DOWN ?

 $PP \rightarrow \tilde{g}\tilde{g} \rightarrow b\tilde{b}b\tilde{b} \rightarrow 4b\ell\chi'$

APPLICATIONS

DISTINGUISHING BETWEEN 2-bodies AND 3-bodies

pp -> ti -> bb añ \$

. QCD PAIR PRODUCTION OF the ENSURES THAT THE OVERALL SAMPLE OF TOP DECAYS IS UNPOLARIZED

THE L QUARK CAN BE TAKEN AS MASSLESS

 $E_{b} >> m_{b}$

· LOOK BY EYE

· A TEMPLATE MOTIVATED FROM PRIME PRINCIPLES SEEMS UNATTAINABLE BECAUSE IT DEPENDS ON PARTON DISTRIBUTION FUNCTIONS

AND ON THE MATRIX ELEMENT FOR THE PRODUCTION PROCESS

 $E_{b,\min}^{(Y_n)} = E_b^*(Y_n \mp \sqrt{y^2-1})$

FIND A TEMPLATE AND USE IT TO FIT DATA • $dT/dE_{L} \xrightarrow{E_{L} \rightarrow 0,\infty} O$ (at least) • dT/dE, mox at E,=E,* • IN SOME LIMIT SHOULD BE A S-FUNCTION (MOTHER AT REST) dr/dE MUST BE A FUNCTION OF Eb Eb E*

FIND A TEMPLATE AND USE IT TO FIT DATA $\int \frac{d\Gamma}{dE_{L}} = 0, \infty$ • dT/dE, mox at E,=E,* • IN SOME LIMIT SHOULD BE A S-FUNCTION (MOTHER AT REST) dr/dE MUST BE A FUNCTION OF Eb Eb E*

- DETECTOR EFFECTS ----> DELPHES 1.9
- NEED TO EVALUATE :
- FROM THE RESULT OF THE FIT TO THE LEADING ORDER MATRIX ELEMENT WE HAVE AT LEAST A CAANCE

$$E_{b}^{*} = \frac{m_{t}^{2} - m_{w}^{2} + m_{t}^{2}}{2m_{t}} \cong 67 G$$

CAN WE MEASURE PARTICLE MASSES ?

• BIAS FROM EVENT SELECTION -> ATLAS-CONF-202-017

CAN WE MEASURE PARTICLE MASSES ? FROM 100 PSEUDO EXPERIMENTS FOR LAC JS = 7 TeV AND Z = 5/fb WE GET = 173.1 ± 2.5 GeV • ALL THE EFFECTS AT LEADING ORDER ARE WELL UNDER CONTROL HIGHER ORDER QCD WAS NOT INCLUDED (\$10%)

x°

• BACKGROUNDS . CUTS MAY AFFECT THE ENERGY USTRIBUTION $P_{t,t} > X \Leftrightarrow E_{t,t} > X$

Ztyts (mosly Zbbb) & ttbb (suspen)

CASE I (S/B=1)

COUNTING INVISIBLE PARTICLES 1212.5230

· DARK MATTER IS AN INVISIBLE PARTICLE

ん

MEASURE SOME QUANTITY THAT SINGLES OUT THIS COUNTEAR. CONFIGURATION

• 6 AND C ARE INVISIBLE

. MEASURE ONLY THE SUM OF THE INVISIBLES

THE MAX OF M, SINGLES ON A KIND OF COUNEAR CONFIGURATION

 $m_{\mu}^2 = m_{\eta}^2 + m_b^2 + 2(E_{T_{\eta}} E_{T_{b}} \cosh \Delta \eta_{ab} - P_{T_{h}} P_{T_{b}} \cos \Delta \varphi_{ab})$ $m_{\tau}^{2} = m_{a}^{2} + m_{b}^{2} + 2(E_{\tau_{a}} E_{\tau_{b}} - P_{\tau_{a}} P_{\tau_{b}} \cos \Delta \phi_{ab})$

APPLICATION TO BOTTOM QUARK PARTNERS

 $PP \rightarrow B'B'$

 $B' \rightarrow b \chi$ FOUDWED BY $B' \rightarrow b\chi\chi$

POST - DISCOVERY LARGE S/B

0 leptons with $|\eta_l| < 2.5$ and $p_{Tl} > 20$ GeV for $l = e, \mu, \tau$, 2 *b*-tagged jets with $|\eta_b| < 2.5$ and $p_{T b_1} > 100$ GeV, $p_{T b_2} > 40$ GeV, $E_T > 300 \text{ GeV}$, $S_T > 0.4$,

f > 0.3,

Conclusions

IN PHENOMENOLOGICALLY RELEVANT CASES (HIGH ENERGY COLLIDERS) THE SPECTRUM OF ENERGY IN TWO BODY DECAYS ENCORES IN A SIMPLE

WAY AN INVARIANT OF THE TWO BODY DECAY KINEMATICS

KINKS OR PLATEAUS ARE POSIBLE AS WELL

THE PEAK OF THE ENERGY DISTRIBUTION IS ROBUST FOR MASSLESS AND MASSIVE DAIGHTERS $\frac{1}{E_{\text{pede}}} \geq \frac{m_{n}^{2} - m_{x}^{2} + m_{d}^{2}}{2m_{n}}$ $E_{nek} = \frac{m_n^2 - m_x^2}{2m_n}$

LIMITING FACTORS:

• RADIATIVE CORRECTIONS

EXTRA RANATION MAKES THE DECAY 3-BODY

• TOO LARGE MASS OF THE OBSERVED DAUGHTER

• MAY BE SENSITIVE TO SELECTION CUTS

DESPITE THESE UNITATIONS THE OBSERVATION CAN BE USED TO MEASURE PARTICLE MASSES WITH 10%. ACCURACY OR BETTER t→bev im pp→ti c> mm d5/ JEL FROM

. NO NEED TO MEASURE THE OTHER DECAY PRODUCT **b→**b次 W -> Lv t っ し W -> レ ピッ ROBUST

DECAY OF SECONDARY PARTICLES

Also, since

$$\log E_{\gamma} = \frac{1}{2} (\log E_{\gamma, \min} + \log E_{\gamma, \max}) = \log \mu \qquad (1-225)$$

it follows that, on logarithmic plots of the energy spectra of these γ -rays, the rest-system energy μ will lie halfway between the extremum energies.

We are particularly concerned with decays that are isotropic in the rest system of the decaying particle, such as the π^0 and Σ^0 decays, which we have previously considered. For these decays, we have already shown that the resultant γ -ray energy distribution function is only a function of the momentum of the primary; indeed this function is a constant which is inversely proportional to this momentum for a given primary, within a range proportional to the momentum of the primary, and vanishes outside this range. Thus, for decays of parent particles with a wide range of primary energies, γ -ray spectra are generated which are made up of a superposition of rectangular spectra, as shown in figure 1–11. Higher energy primaries produce the γ -rays at the extremes of the spectrum. We therefore deduce a second important kinematic property, which holds for two-body decays that produce γ -rays isotropically in the rest system of the decaying primary; viz,

The energy spectra of γ -rays produced isotropically in the rest system of the decaying primary will be symmetric on a logarithmic plot with respect to $E_{\gamma} = \mu$ and will peak at $E_{\gamma} = \mu$.

FIGURE 1-11.-Ideal superposition of γ -ray energy spectra from π^0 of Σ^0 particles having discrete values of energy.

-) PT (E>R => NO PEAK IN E FROM R) •
- •) USUALLY APPLIED FOR, PANENT PARTICLES MOVING ALONG 2
- .) POLARFRATION DOES NOT MATTER
- •) END-POINT (UP TO RADIATION EFF.)

ENERGY

AUMIXAM (.

.) VALID FOR PARENT PARTICLES) UNPOLARIZED PARENT PARTICLE

MOVING ALONG ANY DIRECTION

•) $E = E^* \gamma (1 + \cos \vartheta^* \beta)$ E=E* at the yeak implies V-1 Cos J

FOR SOME BOOSTS THE EVENTS AT THE PEAK HAVE C.O.M. ANGLE $\neq \pi_2$