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1. From quantum gravity to graphs

μν
g (x,t)Gravity’s dynamical degree of freedom is the metric

Classically              obeys Einstein’s equations:g (x,t)
μν

Quantum mechanics is different: 

 〈g (x), t=T｜g (x), t=0〉∼ab

g (x,t)
μν

                     g (x,0)
μν

space

time

ga gb∑w(g) 
g∈Γ

Probability amplitude for evolution from g to g ba



How is Γ defined ? 
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In the discretized approach by triangulation, in 2d...

1. Unconstrained -- Planar Random Graphs

2. Constrained -- Causal Triangulations

→   geodesic distance
 ∼ a × graph distance R

g (x,t) 
μν

continuum R ➝ ∞, a ➝ 0
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2. Constrained -- Causal Triangulations

→   geodesic distance
 ∼ a × graph distance R

g (x,t) 
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continuum R ➝ ∞, a ➝ 0

Physics depends on large 
scale properties



2. Large scale structure

In fact many interesting physical systems can be 
expressed in terms of ensembles of graphs generated by 
local rules eg

•Percolation clusters
•Generic random trees
•Planar random graphs
•Causal dynamical triangulations

A simple way to characterize the typical large scale 
properties of graphs in these ensembles is through the 
notion of dimension



Hausdorff dimension dH

dH tells us about the volume distribution but is 
blind to some sorts of connectivity eg

1. Choose a point  r0

2.Find all points BR(r0) within graph  distance R of r0 
3.   ｜ BR(r0)｜∼ R  as R→∞, independent of r0 

dH

dH = 2 for Z2 and GRT

-- we assume ∞ graphs



Spectral dimension dS

1. Choose a point  r0

2.Random walker leaves  r0 at time 0 and returns 
at time t with probability qG(t;r0)

 but 4∕3 for GRT

qG(t;r0) ∼ t        as t→∞−dS∕2prob = σ-1

Random walk sees connectivity:

dS = 2 for Z2 



Spectral dimension dS

1. Choose a point  r0

2.Random walker leaves  r0 at time 0 and returns 
at time t with probability qG(t;r0)

 but 4∕3 for GRT

qG(t;r0) ∼ t        as t→∞−dS∕2prob = σ-1

Random walk sees connectivity:

dS = 2 for Z2 



1.If  dS > 2 then QG(0) finite ⇒ 1-PG (0) > 0, walker can 
escape, graph is non-recurrent

2. If  QG(0) infinite ⇒ 1-PG (0) = 0, walker always comes 
back, graph is recurrent and dS ≤ 2

QG(x) = 1+∑ qG(t;r0) (1-x)t/2
t=2

∞

1
1 - PG(x)
⎯⎯⎯⎯=

+.....+ + +qG(t;r0) =
first return

first return

Recurrence
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Two questions about the dimension of ensembles of ∞ 
graphs:

1. Average quantities eg for the GRT

〈｜BR(r0)｜〉 ∼ R      with  dH = 2μ∞

dH

2. There may be a subset of graphs which appear 
with measure 1 and all have the same property 
eg for the GRT

｜BR(r0)｜ ∼  R2  up to log R factorsa.s.

Clearly there are infinite trees for which  dH ≠ 2 
but they are rare -- they have measure 0



3. Some graph ensembles: Combs

∞  spine

tooth length i.i.d.  π(n) ∼ n-a , n → ∞

〈 qG(t;r0) 〉 ∼ t−dS∕2 with dS = 2 - a/2,   1 < a ≤ 2
       and  1  if  a > 2

〈｜BR(r0)｜〉 ∼ R      withdH dH = 3 - a,   1 < a ≤ 2
 and  1  if  a > 2

Intuition?   It is the very long teeth which matter.... 



3. Some graph ensembles: Trees

+= Z = g + g Z2    

1-(1-4g2)½
⎯⎯⎯⎯2gZ = so 

Generic Random Tree  eg binary tree

At g=½ we get a Critical Galton Watson ensemble

Special case of 

f(x)=∑ pn xn          CGW if f(1) = f’(1) = 1,  f’’(1) < ∞

    pn probability of n offspring



Generic Random Trees are the ∞ trees, measure μ∞

single ∞ branch

• dH = 2 a.s.
• dS = 4/3 a.s.

〈｜BR(r0)｜〉 ∼ R      with  dH = 2μ∞

dH

〈 qG(t;r0) 〉 ∼ t      −dS∕2
μ∞ with  dS = 4/3 



3. Some graph ensembles: Causal Triangulations
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wG = ∏ gk + 1
v∈G

 v

Z(g) = ∑ wG 
G

Critical at gc = 1/2 
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3. Some graph ensembles: Causal Triangulations

at gc the trees are CGW with 
offspring probability 

pn = (1/2)n+1 

μ(∞ CDT) ⇔ μ(URT)
Uniform RT is a particular GRT



• Every vertex in a CT appears in the associated  URT so 
dH = 2 a.s.

• First return probability PG(0) = 1 a.s. so recurrent and
dS ≤ 2 a.s

• Very weak lower bound from deleting links until only the   
URT remains

dS ≥ 4/3 a.s.

-- but expect loops to be important so consider ..... 



 pn = ⎯⎯⎯⎯
Ln

Ln + Ln-1

n-1 n

Ln distribution determined by μ∞ 

This has a chain structure and (trivial) loops. It is 
recurrent a.s. and has

dS = 2 a.s
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CT results don’t depend on URT -- 
for every GRT law there is a local action for the CT  

eg CT+dimer model of Di Francesco et al 
wG = ∏   τv

v∈G



4. Open questions

 Do CTs have dS=2 a.s.  ?

Are PRGs recurrent a.s., what is dS ?

What do other probes eg Ising spins show ?

Can the corresponding annealed systems be controlled ?

What can be said about higher dimensional CTs ? 



Theorem: 2d CDTs are a.s. recurrent

Ln distribution determined by μ∞ 

1μ(Ln>K) = 
K+2n-1⎯⎯⎯2n-1 1 - ⎯2n







K

Nash-Williams criterion: if electrical resistance to 
infinity is infinite, G is recurrent

Resistance of G ≥ ∑
n Ln

1 ⎯

G =

so if K >> n, then 
μ very small



Theorem: 2d CDTs are a.s. recurrent

Ln distribution determined by μ∞ 

1μ(Ln>K) = 
K+2n-1⎯⎯⎯2n-1 1 - ⎯2n







K

Nash-Williams criterion: if electrical resistance to 
infinity is infinite, G is recurrent

Resistance of G ≥ ∑
n Ln

1 ⎯

G = 1 2
superconductor

so if K >> n, then 
μ very small



Prob(Ln > 2a n log(n)) ≤ (1 + 2a log(n))n-a

Prob(Ln > 2a n log(n)  for at least one n > N) 
       ≤ ∑(1 + 2a log(n))n-a  

≤ C N1-a log(N)

 qnever + ∑ qn  ≤   C N1-a log(N) 
n=N+1

∞

Let qn be the probability that n is the last point 
where Ln > 2a n log(n) then

•qnever = 0
•〈n〉is finite if a>2



Prob(Ln > 2a n log(n)) ≤ (1 + 2a log(n))n-a

Prob(Ln > 2a n log(n)  for at least one n > N) 
       ≤ ∑(1 + 2a log(n))n-a  

≤ C N1-a log(N)

 qnever + ∑ qn  ≤   C N1-a log(N) 
n=N+1

∞

Let qn be the probability that n is the last point 
where Ln > 2a n log(n) then

•qnever = 0
•〈n〉is finite if a>2

⇒
with measure 1 ∃ N: n>N

Ln < 2a n log(n)



Theorem: 2d CDTs are a.s. recurrent

1 2

Ln distribution determined by μ∞ 

Nash-Williams criterion: if electrical resistance to 
infinity is infinite, G is recurrent

G =                                                  

Resistance of G  ∑
n=N

∞ 12a n log(n) =  ∞    ≥ ∑
n Ln

1⎯ >a.s



Theorem: 2d RCDT has  dS=2  a.s.

PG(x;n-1) = ⎯⎯⎯⎯⎯⎯ 
(1-x) (1-pn)

1 - pn PG(x;n)

 pn = ⎯⎯⎯⎯
Ln

Ln + Ln-1

iterating out to n=N gives

QG(x;1) ≤ L1   ⎯   + ∑ ⎯ xLN

1
k=1

1
Lk

N





we only need

〈QG(x;1)〉 ≤ c    ⎯   + ∑ ⎯ xN
1

k=1

1
k

N





∼ c ｜log x｜choosing N=x-1

n-1 n





Recurrence QG(x;1) a.s. diverges as x → 0

〈QG(x;1)〉diverges only as log x

So ∄ a subset of graphs with non-zero measure:  
QG(x;1) diverges faster than log x as x → 0

So QG(x;1) a.s. diverges logarithmically as x → 0

dS=2  a.s.


