This is partly a review and many people have contributed to the subject

Some recent work on spectral dimension with Bergfinnur Durhuus and Thordur Jonsson
is in arXiv: hep-th /0509191, math-ph /0607020, and arXiv:0908.3643
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1. From quantum gravity to graphs

Gravity’s dynamical degree of freedom is the metric q (x.1)

Classically g (x,t) obeys Einstein’s equations:
0y,

IO A / 1.
6 (0 g 09

Quantum mechanics is different:

<gb(X), =T | ga(X), '|'=O> ~  space

Probability amplitude for evolution from g*to g’



How is [ defined ?

In the discretized approach by triangulation, in 2d...

1. Unconstrained -- Planar Random Graphs

2. Constrained -- Causal Triangulations

g (x,f) — geodesic distance
: ~ a x graph distance R

continuumR — o0, a @ O




How is [ defined ?

In the discretized approach by triangulation, in 2d...

1. Unconstrained -- Planar Random Graphs

2. Constrained -- Causal Triangulations

g (x,f) — geodesic distance
: ~ a x graph distance R

continuumR — o0, a @ O

Physics depends on large
scale properties




2. Large scale structure

In fact many interesting physical systems can be
expressed in terms of ensembles of graphs generated by
local rules eg

® Percolation clusters
® Generic random trees
® Planar random graphs
e Causal dynamical triangulations
A simple way to characterize the typical large scale

properties of graphs in these ensembles is through the
notion of dimension



Hausdorft dimension dy -- we assume oo graphs

1. Choose a point 1o
2.Find all points Br(ro) within graph distance R of ro
. | Br(ro) | ~ R™ as R— 0, independent of ro

du tells us about the volume distribution but is
blind to some sorts of connectivity eg

dy = 2 for Z2 and GRT




Spectral dimension ds

1. Choose a point ro

2.Random walker leaves ro at time O and returns
at time t with probability qe(t;ro)

>

prob = 0! qe(t;ro) ~ 17 %as t—eo

Random walk sees connectivity:

ds = 2 for Z?

but 4/3 for GRT




Spectral dimension ds

1. Choose a point ro

2.Random walker leaves ro at time O and returns
at time t with probability qe(t;ro)

> Y prob = 0 q(firo) ~ 7' *as t—eo
Random walk sees connectivity: \\

ds = 2 for Z2 but 4/3 for GRT




Recurrence

first return
Gcltito) = 7* *@ %} .....

Qs(x)

1+§2 qe(t;ro) (1-x)"2

1
1 - Ps(x)

first return

1.If ds > 2 then Qg(0) finite = 1-Ps (0) > 0, walker can
escape, graph is non-recurrent.

2. If Qs(0) infinite = 1-Ps (0) = O, walker always comes
back, graph is recurrent. and ds ¢



Recurrence

first return
Gcltito) = * *@ %} .....

Qa(x) = 1+§2 qe(t;ro) (1-x)2
24 1 -ds/2
e Ps(x) | 2t

first return

1.If ds > 2 then Qg(0) finite = 1-Ps (0) > 0, walker can
escape, graph is non-recurrent.

2. If Qs(0) infinite = 1-Ps (0) = O, walker always comes
back, graph is recurrent. and ds ¢



Two questions about the dimension of ensembles of e

graphs:
1. Average quantities eg for the GRT

du

CIBa(ro) 1), ~R*  with dy =2

2. There may be a subset of graphs which appear

with measure 1 and all have the same property
eg for the GRT

| Br(ro) | = R2 up to log R factors

Clearly there are infinite trees for which du # 2
but they are rare - they have measure O



3. Some graph ensembles: Combs

tooth length i.i.d. m(n) ~ n%, n = o

® ' ----------------------- 00 Spine

(| Brlro) | ) ~RdH with dy=3-a, 1<as<?2

and 1 if a> 2
(qG(f;ro)> - 1t7%/% withds=2-a/2, l<az<?2
and 1 if a> 2

Intuition? It is the very long teeth which matter....



3. Some graph ensembles: Trees

Generic Random Tree eg binary tree

+

=g +q2Z

_'=

SO L=

1-(1-4g2%)"
eg
At g=)2 we get a Critical Galton Watson ensemble

Special case of —< pn probability of n offspring

f(x)=3 po x"  CGWif  f(l) = F(1) =1, F'(1) < oo




(GGeneric Random Trees are the co trees, measure Ueo

yy & single co branch

du

< ‘ BR(rO) ‘ >uw <R with dy = 2

( qeltiro) )~ t7°'% with ds = 4/3

® dy = 2 a.s.
® ds = 4/3 a.s.



3. Some graph ensembles: Causal Triangulations
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3. Some graph ensembles: Causal Triangulations

WG - ]T gkv'l'].

veG

Zlq)= é We

Ctitreal at gc = 1/2



3. Some graph ensembles: Causal Triangulations
= kyt+ 1
<5 we =T g

A\

Zlq)= é We

Critical at gc = 1/2



3. Some graph ensembles: Causal Triangulations

W

W = '|'|' gk\,+1
veG

Zlq)= é We

Critical at gc = 1/2



3. Some graph ensembles: Causal Triangulations

W = '|'|' gk\,+1

veG

Zlq)= é We

Critical at gc = 1/2




3. Some graph ensembles: Causal Triangulations
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WG - ]T gkv'l'].

veG

Zlq)= é We

Ctitreal at gc = 1/2

at gc the trees are CGW with
oftspring probability
Pn 2 (1/2)n+1

u(eo CDT) © U(URT)

Uniform RT is a particular GRT



® Every vertex in a CT appears in the associated URT so
di = 2 a.s.

e First return probability Ps(0) = 1 a.s. so recurrent and
ds < 2 ass

® Very weak lower bound from deleting links until only the
URT remains

ds > 4/3 a.s.

-- but expect loops to be important so consider .....



n-1 n
/_’:— 2 I_n
= LA Pn Ln + Ln_l

Ln distribution determined by He

This has a chain structure and (trivial) loops. It is
recurrent a.s. and has

ds =2 a.S



Ln distribution determined by He

This has a chain structure and (trivial) loops. It is
recurrent a.s. and has

ds = 2 a.S

CT results don’t depend on URT --
for every GRT law there is a local action for the CT

WG=]T Ty

veG
eg CT+dimer model of Di Francesco et al



4. Open questions

Do CTs have ds=2 a.s. ?

Are PRGs recurrent a.s., what is ds ?
What do other probes eg Ising spins show ?
Can the corresponding annealed systems be controlled ?

What can be said about higher dimensional CTs ?



Theorem: 2d CDTs are a.s. recurrent

Nash-Williams criterion: if electrical resistance to
infinity is infinite, G is recurrent

Ln distribution determined by He

Resistance of G > > 1

’ n

K+2n-1 (1 L)K so if K >> n, then
2 U very small




Theorem: 2d CDTs are a.s. recurrent

Nash-Williams criterion: if electrical resistance to
infinity is infinite, G is recurrent

Ln distribution determined by He

Resistance of G > > 1

’ n

- :
- Wi 1 so if K >> n, then
H(Ln>K) (1 £ ) U very small




Prob(Lrl > 2a n log(n)) < (1 + 2a log(n))n-
Prob(Ln > 2a n log(n) for at least one n > N)

< 2(1 + 2a log(n))n-
< C N log(N)

Let gn be the probability that n is the last point
where Ln > 2a n log(n) then

Qnever '|'n_%+lqn <7 N2 lOg(N)

® Qnever = O
e {n) is finite if a>2



Prob(LrI > 2a n log(n)) < (1 + 2a log(n))n-
Prob(Ln > 2a n log(n) for at least one n > N)

< 2(1 + 2a log(n))n-
< C N log(N)

Let gn be the probability that n is the last point
where Ln > 2a n log(n) then

Qnever ‘|'n_%+lqn <7 N2 lOg(N)

® Qnever = O with measure 1 3 N: n>N
e {n) is finite if a>2 Ln < 2a n log(n)



Theorem: 2d CDTs are a.s. recurrent

Nash-Williams criterion: if electrical resistance to
infinity is infinite, G is recurrent

Ln distribution determined by He




Theorem: 2d RCDT has ds=2 a.s.

n-1 n 7
< r——x

(1-x) (1-pn)
1 - Pn PG(XJN)

Ps(x;n-1) =

iterating out to n=N gives

Q(x-l)<L<i+Ni

G\A, = L] XLN = Lk
we only need :

1 1

<QG(X11)> £C (g\j I < ?

choosing N=x"! = ¢ log x|
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» Recurrence Qq(x;1) a.s. diverges as x = O

o <QG(x;1)> diverges only as log X

° So 7 asubset of graphs with non-zero measure:
Qo(x;1) diverges faster than log x asx — O

* So Qa(x:1) a.s. diverges logarithmically as x = O

© ds=2 a.s.



