# GRAVITY, RANDOM GRAPHS AND <br> SPECTRAL DIMENSION 

## John Wheater <br> University of Oxford

This is partly a review and many people have contributed to the subject Some recent work on spectral dimension with Bergfinnur Durhuus and Thordur Jonsson is in arXiv: hep-th / 0509191, math-ph/0607020, and arXiv:0908.3643

## GRAVITY, RANDOM GRAPHS \& SPECTRAL DIMENSION

I. From quantum gravity to graphs
2. Large scale structure
3. Some graph ensembles

- Combs
- Trees
- Triangulations
4.Open questions
I. From quantum gravity to graphs

Gravity's dynamical degree of freedom is the metric $q_{\mu v}(x, t)$ Classically $\mathrm{g}_{\mu \mathrm{v}}(x, t)$ obeys Einstein's equations:

$$
g_{\mu \nu}(x, 0) \longmapsto g_{\mu \nu}(x, t)
$$

Quantum mechanics is different:

$$
\left\langle g^{b}(x), t=T \mid g^{a}(x), t=0\right\rangle \sim \text { space }
$$



Probability amplitude for evolution from $g^{a}$ to $g^{b}$

## How is $\Gamma$ defined?

In the discretized approach by triangulation, in 2d...

1. Unconstrained -- Planar Random Graphs
2. Constrained -- Causal Triangulations
$\begin{aligned} g_{\mu \nu}(x, t) & \rightarrow \text { geodesic distance } \\ & \sim a \times \text { graph distance } R\end{aligned}$
continuum $R \rightarrow \infty, a \rightarrow 0$


## How is $\lceil$ defined?

In the discretized approach by triangulation, in 2d...

1. Unconstrained -- Planar Random Graphs
2. Constrained -- Causal Triangulations
$\begin{aligned} g_{\mu \nu}(x, t) & \rightarrow \text { geodesic distance } \\ & \sim a \times \text { graph distance } R\end{aligned}$
continuum $R \rightarrow \infty, a \rightarrow 0$
Physics depends on large scale properties


## 2. Large scale structure

In fact many interesting physical systems can be expressed in terms of ensembles of graphs generated by local rules eg

- Percolation clusters
- Generic random trees
- Planar random graphs
- Causal dynamical triangulations

A simple way to characterize the typical large scale properties of graphs in these ensembles is through the notion of dimension

## Hausdorff dimension $d_{H}--$ we assume $\infty$ graphs

I. Choose a point $r_{0}$
2. Find all points $B_{R}\left(r_{0}\right)$ within graph distance $R$ of $r_{0}$
3. $\left|B_{R}\left(r_{0}\right)\right| \sim R^{d H}$ as $R \rightarrow \infty$, independent of $r_{0}$
$\mathrm{d}_{H}$ tells us about the volume distribution but is blind to some sorts of connectivity eg

$$
d_{H}=2 \text { for } Z^{2}
$$


and GRT


## Spectral dimension $d_{s}$

I. Choose a point $r_{0}$
2. Random walker leaves $r_{0}$ at time 0 and returns at time $t$ with probability $\mathrm{q}_{\mathrm{G}}\left(\mathrm{t} ; \mathrm{r}_{\mathrm{O}}\right)$


$$
q_{G}\left(t ; r_{0}\right) \sim t^{-d_{s} / 2} \text { as } t \rightarrow \infty
$$

Random walk sees connectivity:

$$
d_{s}=2 \text { for } z^{2}
$$



## Spectral dimension $d_{s}$

I. Choose a point $r_{0}$
2. Random walker leaves ro at time 0 and returns at time $\dagger$ with probability $\mathrm{q}_{\mathrm{G}}\left(\mathrm{t} ; \mathrm{r}_{\mathrm{O}}\right)$


$$
q_{G}\left(t ; r_{0}\right) \sim t^{-d_{s} / 2} \text { as } \dagger \rightarrow \infty
$$

Random walk sees connectivity:

$$
d_{s}=2 \text { for } z^{2}
$$


but $4 / 3$ for GRT


## Recurrence

$$
\begin{aligned}
q_{G}\left(t ; r_{0}\right)= & +\cdots+\cdots \\
Q_{G}(x) & =1+\sum_{t=2}^{\infty} q_{G}\left(t ; r_{0}\right)(1-x)^{t / 2} \\
& =\frac{1}{1-P_{G}(x)}
\end{aligned}
$$

I. If $d_{S}>2$ then $Q_{G}(0)$ finite $\Rightarrow 1-P_{G}(0)>0$, walker can escape, graph is non-recurrent
2. If $Q_{G}(0)$ infinite $\Rightarrow 1-P_{G}(0)=0$, walker always comes back, graph is recurrent and $d_{s} \leq 2$

## Recurrence

$$
\begin{aligned}
q_{G}\left(t ; r_{0}\right)= & +\infty+\ldots \\
Q_{G}(x) & =1+\sum_{t=2}^{\infty} q_{G}\left(t ; r_{0}\right)(1-x)^{t / 2} \\
& =\frac{1}{1-P_{G}(x)} \sim \sum t^{-d_{s} / 2}
\end{aligned}
$$

I. If $d_{S}>2$ then $Q_{G}(0)$ finite $\Rightarrow 1-P_{G}(0)>0$, walker can escape, graph is non-recurrent
2. If $Q_{G}(0)$ infinite $\Rightarrow 1-P_{G}(0)=0$, walker always comes back, graph is recurrent and $d_{s} \leq 2$

Two questions about the dimension of ensembles of $\infty$ graphs:
I. Average quantities eg for the GRT

$$
\langle | B_{R}\left(r_{0}\right)| \rangle_{\mu_{\infty}} \sim R^{d_{H}} \text { with } d_{H}=2
$$

2. There may be a subset of graphs which appear with measure 1 and all have the same property eg for the GRT

$$
\left|B_{R}\left(r_{0}\right)\right| \stackrel{\text { a.s. }}{\sim} R^{2} \text { up to } \log R \text { factors }
$$

Clearly there are infinite trees for which $d_{H} \neq 2$ but they are rare -- they have measure 0
3. Some graph ensembles: Combs


$$
\begin{array}{r}
\langle | B_{R}\left(r_{0}\right)| \rangle \sim R^{d_{H} \quad \text { with } d_{H}=3-a, 1<a \leq 2} \\
\text { and } 1 \text { if } a>2
\end{array} \begin{array}{r}
\left\langle q_{G}\left(t ; r_{0}\right)\right\rangle \sim t^{-d_{s} / 2} \text { with } d_{S}=2-a / 2,1<a \leq 2 \\
\text { and } 1 \text { if } a>2
\end{array}
$$

Intuition? It is the very long teeth which matter....
3. Some graph ensembles: Trees

Generic Random Tree eg binary tree

$$
\text { so } \quad z=\frac{1-\left(1-4 g^{2}\right)^{1 / 2}}{2 g} \quad z=g+g z^{2}
$$

At $\mathrm{g}=1 / 2$ we get a Critical Galton Watson ensemble Special case of $p_{n}$ probability of $n$ offspring
$f(x)=\sum p_{n} x^{n}$
CGW if
$f(1)=f^{\prime}(1)=1, \quad f^{\prime \prime}(1)<\infty$

Generic Random Trees are the $\infty$ trees, measure $\mu_{\infty}$

$$
\begin{aligned}
& \langle | B_{R}\left(r_{0}\right)| \rangle_{\mu_{\infty}} \sim R^{d_{H}} \quad \text { with } d_{H}=2 \\
& \left\langle q_{G}\left(t_{;} ; r_{0}\right)\right\rangle_{\mu_{\omega}} \sim t^{-d_{s} / 2} \text { with } d_{s}=4 / 3 \\
& \bullet d_{H}=2 \text { a.s. } \\
& \cdot d_{s}=4 / 3 \text { a.s. }
\end{aligned}
$$

## 3. Some graph ensembles: Causal Triangulations



## 3. Some graph ensembles: Causal Triangulations


3. Some graph ensembles: Causal Triangulations


$$
\begin{gathered}
\qquad W_{G}=\prod_{v \in G} g^{k_{v}+1} \\
Z(g)=\sum_{G} W_{G} \\
\text { Critical at } g_{c}=1 / 2
\end{gathered}
$$

3. Some graph ensembles: Causal Triangulations


$$
\begin{gathered}
W_{G}=\prod_{v \in G} g^{k_{v}+1} \\
Z(g)=\sum_{G} W_{G} \\
\text { Critical at } g_{c}=1 / 2
\end{gathered}
$$

3. Some graph ensembles: Causal Triangulations


$$
\begin{aligned}
W_{G} & =\prod_{v \in G} g^{k_{v}+1} \\
Z(g) & =\sum_{G} W_{G}
\end{aligned}
$$

Critical at $\mathrm{g}_{\mathrm{c}}=1 / 2$

## 3. Some graph ensembles: Causal Triangulations



$$
\begin{aligned}
W_{G} & =\prod_{v \in G} g^{k_{v}+1} \\
Z(g) & =\sum_{G} W_{G}
\end{aligned}
$$

Critical at $\mathrm{g}_{\mathrm{c}}=1 / 2$
3. Some graph ensembles: Causal Triangulations


$$
\begin{aligned}
W_{G} & =\prod_{v \in G} g^{k_{v}+1} \\
Z(g) & =\sum_{G} w_{G}
\end{aligned}
$$

Critical at $\mathrm{g}_{\mathrm{c}}=1 / 2$
at $g_{c}$ the trees are CGW with offspring probability

$$
\begin{gathered}
p_{n}=(1 / 2)^{n+1} \\
\mu(\infty C D T) \Leftrightarrow \mu(U R T)
\end{gathered}
$$

Uniform RT is a particular GRT

- Every vertex in a CT appears in the associated URT so

$$
d_{H}=2 \text { a.s. }
$$

- First return probability $P_{G}(0)=1$ a.s. so recurrent and

$$
d_{s} \leq 2 \mathrm{a} . \mathrm{s}
$$

- Very weak lower bound from deleting links until only the URT remains

$$
d_{s} \geq 4 / 3 \text { a.s. }
$$

-- but expect loops to be important so consider .....

$L_{n}$ distribution determined by $\mu_{\infty}$

This has a chain structure and (trivial) loops. It is recurrent a.s. and has

$$
d_{s}=2 \mathrm{a} . \mathrm{s}
$$


$L_{n}$ distribution determined by $\mu_{\infty}$

This has a chain structure and (trivial) loops. It is recurrent a.s. and has

$$
d_{s}=2 \mathrm{a} . \mathrm{s}
$$

CT results don't depend on URT -for every GRT law there is a local action for the CT

$$
W_{G}=\prod_{v \in G} T_{V}
$$

eg CT+dimer model of Di Francesco et al

## 4. Open questions

- Do CTs have $\mathrm{d}_{\mathrm{s}}=2$ a.s. ?
- Are PRGs recurrent a.s., what is $\mathrm{d}_{\mathrm{s}}$ ?
-What do other probes eg Ising spins show ?
- Can the corresponding annealed systems be controlled ?
- What can be said about higher dimensional CTs ?


## Theorem: 2d CDTs are a.s. recurrent

Nash-Williams criterion: if electrical resistance to infinity is infinite, $G$ is recurrent

$L_{n}$ distribution determined by $\mu_{\infty}$
Resistance of $G \geq \sum_{n} \frac{1}{L_{n}}$

$$
\mu\left(L_{n}>K\right)=\frac{K+2 n-1}{2 n-1}\left(1-\frac{1}{2 n}\right)^{K}
$$

so if $K \gg n$, then
$\mu$ very small

## Theorem: 2d CDTs are a.s. recurrent

Nash-Williams criterion: if electrical resistance to infinity is infinite, $G$ is recurrent


$$
\mu\left(L_{n}>K\right)=\frac{K+2 n-1}{2 n-1}\left(1-\frac{1}{2 n}\right)^{K}
$$

so if $K \gg n$, then
$\mu$ very small
$\operatorname{Prob}\left(L_{n}>2 a n \log (n)\right) \leq(1+2 a \log (n)) n^{-a}$ $\operatorname{Prob}\left(L_{n}>2 a n \log (n)\right.$ for at least one $\left.n>N\right)$

$$
\begin{aligned}
& \leq \sum(1+2 a \log (n)) n^{-a} \\
& \leq C N^{1-a} \log (N)
\end{aligned}
$$

Let $q_{n}$ be the probability that $n$ is the last point where $L_{n}>2 a n \log (n)$ then

$$
q_{\text {never }}+\sum_{n=N+1}^{\infty} q_{n} \leq C N^{1-a} \log (N)
$$

- $q_{\text {never }}=0$
- $\langle n\rangle$ is finite if $a>2$
$\operatorname{Prob}\left(L_{n}>2 a n \log (n)\right) \leq(1+2 a \log (n)) n^{-a}$ $\operatorname{Prob}\left(L_{n}>2 a n \log (n)\right.$ for at least one $\left.n>N\right)$

$$
\begin{aligned}
& \leq \sum(1+2 a \log (n)) n^{-a} \\
& \leq C N^{1-a} \log (N)
\end{aligned}
$$

Let $q_{n}$ be the probability that $n$ is the last point where $L_{n}>2 a n \log (n)$ then

$$
q_{\text {never }}+\sum_{n=N+1}^{\infty} q_{n} \leq C N^{1-a} \log (N)
$$

- $q_{\text {never }}=0$
- $\langle n\rangle$ is finite if $a>2$
with measure 1 ョ $N$ : $n>N$ $L_{n}<2 a n \log (n)$


## Theorem: 2d CDTs are a.s. recurrent

Nash-Williams criterion: if electrical resistance to infinity is infinite, $G$ is recurrent

$L_{n}$ distribution determined by $\mu_{\infty}$

Resistance of $G \geq \sum_{n} \frac{1}{L_{n}}{ }_{n}^{\text {a.s }} \sum_{n=N}^{\infty} \frac{1}{2 a n \log (n)}=\infty$

## Theorem: ad RCDT has $d_{s}=2$ ass.



$$
P_{G}(x ; n-1)=\frac{(1-x)\left(1-p_{n}\right)}{1-p_{n} P_{G}(x ; n)}
$$

iterating out to $n=N$ gives
we only need

$$
Q_{G}(x ; 1) \leq L_{1}\left(\frac{1}{x L_{N}}+\sum_{k=1}^{N} \frac{1}{L_{k}}\right)
$$

$$
\left\langle Q_{G}(x ; 1)\right\rangle \leq c\left(\frac{1}{x N}+\sum_{k=1}^{N} \frac{1}{k}\right)
$$

choosing $N=x^{-1}$
$\sim c|\log x|$

- Recurrence $Q_{G}(x ; 1)$ a.s. diverges as $x \rightarrow 0$
- $\left\langle Q_{G}(x ; 1)\right\rangle$ diverges only as $\log x$
- So $\nexists$ a subset of graphs with non-zero measure: $Q_{G}(x ; 1)$ diverges faster than $\log x$ as $x \rightarrow 0$
- So $Q_{G}(x ; 1)$ a.s. diverges logarithmically as $x \rightarrow 0$
- $d_{s}=2$ a.s.

