ASEPs, PASEPs and Paths

Des Johnston Richard Blythe Wolfhard Janke Ralph Kenna

The Grand-Canonical Asymmetric Exclusion Process and the One-Transit Walk, Dyck Paths, Motzkin Paths and Traffic Jams, J. Stat. Mech. (2004)
Continued Fractions and the Partially Asymmetric Exclusion Process, J. Phys. A (2009)

IHP, Sept, 2009

Some philosophical waffle

Big picture understood for equilibrium thermodynamics

Universality, critical exponents....

Non-equilibrium less well understood

Driven, diffusive systems, ASEP

Integrable system, $X X Z$, Bethe ansatz

Plan of Talk

Definition of the model

Solution of the model (matrix product ansatz)

Partition function zeros

Paths

Definition of the model

One dimensional lattice, N sites
"Hard" particles

Forcing

The Phase Diagram $(q=0)$

Give away the punchline

Roll of honour (TASEP $q=0$): Derrida,Evans, Hakim Pasquier Roll of honour (PASEP $q \neq 0$): Blythe, Evans, Colaiori, Essler

Setup for solution

Configuration

C

Statistical weights for configuration

$$
f(\mathcal{C})
$$

Normalized probability

$$
P(\mathcal{C})=f(\mathcal{C}) / Z
$$

Normalization

$$
Z=\sum_{\mathcal{C}} f(\mathcal{C})
$$

Master Equation

$$
\frac{\partial P(\mathcal{C}, t)}{\partial t}=\sum_{\mathcal{C}^{\prime} \neq \mathcal{C}}\left[P\left(\mathcal{C}^{\prime}, t\right) W\left(\mathcal{C}^{\prime} \rightarrow \mathcal{C}\right)-P(\mathcal{C}, t) W\left(\mathcal{C} \rightarrow \mathcal{C}^{\prime}\right)\right]
$$

Setup for (Matrix Product) solution

Represent ball with

$$
X_{i}=D
$$

Represent space with

$$
X_{i}=E
$$

Represent $P(\mathcal{C})$ as

$$
P(\mathcal{C})=\frac{\langle W| X_{1} X_{2} \ldots X_{N}|V\rangle}{Z_{N}}
$$

Make sure behaviour of D, E is compatible with dynamics:

$$
\begin{aligned}
D E-q E D & =D+E \\
\alpha\langle W| E & =\langle W| \\
\beta D|V\rangle & =|V\rangle
\end{aligned}
$$

Now what?

Various ways to proceed

Purely algebraic - "normal order"

Get a representation of D, E - not unique (and infinite)

Evaluate $Z_{N}=\langle W|(D+E)^{N}|V\rangle=\langle W| C^{N}|V\rangle$ having done this

Matrices for the ASEP

$$
\begin{aligned}
& D=\left(\begin{array}{cccc}
1+\frac{1}{\beta} & \sqrt{\kappa} & 0 & \cdots \\
0 & 1 & 1 & \\
0 & 0 & 1 & \ddots \\
\vdots & & \ddots & \ddots
\end{array}\right), \\
& E=\left(\begin{array}{cccc}
1+\frac{1}{\alpha} & 0 & 0 & \cdots \\
\sqrt{\kappa} & 1 & 0 & \\
0 & 1 & 1 & \ddots \\
\vdots & & \ddots & \ddots
\end{array}\right) \\
&\langle W|=(1,0,0, \cdots)|V\rangle=(1,0,0, \cdots)^{T} \\
& \kappa=\frac{1}{\alpha}+\frac{1}{\beta}-\frac{1}{\alpha \beta}
\end{aligned}
$$

The solution

DEHP matrix algebra

$$
D+E=D E
$$

Normalization is the quantity to calculate

$$
\langle W|(D+E)^{N}|V\rangle
$$

Given, for random sequential dynamics by

$$
Z_{N}=\sum_{p=1}^{N} \frac{p(2 N-1-p)!}{N!(N-p)!} \frac{(1 / \beta)^{p+1}-(1 / \alpha)^{p+1}}{(1 / \beta)-(1 / \alpha)}
$$

Current is then given by

$$
J_{N}=\frac{Z_{N-1}}{Z_{N}}
$$

Zeroes For equilibrium models

Partition function can be written as a polynomial in the fugacity $y=\exp (-2 h)$

$$
Z_{L}=\sum_{r} D_{r} y^{r},
$$

completely expressed in terms of its zeros, y_{r}
so too may the (reduced) finite-size free energy:

$$
f_{L}(h) \sim-\frac{1}{L} \ln \prod_{r}\left(y-y_{r}(h)\right)
$$

In the thermodynamic limit

$$
f(h) \sim-\int_{C} d y \rho(y) \ln (y-y(C))
$$

Works nicely in practice

Works nicely in practice II

ASEP zeroes

Blythe and Evans simply did this for ASEP normalization

Exactly as in equilibrium case - why?

Grand Canonical

Look at Grand-canonical normalization

$$
\mathcal{Z}(z)=\sum_{N=0}^{\infty} Z_{N} z^{N}
$$

Carrying out sum with the help of

$$
\left(\frac{1-\sqrt{1-4 z}}{2 z}\right)^{p}=\sum_{N=0}^{\infty} \frac{p(2 N+p-1)!}{p!(N+p)!} z^{N}
$$

Gives

$$
\begin{gathered}
\mathcal{Z}(z)=\frac{\alpha \beta}{(x(z)-\alpha)(x(z)-\beta)} \\
x(z)=\frac{1}{2}(1-\sqrt{1-4 z})
\end{gathered}
$$

Generating Function of What?

$\mathcal{Z}(z)$ is recognizable as the generating function for a lattice path problem.

Get generating function by iterating

$$
G_{E}(z)=z\left(1+G_{E}(z)+\left[G_{E}(z)\right]^{2}+\cdots\right)=\frac{z}{1-G_{E}(z)}
$$

Then iterate again with contact weights $1 / \alpha$

$$
\mathcal{Z}(z)=\alpha \beta G_{D}(1 / \alpha, z) G_{D}(1 / \beta, z)
$$

Using Grand Canonical

Singularities give Z_{N}
In maximal current phase with $\alpha<\beta$ the $\sqrt{1-4 z}$ gives rise to $4^{N} / N^{3 / 2}$ so

$$
Z_{N} \sim \frac{4^{N}}{\pi^{1 / 2} N^{3 / 2}}\left[\frac{1}{(2 \alpha-1)^{2}}-\frac{1}{(2 \beta-1)^{2}}\right]
$$

In regions (i) and (ii) poles dominate

$$
Z_{N} \sim \frac{\alpha(1-2 \beta)}{(\alpha-\beta)(1-\beta)} \frac{1}{(\beta(1-\beta))^{N}}
$$

And the PASEP?

$$
\begin{aligned}
D_{q} & =\frac{1}{1-q}\left(\begin{array}{cccc}
1+\tilde{\beta} & \sqrt{c_{1}} & 0 & \cdots \\
0 & 1+\tilde{\beta} q & \sqrt{c_{2}} & \\
0 & 0 & 1+\tilde{\beta} q^{2} & \ddots \\
\vdots & & \ddots & \ddots
\end{array}\right), \\
E_{q} & =\frac{1}{1-q}\left(\begin{array}{ccc}
1+\tilde{\alpha} & 0 & 0 \\
\sqrt{c_{1}} & 1+\tilde{\alpha} q & 0 \\
0 & \sqrt{c_{2}} & 1+\tilde{\alpha} q^{2} \\
\vdots & & \ddots \\
\vdots & & \\
\langle W| & \\
h_{0}^{1 / 2}(1,0,0, \cdots) & |V\rangle=h_{0}^{1 / 2}(1,0,0, \cdots
\end{array}\right) \\
\text { Des Johnston } & \text { ASEPs, PASEPs and Paths }
\end{aligned}
$$

(Bicoloured) Motzkin Paths

$$
\begin{gathered}
\tilde{d}_{n}=\frac{2+(\tilde{\alpha}+\tilde{\beta}) q^{n}}{1-q} \\
\tilde{c}_{n}=\frac{\left(1-q^{n}\right)\left(1-\tilde{\alpha} \tilde{\beta} q^{n-1}\right)}{(1-q)^{2}}
\end{gathered}
$$

Generating Function as a Continued Fraction

$$
\begin{gathered}
\mathcal{Z}(z)=\sum_{N} Z_{N} z^{N} \\
\mathcal{Z}(\tilde{\alpha}, \tilde{\beta}, q, z)=\frac{1}{1-\tilde{d}_{0} z-\frac{\tilde{c}_{1} z^{2}}{1-\tilde{d}_{1} z-\frac{\tilde{c}_{2} z^{2}}{1-\tilde{d}_{2} z-\frac{\tilde{c}_{3} z^{2}}{\ldots}}}}
\end{gathered}
$$

Singularities of Continued Fractions

generic, poles
Worpitzsky: A continued fraction of the form

converges if the partial numerators a_{p} satisfy

$$
\left|a_{p}\right|<1 / 4, p=2,3,4, \ldots
$$

Hunting Poles

Generic, poles
Look at $n^{\text {th }}$ convergent of the continued fraction

$$
\begin{aligned}
K_{0} & =\frac{1}{1-\tilde{d}_{0} z}, \\
K_{1} & =\frac{1}{1-\tilde{d}_{0} z-\frac{\tilde{c}_{1} z^{2}}{1-\tilde{d}_{1} z}},
\end{aligned}
$$

Continued fraction is given exactly by the convergent K_{n} if $\tilde{c}_{n+1}=0$.

$$
\tilde{\alpha} \tilde{\beta}=q^{-n} .
$$

THE END :)

