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Computer scientist (Schabanel, Fates, Bournez e.g.) intend to study how to 
tune local rules to obtain a suitable global behaviour.

Motivation : parallel computation, specially collaboration between agents (or 
processors) with a minimal cost devoted to sharing information (global 
interaction has a higher cost).

1-dimensional, 2-dimensional, synchronous, asynchronous automata 
exhibit very different behaviours : game of life, conflagration, etc ... Despite a 
small number of simple rules, rich and chaotic or complex behaviour. 

CELLULAR AUTOMATA IN GENERAL

Ferrari, Belitsky, Blythe, Cafri, Evans, Cardy, ... use it for the modelisation 
of some chemical reactions, of highway traffic, etc ... 

THIS MODEL
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t, 
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+,Xt

-),

is a couple of (multi)sets.

Here     X0=({0},{0}).

Law of Xt ? 

Asymptotic behaviour ?
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Introduced (?) by Cardy & Täuber 
(2008) 

(1,0,0,0)-Variant of their more 
general (a,b,c,d)-model 

a+b+c+d=1, 

in which 4 kinds of behaviour are 
considered after a collision : 

We shall consider 3 cases 

pure branching: (0,0,0,1), 

symmetric: (0,0.5,0.5,0),

annihilation: (1,0,0,0).a b c d
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Theorem (M. Krikun). 

lim
t→∞

ψ(t, z
√

t) e−t
√

t =
e−

1
2 z2

√
2π

The total mass is et. 
Most of it is supported by an O(√t)-wide interval around 0.

Assume the system starts with 1 positive particle at  0, and set :
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BRANCHING BALLISTIC ANNIHILATION   
(1,0,0,0)

Start with the line x+t=a√2, with a 
locally finite population Xa of positive 
particles.

EVOLUTION

- Each particle, with rate 1/√2, shoots 
and kills its nearest neighbour on the 
left ;

- The interval between the two particles is 
filled with an independent copy of a 
PPP(1/√2).
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µ = λ x (Lebesgue measure)

If A∩B=∅, then #(Π∩A) and #(Π∩B) are independent Poisson random 
variables with respective expectations λ|A| and λ|B|.

Other descriptions :

!/n 1/n

E(!) E(!) E(!) E(!)

x
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SYMMETRY GROUP

The process, once defined on the whole plane, can 
be seen as  a random tessellation.

Theorem. 

The symmetry group of the random 
tessellation contains the diedral group of the 
square  and the translations of the plane. 

In particular, the tilted processes (by any 
angle) are Markov, stationary and reversible.
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STATIONARY DISTRIBUTION

Theorem. 

The stationary distribution of the horizontal 
process is that of a couple of independent PPP(1). 

The stationary distribution of the a-tilted process is 
that of a couple of independent PPP() with 
respective parameters :

|cos a+sin a| and |cos a-sin a|.
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ANNIHILATION (1,0,0,0):
STATIONARY DISTRIBUTION

✴Theorem. 

The stationary distribution of the horizontal 
process of positive (resp. negative) particles is a 
PPP(1/2). 

But the two PPP are dependent.

✴Open problem: to describe the full stationary 
distribution, i.e. the joint law of positions of positive 
and negative particles.
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ANNIHILATION (1,0,0,0):
BACK TO THE 1ST QUESTION

✴T h e o r e m . T h e 
s t a t i o n a r y 
distribution of the 
horizontal process of 
p o s i t i v e ( r e s p . 
negative) particles is 
a PPP(1/2). 

✴Theorem. The distribution in the quarter-plane is 
the restriction of the stationary distribution in the 
plane.



STATIONARY MEASURE :
 ANALYTIC APPROACH

Measure-valued Markov process :
Let Xs be the set of positions of positive particles on the line {x+t=s√2}. Assume 

the initial state X0=x to be a good multiset. Then, for φ positive, continuous, and 
with compact support,

G
(
e−〈ϕ,·〉

)
(x) := lim

s↓0
s−1

(
E

[
e−〈ϕ,Xs〉

]
− e−〈ϕ,x〉

)

is well defined. 

If furthermore, a random multiset X (a.s. good) satisfies, for every φ positive, 
continuous, and with compact support,

then the law of X is a stationary measure of the Markov process.

E
[
G

(
e−〈ϕ,·〉

)
(X)

]
= 0,
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Theorem. 
The symmetry group of the random tessellation contains 
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In particular, the tilted processes by any angle are 
Markov, stationary and reversible*.

Ge〈φ,.〉(π) = e〈φ,π〉
∑
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R x
y (eφ(u)−1)du − 1
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.



SYMMETRIC CASE :
SYMMETRY GROUP

Proof. The generator of the tilted process is given by

Theorem. 
The symmetry group of the random tessellation contains 
the diedral group of the square  and the translations. 
In particular, the tilted processes by any angle are 
Markov, stationary and reversible*.

Ge〈φ,.〉(π) = e〈φ,π〉
∑

{y,x}⊂π, y<x

2−#[y,x)∩π
(
e−〈φ1(y,x),π〉+µ

R x
y (eφ(u)−1)du − 1

)
.

One has to check that  for any symmetry T of the real axis (of the 
form T(x)=a-x) :

Ge〈φ◦T,.〉(π) = Ge〈φ,.〉 ◦ T (π).
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PROCESS

Theorem . For each 1-Lipshitz fonction f and for each locally finite set of points 
on

the process in the half plane

∂f := {(x, t) : t = f(x)},

Idea :

- start with a pure branching process -> infinite trees

- cut wisely chosen branches

- the only problem arises when f(x) has slope ±1 on an infinite interval : the past 
of a point of the half plane can contain infinitely many branching points.

is well defined.

f+ := {(x, t) : t > f(x)},



MARKOV PROPERTY

Property. Consider the process built from a 
configuration on a border ∂g. Then, for a border ∂f 
(s.t. g<f), the parts of the process below and under 
∂f are independent, conditionally, given the 
process on ∂f.



MARKOV PROPERTY

Property. Consider the process built from a 
configuration on a border ∂g. Then, for a border ∂f 
(s.t. g<f), the parts of the process below and under 
∂f are independent, conditionally, given the 
process on ∂f.

Conjecture : true for the 2 components inside and 
outside a Jordan curve, conditionally, given the 
process on the curve.


