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S MG

Fervari, Belitsky, Blythe, cafri, Bvans, Cardy, ... use it for the modelisation
of some chewical reactions, of highway traffic, ete ...
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(1,0,0,0)

Start with the line x+t=av2, with a
Locally finite population X, of positive

pa rticles.

EvolLuTioN

- Bach particle, with rate 1/V2, shoots
and Rills tts wnearest netghbouwr on the

Left ;

- The unterval between the two parthLes =
filled with an independent copy of a

PPP(1L/V2).
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(1 Ilts a Polsson point process with tntensity u if the master formula holds :

(£T0) (ip) = e/~
(£11) (ala)

LR DB (e e

7 [ea #(IINA)+b #(HHB)}

o (A) (e 1)

£y |:6CL #(HﬂA):|

O f A=Y, then #(IINA) and #I1INB) are independent Poisson random

variables with respective expectations | (A) and u(®).
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The process, once defined on the whole plane, can
be seen as a randowm tessellation.

Theorem.

The sywmmetry group of the random

tessellation contains the diedral group of the
square and the translations of the plane.

n partieular, the tilted processes (by any
angle) are Markov, stationary and reversible.
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The stationary distribution of the horizontal
process is that of a couple of independent PPP(1).

The stationary distribution of the a-tilted process Ls
that of a couple of Lwd&pewdew’c PPP() with
respective parameters :




SYMMETRIC CASE (0,0.5,0.5,0):
STATIONARY DISTRIBUTION

Theorem.

The stationary distribution of the horizontal
process is that of a couple of independent PPP(1).

The stationary distribution of the a-tilted process Ls
that of a couple of Lwd&pewdew’c PPP() with
respective parameters :

|cos a+sin a| and |cos a-stn al.
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ANNIHILATION (1,0,0,0)
STATIONARY DISTRIBUTION

X Theoremn.

The stationary distribution of the horizontal
process of positive (resp. wegative) particles iLs a

PPP(1/2).




ANNIHILATION (1,0,0,0)
STATIONARY DISTRIBUTION

X Theoremn.

The stationary distribution of the horizontal
process of positive (resp. wegative) particles iLs a

PPP(1/2).

But the two PPP are olepewolewt.
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ANNIHILATION (1,0,0,0)
STATIONARY DISTRIBUTION

X Theoremn.

The stationary distribution of the horizontal
process of positive (resp. wegative) particles iLs a
PPP(1/2).

But the two PPP are olepewolewt.

XOpen problem: to describe the full stationary
distribution, i.e. the joint law of positions of positive
and negative particles.
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statiownary
distribution of the
horizowtal process of

eisttive (resp.
negative) particles is
a PPP(1/2).




ANNIHILAT
Ly BLGHEBRL By

XTheorem . The
statiownary
distribution of the
horizowtal process of
eisttive (resp.
negative) particles is
aPPP(1/2).

XTheoreme. The distribution in the quarter-plane Ls
the restriction of the stationary distribution in the
plane.

= S s = oE o oo e S s e S SR
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Measure-valued Markov process :
Let X be the set of positions of positive particles on the Line {x+t=sV2}. Assume

the initial state X,=x to be a gooo multiset. Thew, for ¢ positive, continuous, and
with compact support,

G () (@) = lim 571 (E[emt0X0)] - e~to))

slO

Ls well defined.

If furthermore, a random multiset X (a.s. good) satisfies, for every ¢ positive,
continuous, and with compact support,

) [G (e—<%'>) (X)} 3

thew the law of X Ls a stationary wmeasure of the Markov process.
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Theorem.
The symmetry group of the random tessellation contains
the diedral group of the square and the translations.
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Theoremt.

The symmetry group of the random tessellation contains
the diedral group of the square and the translations.

nw particular, the tilted processes bg any angle are
MarRov, stationary and reversible®.
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Theoremt.

The symmetry group of the random tessellation contains
the diedral group of the square and the translations.

nw particular, the tilted processes bg any angle are
MarRov, stationary and reversible®.

Proof. The generator of the tilted process is given by

Ge® () = e®m 3 g#lue)ns (6—<¢1<y,m>,w>+u S ~1ydu 1) _
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Theoremt.

The symmetry group of the random tessellation contains
the diedral group of the square and the translations.

nw particular, the tilted processes bg any angle are
MarRov, stationary and reversible®.

Proof. The generator of the tilted process is given by

Ge<¢">(7r) T Z o—#ly,z)N7 (6—<¢1<y,m>m>+u RSO 1) _

owne has to check that for any symmetry T of the real axis (of the
form T(x) =a-x) :

Gel#oT) () = Gel®) o
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Ls well defined.
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Ls well defined.
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- start with a pure branching process -> tnfinite trees
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Theorem . For each 1-Uipshitz fowction f and for each locally finite set of points
on

of = (z,1t) : t = f(=)},
the process tn the half plane

= el Gl s e

Ls well defined.

(dea :

- start with a pure branching process -> tnfinite trees

- cut steLg chosen branches
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Theorem . For each 1-Uipshitz fowction f and for each locally finite set of points
on

i s= e o) nh = sy
the process tn the half plane
foo= {1 t> f(@)}

Ls well defined.

ldea :
- start with a pure branching process -> tnfinite trees

- cut steLg chosen branches

- the only problem arises when f(x) has slope £1 on an infinite interval : the past
of a poiw’c of the half plane can contatn LwﬁwﬂteLg many branching Poiw’cs.




MARKOV PROPERTY

Property. Cownsider the process built from a
configuration own a border dg. Thew, for a border of
(s.t. g<{), the parts of the process below and wnder

of are independent, conditionally, givew the
process on Of.




MARKOV PROPERTY

Property. Cownsider the process built from a
configuration own a border dg. Thew, for a border of
(s.t. g<{), the parts of the process below and wnder
of are independent, cowdi’ciowaLLg, given the

ProCess on of.

Cownjecture : true for the 2 components inside ano
outside a Jordan curve, cowolitiowaLLg, given the

process own the curve.




