Exactly solvable models of tilings and Littlewood–Richardson coefficients

P. Zinn-Justin

LPTHE, Université Paris 6

October 7, 2009

arXiv:0809.2392

- Introduction
- 2 Lozenge tilings and Schur functions
 - Plane partitions, lozenge tilings
 - NILPs and Fermionic Fock space
 - Schur functions and skew-Schur functions
- Square-triangle-rhombus tilings and LR coefficients
 - Interacting fermions
 - Puzzles and square-triangle tilings
 - A new "integrable" proof
- 4 Inhomogeneities and equivariance
 - Cohomology of Grassmannians and Schur functions
 - MS-alt puzzles, Equivariant puzzles
 - Another "integrable" proof
- Conclusion and prospects

- Introduction
- 2 Lozenge tilings and Schur functions
 - Plane partitions, lozenge tilings
 - NILPs and Fermionic Fock space
 - Schur functions and skew-Schur functions
- Square-triangle-rhombus tilings and LR coefficients
 - Interacting fermions
 - Puzzles and square-triangle tilings
 - A new "integrable" proof
- 4 Inhomogeneities and equivariance
 - Cohomology of Grassmannians and Schur functions
 - MS-alt puzzles, Equivariant puzzles
 - Another "integrable" proof
- Conclusion and prospects

- Introduction
- 2 Lozenge tilings and Schur functions
 - Plane partitions, lozenge tilings
 - NILPs and Fermionic Fock space
 - Schur functions and skew-Schur functions
- 3 Square-triangle-rhombus tilings and LR coefficients
 - Interacting fermions
 - Puzzles and square-triangle tilings
 - A new "integrable" proof
- 4 Inhomogeneities and equivariance
 - Cohomology of Grassmannians and Schur functions
 - MS-alt puzzles, Equivariant puzzles
 - Another "integrable" proof
- 5 Conclusion and prospects

- Introduction
- 2 Lozenge tilings and Schur functions
 - Plane partitions, lozenge tilings
 - NILPs and Fermionic Fock space
 - Schur functions and skew-Schur functions
- 3 Square-triangle-rhombus tilings and LR coefficients
 - Interacting fermions
 - Puzzles and square-triangle tilings
 - A new "integrable" proof
- 4 Inhomogeneities and equivariance
 - Cohomology of Grassmannians and Schur functions
 - MS-alt puzzles, Equivariant puzzles
 - Another "integrable" proof
- Conclusion and prospects

- Introduction
- 2 Lozenge tilings and Schur functions
 - Plane partitions, lozenge tilings
 - NILPs and Fermionic Fock space
 - Schur functions and skew-Schur functions
- 3 Square-triangle-rhombus tilings and LR coefficients
 - Interacting fermions
 - Puzzles and square-triangle tilings
 - A new "integrable" proof
- Inhomogeneities and equivariance
 - Cohomology of Grassmannians and Schur functions
 - MS-alt puzzles, Equivariant puzzles
 - Another "integrable" proof
- Conclusion and prospects

- Random tilings are simple models whose main purpose is to describe quasi-crystals.
- They typically correspond to a high-temperate limit where entropy considerations dominate.
- All (known) random tiling models can be thought of as fluctuating surfaces (i.e. bosonic fields) in a higher-dimensional space.
- Typical configurations may have "forbidden" symmetries. For example, the square/triangle model has 12-fold symmetry!

- Random tilings are simple models whose main purpose is to describe quasi-crystals.
- They typically correspond to a high-temperate limit where entropy considerations dominate.
- All (known) random tiling models can be thought of as fluctuating surfaces (i.e. bosonic fields) in a higher-dimensional space.
- Typical configurations may have "forbidden" symmetries. For example, the square/triangle model has 12-fold symmetry!

- Random tilings are simple models whose main purpose is to describe quasi-crystals.
- They typically correspond to a high-temperate limit where entropy considerations dominate.
- All (known) random tiling models can be thought of as fluctuating surfaces (i.e. bosonic fields) in a higher-dimensional space.
- Typical configurations may have "forbidden" symmetries. For example, the square/triangle model has 12-fold symmetry!

- Random tilings are simple models whose main purpose is to describe quasi-crystals.
- They typically correspond to a high-temperate limit where entropy considerations dominate.
- All (known) random tiling models can be thought of as fluctuating surfaces (i.e. bosonic fields) in a higher-dimensional space.
- Typical configurations may have "forbidden" symmetries. For example, the square/triangle model has 12-fold symmetry!

- Schur functions are the most important family (basis) of symmetric functions in algebraic combinatorics.
- They are also characters of GL(N).
- They form bases of the cohomology ring of Grassmannians. (related to Schubert varieties)
- Littlewood—Richardson coefficients are structure constants of the algebra of Schur functions.
- Geometrically, they correspond to intersection theory on Grassmannians.

- Schur functions are the most important family (basis) of symmetric functions in algebraic combinatorics.
- They are also characters of GL(N).
- They form bases of the cohomology ring of Grassmannians. (related to Schubert varieties)
- Littlewood—Richardson coefficients are structure constants of the algebra of Schur functions.
- Geometrically, they correspond to intersection theory on Grassmannians.

- Schur functions are the most important family (basis) of symmetric functions in algebraic combinatorics.
- They are also characters of GL(N).
- They form bases of the cohomology ring of Grassmannians. (related to Schubert varieties)
- Littlewood—Richardson coefficients are structure constants of the algebra of Schur functions.
- Geometrically, they correspond to intersection theory on Grassmannians.

- Schur functions are the most important family (basis) of symmetric functions in algebraic combinatorics.
- They are also characters of GL(N).
- They form bases of the cohomology ring of Grassmannians. (related to Schubert varieties)
- Littlewood–Richardson coefficients are structure constants of the algebra of Schur functions.
- Geometrically, they correspond to intersection theory on Grassmannians.

- Schur functions are the most important family (basis) of symmetric functions in algebraic combinatorics.
- They are also characters of GL(N).
- They form bases of the cohomology ring of Grassmannians. (related to Schubert varieties)
- Littlewood–Richardson coefficients are structure constants of the algebra of Schur functions.
- Geometrically, they correspond to intersection theory on Grassmannians.

Plane partitions, lozenge tilings NILPs and Fermionic Fock space Schur functions and skew-Schur functions

Plane partitions

Plane partitions, lozenge tilings NILPs and Fermionic Fock space Schur functions and skew-Schur functions

Plane partitions

Plane partitions, lozenge tilings

NILPs and Fermionic Fock space Schur functions and skew-Schur functions

Lozenge tilings

Plane partitions, lozenge tilings NILPs and Fermionic Fock space Schur functions and skew-Schur functions

Non-Intersecting Lattice Paths

Plane partitions, lozenge tilings NILPs and Fermionic Fock space Schur functions and skew-Schur functions

Non-Intersecting Lattice Paths

Fermionic states and Young diagrams

Define a partition to be a weakly decreasing finite sequence of non-negative integers: $\lambda_1 \geq \lambda_2 \geq \cdots \geq \lambda_n \geq 0$. We usually represent partitions as *Young diagrams*: for example $\lambda = (5, 2, 1, 1)$ is depicted as

$$\lambda =$$

To each partition $\lambda = (\lambda_1, \dots, \lambda_n)$ one associates a fermionic state $|\lambda\rangle$ so that the black (resp. red) sites correspond to vertical (resp. horizontal) edges:

 $\mathcal{F} = \bigoplus_{\lambda} \mathbb{C} |\lambda\rangle$ is the fermionic Fock space (with charge 0).

Definition of Schur polynomials

To a pair of Young diagrams λ , μ one associates the skew Schur polynomial $s_{\lambda/\mu}(x_1,\ldots,x_n)$:

The (usual) Schur polynomial is $s_{\lambda} = s_{\lambda/\varnothing}$.

Remark: the number of plane partitions in $a \times b \times c$ is $s_{[a \times c]}(x_1 = \cdots = x_{a+b} = 1)$.

Definition of Schur polynomials

To a pair of Young diagrams λ , μ one associates the skew Schur polynomial $s_{\lambda/\mu}(x_1,\ldots,x_n)$:

The (usual) Schur polynomial is $s_{\lambda} = s_{\lambda/\varnothing}$.

Remark: the number of plane partitions in $a \times b \times c$ is $s_{[a \times c]}(x_1 = \cdots = x_{a+b} = 1)$.

Example

$$s_{\square}(x_1, x_2) = x_1^2 + x_1x_2 + x_2^2 + x_2^2 + x_3^2 + x_4^2 + x_4^2 + x_4^2 + x_5^2 + x$$

Transfer matrix formulation

Consider the operator T(x) on \mathcal{F} with matrix elements

$$\langle \mu | T(x) | \lambda \rangle = s_{\lambda/\mu}(x)$$

It corresponds to the addition of one row of the tiling. In particular

$$s_{\lambda/\mu}(x_1,\ldots,x_n) = \langle \mu | T(x_1) \ldots T(x_n) | \lambda \rangle$$

Properties

"Integrability" property:

$$[T(x), T(x')] = 0 \quad \Rightarrow \quad s_{\lambda/\mu} \text{ symmetric polynomial}$$

Stability property:

$$T(0) = I \quad \Rightarrow \quad s_{\lambda/\mu}(x_1, \dots, x_n, x_{n+1} = 0) = s_{\lambda/\mu}(x_1, \dots, x_n)$$

Thus, the $s_{\lambda/\mu}$ are symmetric functions (symmetric polynomials in an infinite number of variables).

In fact, the s_{λ} are known to be a basis of the space of symmetric functions (which is thus isomorphic to \mathcal{F}).

Properties

"Integrability" property:

$$[T(x), T(x')] = 0 \quad \Rightarrow \quad s_{\lambda/\mu} \text{ symmetric polynomial}$$

Stability property:

$$T(0) = I \quad \Rightarrow \quad s_{\lambda/\mu}(x_1,\ldots,x_n,x_{n+1}=0) = s_{\lambda/\mu}(x_1,\ldots,x_n)$$

Thus, the $s_{\lambda/\mu}$ are symmetric functions (symmetric polynomials in an infinite number of variables).

In fact, the s_{λ} are known to be a basis of the space of symmetric functions (which is thus isomorphic to \mathcal{F}).

Properties

"Integrability" property:

$$[T(x), T(x')] = 0 \Rightarrow s_{\lambda/\mu}$$
 symmetric polynomial

Stability property:

$$T(0) = I \quad \Rightarrow \quad s_{\lambda/\mu}(x_1,\ldots,x_n,x_{n+1}=0) = s_{\lambda/\mu}(x_1,\ldots,x_n)$$

Thus, the $s_{\lambda/\mu}$ are symmetric functions (symmetric polynomials in an infinite number of variables).

In fact, the s_{λ} are known to be a basis of the space of symmetric functions (which is thus isomorphic to \mathcal{F}).

Some identities

• An identity that can be derived using the formalism above:

$$\sum_{\mu} s_{\lambda/\mu}(x_1,\ldots,x_n) s_{\mu/\rho}(y_1,\ldots,y_m) = s_{\lambda/\rho}(x_1,\ldots,x_n,y_1,\ldots,y_m)$$

• Identities which remain mysterious:

$$s_{\lambda/\mu}(x_1,\ldots,x_n) = \sum_{\nu} c_{\mu,\nu}^{\lambda} s_{\nu}(x_1,\ldots,x_n)$$

$$s_{\lambda}(x_1,\ldots,x_n) s_{\mu}(x_1,\ldots,x_n) = \sum_{\nu} c_{\lambda,\mu}^{\nu} s_{\nu}(x_1,\ldots,x_n)$$

$$s_{\lambda}(x_1,\ldots,x_n,y_1,\ldots,y_n) = \sum_{\mu,\nu} c_{\mu,\nu}^{\lambda} s_{\mu}(x_1,\ldots,x_n) s_{\nu}(y_1,\ldots,y_n)$$

Some identities

• An identity that can be derived using the formalism above:

$$\sum_{\mu} s_{\lambda/\mu}(x_1,\ldots,x_n) s_{\mu/\rho}(y_1,\ldots,y_m) = s_{\lambda/\rho}(x_1,\ldots,x_n,y_1,\ldots,y_m)$$

• Identities which remain mysterious:

$$egin{aligned} s_{\lambda/\mu}(x_1,\ldots,x_n) &= \sum_{
u} c_{\mu,
u}^{\lambda} s_{
u}(x_1,\ldots,x_n) \ s_{\lambda}(x_1,\ldots,x_n) &= \sum_{
u} c_{\lambda,\mu}^{\nu} s_{
u}(x_1,\ldots,x_n) \ s_{\lambda}(x_1,\ldots,x_n,y_1,\ldots,y_n) &= \sum_{\mu} c_{\mu,
u}^{\lambda} s_{\mu}(x_1,\ldots,x_n) s_{
u}(y_1,\ldots,y_n) \end{aligned}$$

Puzzles and square-triangle tilings A new "integrable" proof

Two species of fermions

Pilings of (hyper)cubes in *four* dimensions!

Puzzles and square-triangle tilings A new "integrable" proof

Two species of fermions

Pilings of (hyper)cubes in *four* dimensions!

Puzzles and square-triangle tilings A new "integrable" proof

Two species of fermions

Pilings of (hyper)cubes in four dimensions!

Puzzles and square-triangle tilings A new "integrable" proof

The interaction

Yang-Baxter equation

Theorem

If x + y + z = 0, then

$$\left\langle z\right\rangle \frac{y}{x} = \left\langle x\right\rangle \left\langle z\right\rangle$$

for any fixed boundaries and where tile x (resp. y, z) is only allowed where marked.

Interacting fermions

Puzzles and square-triangle tilings A new "integrable" proof

Yang-Baxter equation

Theorem

If x + y + z = 0, then

$$\left\langle z\right\rangle \frac{y}{x} = \left\langle x\right\rangle \left\langle z\right\rangle$$

for any fixed boundaries and where tile x (resp. y, z) is only allowed where marked.

Example:

Interacting fermions

Puzzles and square-triangle tilings A new "integrable" proof

Yang-Baxter equation

Theorem

If x + y + z = 0, then

$$\left\langle z\right\rangle \frac{y}{x} = \left\langle x\right\rangle \left\langle z\right\rangle$$

for any fixed boundaries and where tile x (resp. y, z) is only allowed where marked.

Example:

Puzzles

Remove all tiles x, y, z:

- 1993: M. Widom introduces the square-triangle model, deforms it into a regular triangular lattice (~ puzzles) and proves integrability.
- 1994: P. Kalugin (partially) solves the Coordinate Bethe Ansatz equations (size→ ∞)
- 1997–2006: B. Nienhuis et al reinvestigate it: underlying algebra, commuting transfer matrices, force networks (~ honeycombs).

- 1992: Berenstein, Zelevinsky introduce a new Littlewood–Richardson rule (honeycombs).
- 2003-2004: A. Knutson,
 T. Tao and C. Woodward reexpress it in terms of puzzles.
- 2008: K. Purbhoo reformulates puzzles as mosaics (~ square-triangle tilings).

- 1993: M. Widom introduces the square-triangle model, deforms it into a regular triangular lattice (~ puzzles) and proves integrability.
- 1994: P. Kalugin (partially) solves the Coordinate Bethe Ansatz equations (size $\rightarrow \infty$).
- 1997–2006: B. Nienhuis et al reinvestigate it: underlying algebra, commuting transfer matrices, force networks (~ honeycombs).

- 1992: Berenstein, Zelevinsky introduce a new Littlewood–Richardson rule (honeycombs).
- 2003-2004: A. Knutson,
 T. Tao and C. Woodward reexpress it in terms of puzzles.
- 2008: K. Purbhoo reformulates puzzles as mosaics (~ square-triangle tilings).

- 1993: M. Widom introduces the square-triangle model, deforms it into a regular triangular lattice (~ puzzles) and proves integrability.
- 1994: P. Kalugin (partially) solves the Coordinate Bethe Ansatz equations (size $\rightarrow \infty$).
- 1997–2006: B. Nienhuis et al reinvestigate it: underlying algebra, commuting transfer matrices, force networks (~ honeycombs).

- 1992: Berenstein, Zelevinsky introduce a new Littlewood–Richardson rule (honeycombs).
- 2003-2004: A. Knutson, T. Tao and C. Woodward reexpress it in terms of puzzles.
- 2008: K. Purbhoo reformulates puzzles as mosaics (~ square-triangle tilings).

- 1993: M. Widom introduces the square-triangle model, deforms it into a regular triangular lattice (~ puzzles) and proves integrability.
- 1994: P. Kalugin (partially) solves the Coordinate Bethe Ansatz equations (size $\rightarrow \infty$).
- 1997–2006: B. Nienhuis et al reinvestigate it: underlying algebra, commuting transfer matrices, force networks (~ honeycombs).

- 1992: Berenstein, Zelevinsky introduce a new Littlewood–Richardson rule (honeycombs).
- 2003-2004: A. Knutson,
 T. Tao and C. Woodward reexpress it in terms of puzzles.
- 2008: K. Purbhoo reformulates puzzles as mosaics (~ square-triangle tilings).

- 1993: M. Widom introduces the square-triangle model, deforms it into a regular triangular lattice (~ puzzles) and proves integrability.
- 1994: P. Kalugin (partially) solves the Coordinate Bethe Ansatz equations (size $\rightarrow \infty$).
- 1997–2006: B. Nienhuis et al reinvestigate it: underlying algebra, commuting transfer matrices, force networks (~ honeycombs).

- 1992: Berenstein, Zelevinsky introduce a new Littlewood–Richardson rule (honeycombs).
- 2003-2004: A. Knutson, T. Tao and C. Woodward reexpress it in terms of puzzles.
- 2008: K. Purbhoo reformulates puzzles as mosaics (~ square-triangle tilings).

- 1993: M. Widom introduces the square-triangle model, deforms it into a regular triangular lattice (~ puzzles) and proves integrability.
- 1994: P. Kalugin (partially) solves the Coordinate Bethe Ansatz equations (size $\rightarrow \infty$).
- 1997–2006: B. Nienhuis et al reinvestigate it: underlying algebra, commuting transfer matrices, force networks (~ honeycombs).

- 1992: Berenstein, Zelevinsky introduce a new Littlewood–Richardson rule (honeycombs).
- 2003-2004: A. Knutson, T. Tao and C. Woodward reexpress it in terms of puzzles.
- 2008: K. Purbhoo reformulates puzzles as mosaics (~ square-triangle tilings).

The cohomology ring of $Gr(n, k) = \{V \subset \mathbb{C}^n, \text{ dim } V = k\}$ is the quotient of the ring of symmetric functions by the span of the s_{λ} , $\lambda \not\subset [k \times (n-k)]$.

Given a fixed flag, one can build *Schubert varieties* indexed by $\lambda \subset [k \times (n-k)]$ such that the s_λ are their cohomology classes. There is a torus $T = (\mathbb{C}^\times)^n$ acting on Gr(n,k) and a corresponding equivariant cohomology ring. It is a module over $\mathbb{Z}[y_1,\ldots,y_n]$, with basis the \tilde{s}_λ , $\lambda \subset [k \times (n-k)]$. If flag and torus are compatible (so that the Schubert varieties are T-invariant), the \tilde{s}_λ are the equivariant cohomology classes of the Schubert varieties.

The cohomology ring of $Gr(n, k) = \{V \subset \mathbb{C}^n, \text{ dim } V = k\}$ is the quotient of the ring of symmetric functions by the span of the s_{λ} , $\lambda \not\subset [k \times (n-k)]$.

Given a fixed flag, one can build *Schubert varieties* indexed by $\lambda \subset [k \times (n-k)]$ such that the s_{λ} are their cohomology classes.

There is a torus $T=(\mathbb{C}^\times)^n$ acting on Gr(n,k) and a corresponding equivariant cohomology ring. It is a module over $\mathbb{Z}[y_1,\ldots,y_n]$, with basis the \tilde{s}_λ , $\lambda\subset[k\times(n-k)]$.

If flag and torus are compatible (so that the Schubert varieties are T-invariant), the \tilde{s}_{λ} are the equivariant cohomology classes of the Schubert varieties.

The cohomology ring of $Gr(n, k) = \{V \subset \mathbb{C}^n, \text{ dim } V = k\}$ is the quotient of the ring of symmetric functions by the span of the s_{λ} , $\lambda \not\subset [k \times (n-k)]$.

Given a fixed flag, one can build *Schubert varieties* indexed by $\lambda \subset [k \times (n-k)]$ such that the s_λ are their cohomology classes. There is a torus $T = (\mathbb{C}^\times)^n$ acting on Gr(n,k) and a corresponding equivariant cohomology ring. It is a module over $\mathbb{Z}[y_1,\ldots,y_n]$, with basis the \tilde{s}_λ , $\lambda \subset [k \times (n-k)]$.

If flag and torus are compatible (so that the Schubert varieties are T-invariant), the \tilde{s}_{λ} are the equivariant cohomology classes of the Schubert varieties.

The cohomology ring of $Gr(n, k) = \{V \subset \mathbb{C}^n, \text{ dim } V = k\}$ is the quotient of the ring of symmetric functions by the span of the s_{λ} , $\lambda \not\subset [k \times (n-k)]$.

Given a fixed flag, one can build *Schubert varieties* indexed by $\lambda \subset [k \times (n-k)]$ such that the s_λ are their cohomology classes. There is a torus $T = (\mathbb{C}^\times)^n$ acting on Gr(n,k) and a corresponding equivariant cohomology ring. It is a module over $\mathbb{Z}[y_1,\ldots,y_n]$, with basis the \tilde{s}_λ , $\lambda \subset [k \times (n-k)]$.

If flag and torus are compatible (so that the Schubert varieties are T-invariant), the \tilde{s}_{λ} are the equivariant cohomology classes of the Schubert varieties.

Another "integrable" proof

Double Schur functions

The \tilde{s}_{λ} can be represented as polynomials $s_{\lambda}(x_1,\ldots,x_n|y_1,\ldots,y_n)$. (such that $s_{\lambda}(x_1,\ldots,x_n|0,\ldots,0) = s_{\lambda}(x_1,\ldots,x_n)$).

Product formulae

• Knutson-Tao problem:

$$s_{\lambda}(x_{1},...,x_{k}|z_{1},...,z_{n})s_{\mu}(x_{1},...,x_{k}|z_{1},...,z_{n})$$

$$=\sum_{\nu}c_{\mu,\lambda}^{\nu}(z_{1},...,z_{n})s_{\nu}(x_{1},...,x_{k}|z_{1},...,z_{n})$$

Molev–Sagan problem:

$$s_{\lambda}(x_{1},...,x_{k}|z_{1},...,z_{n})s_{\mu}(x_{1},...,x_{k}|y_{1},...,y_{n})$$

$$=\sum_{\nu}e_{\lambda,\mu}^{\nu}(y_{1},...,y_{n};z_{1},...,z_{n})s_{\nu}(x_{1},...,x_{k}|y_{1},...,y_{n})$$

Unifying solution of these two problems!

Product formulae

• Knutson–Tao problem:

$$s_{\lambda}(x_1,\ldots,x_k|z_1,\ldots,z_n)s_{\mu}(x_1,\ldots,x_k|z_1,\ldots,z_n)$$

$$=\sum_{\nu}c^{\nu}_{\mu,\lambda}(z_1,\ldots,z_n)s_{\nu}(x_1,\ldots,x_k|z_1,\ldots,z_n)$$

Molev–Sagan problem:

$$s_{\lambda}(x_1,\ldots,x_k|z_1,\ldots,z_n)s_{\mu}(x_1,\ldots,x_k|y_1,\ldots,y_n)$$

$$=\sum_{\nu}e^{\nu}_{\lambda,\mu}(y_1,\ldots,y_n;z_1,\ldots,z_n)s_{\nu}(x_1,\ldots,x_k|y_1,\ldots,y_n)$$

Unifying solution of these two problems!

Product formulae

• Knutson–Tao problem:

$$s_{\lambda}(x_1,\ldots,x_k|z_1,\ldots,z_n)s_{\mu}(x_1,\ldots,x_k|z_1,\ldots,z_n)$$

$$=\sum_{\nu}c^{\nu}_{\mu,\lambda}(z_1,\ldots,z_n)s_{\nu}(x_1,\ldots,x_k|z_1,\ldots,z_n)$$

Molev–Sagan problem:

$$s_{\lambda}(x_1,\ldots,x_k|z_1,\ldots,z_n)s_{\mu}(x_1,\ldots,x_k|y_1,\ldots,y_n)$$

$$=\sum_{\nu}e^{\nu}_{\lambda,\mu}(y_1,\ldots,y_n;z_1,\ldots,z_n)s_{\nu}(x_1,\ldots,x_k|y_1,\ldots,y_n)$$

Unifying solution of these two problems!

Introduction
Lozenge tilings and Schur functions
Square-triangle-rhombus tilings and LR coefficiens
Inhomogeneities and equivariance
Conclusion and prospects

Cohomology of Grassmannians and Schur functions MS-alt puzzles, Equivariant puzzles
Another "integrable" proof

- "Integrable" proofs of combinatorial identities?
- Coproduct formula for double Schur functions?
- Use of Bethe Ansatz?
- Generalization to other families of symmetric polynomials? (Jack, Hall-Littlewood, Macdonald)
- Generalization to other families of polynomials of geometric origin? (Schubert, Grothendieck)
- Application to FPLs / Razumov–Stroganov conjecture? (cf Nadeau's talk)

- "Integrable" proofs of combinatorial identities?
- Coproduct formula for double Schur functions?
- Use of Bethe Ansatz?
- Generalization to other families of symmetric polynomials? (Jack, Hall-Littlewood, Macdonald)
- Generalization to other families of polynomials of geometric origin? (Schubert, Grothendieck)
- Application to FPLs / Razumov–Stroganov conjecture? (cf Nadeau's talk)

- "Integrable" proofs of combinatorial identities?
- Coproduct formula for double Schur functions?
- Use of Bethe Ansatz?
- Generalization to other families of symmetric polynomials? (Jack, Hall-Littlewood, Macdonald)
- Generalization to other families of polynomials of geometric origin? (Schubert, Grothendieck)
- Application to FPLs / Razumov–Stroganov conjecture? (cf Nadeau's talk)

- "Integrable" proofs of combinatorial identities?
- Coproduct formula for double Schur functions?
- Use of Bethe Ansatz?
- Generalization to other families of symmetric polynomials? (Jack, Hall-Littlewood, Macdonald)
- Generalization to other families of polynomials of geometric origin? (Schubert, Grothendieck)
- Application to FPLs / Razumov–Stroganov conjecture? (cf Nadeau's talk)

- "Integrable" proofs of combinatorial identities?
- Coproduct formula for double Schur functions?
- Use of Bethe Ansatz?
- Generalization to other families of symmetric polynomials? (Jack, Hall-Littlewood, Macdonald)
- Generalization to other families of polynomials of geometric origin? (Schubert, Grothendieck)
- Application to FPLs / Razumov–Stroganov conjecture? (cf Nadeau's talk)

- "Integrable" proofs of combinatorial identities?
- Coproduct formula for double Schur functions?
- Use of Bethe Ansatz?
- Generalization to other families of symmetric polynomials? (Jack, Hall-Littlewood, Macdonald)
- Generalization to other families of polynomials of geometric origin? (Schubert, Grothendieck)
- Application to FPLs / Razumov–Stroganov conjecture? (cf Nadeau's talk)