Exactly solvable models of tilings and Littlewood-Richardson coefficients

P. Zinn-Justin
LPTHE, Université Paris 6

October 7, 2009

$$
\text { arXiv:0809. } 2392
$$

Outline of the talk

(1) Introduction

(2) Lozenge tilings and Schur functions

- Plane partitions, lozenge tilings
- NILPs and Fermionic Fock space
- Schur functions and skew-Schur functions
(3) Square-triangle-rhombus tilings and LR coefficients
- Interacting fermions
- Puzzles and square-triangle tilings
- A new "integrable" proof

4) Inhomogeneities and equivariance

- Cohomology of Grassmannians and Schur functions
- MS-alt puzzles, Equivariant puzzles
- Another "integrable" proof

Outline of the talk

(1) Introduction
(2) Lozenge tilings and Schur functions

- Plane partitions, lozenge tilings
- NILPs and Fermionic Fock space
- Schur functions and skew-Schur functions

Square-triangle-rhombus tilings and LR coefficients

- Interacting fermions
- Puzzles and square-triangle tilings
- A new "integrable" proofInhomogeneities and equivariance
- Cohomology of Grassmannians and Schur functions
- MS-alt puzzles, Equivariant puzzles
- Another "integrable" proof

Outline of the talk

(1) Introduction
(2) Lozenge tilings and Schur functions

- Plane partitions, lozenge tilings
- NILPs and Fermionic Fock space
- Schur functions and skew-Schur functions
(3) Square-triangle-rhombus tilings and LR coefficients
- Interacting fermions
- Puzzles and square-triangle tilings
- A new "integrable" proof

Inhomogeneities and equivariance

- Cohomology of Grassmannians and Schur functions
- MS-alt puzzles, Equivariant puzzles
- Another "integrable" proof

Outline of the talk

(1) Introduction
(2) Lozenge tilings and Schur functions

- Plane partitions, lozenge tilings
- NILPs and Fermionic Fock space
- Schur functions and skew-Schur functions
(3) Square-triangle-rhombus tilings and LR coefficients
- Interacting fermions
- Puzzles and square-triangle tilings
- A new "integrable" proof
(4) Inhomogeneities and equivariance
- Cohomology of Grassmannians and Schur functions
- MS-alt puzzles, Equivariant puzzles
- Another "integrable" proof

Outline of the talk

(1) Introduction
(2) Lozenge tilings and Schur functions

- Plane partitions, lozenge tilings
- NILPs and Fermionic Fock space
- Schur functions and skew-Schur functions
(3) Square-triangle-rhombus tilings and LR coefficients
- Interacting fermions
- Puzzles and square-triangle tilings
- A new "integrable" proof
(4) Inhomogeneities and equivariance
- Cohomology of Grassmannians and Schur functions
- MS-alt puzzles, Equivariant puzzles
- Another "integrable" proof
(5) Conclusion and prospects

Random tilings

- Random tilings are simple models whose main purpose is to describe quasi-crystals.
- They typically correspond to a high-temperate limit where entropy considerations dominate.
- All (known) random tiling models can be thought of as fluctuating surfaces (i.e. bosonic fields) in a higher-dimensional space.
- Tynical configurations may have "forbidden" symmetries. For example, the square/triangle model has 12 -fold symmetry!

Random tilings

- Random tilings are simple models whose main purpose is to describe quasi-crystals.
- They typically correspond to a high-temperate limit where entropy considerations dominate.
- All (known) random tiling models can be thought of as fluctuating surfaces (i.e. bosonic fields) in a higher-dimensional space.
- Typical configurations may have "forbidden" symmetries. For example, the square/triangle model has 12 -fold symmetry!

Random tilings

- Random tilings are simple models whose main purpose is to describe quasi-crystals.
- They typically correspond to a high-temperate limit where entropy considerations dominate.
- All (known) random tiling models can be thought of as fluctuating surfaces (i.e. bosonic fields) in a higher-dimensional space.
- Typical configurations may have "forbidden" symmetries. For example, the square/triangle model has 12 -fold symmetry!

Random tilings

- Random tilings are simple models whose main purpose is to describe quasi-crystals.
- They typically correspond to a high-temperate limit where entropy considerations dominate.
- All (known) random tiling models can be thought of as fluctuating surfaces (i.e. bosonic fields) in a higher-dimensional space.
- Typical configurations may have "forbidden" symmetries. For example, the square/triangle model has 12 -fold symmetry!

Schur functions and Littlewood-Richardson coefficient

- Schur functions are the most important family (basis) of symmetric functions in algebraic combinatorics.
- They are also characters of $G L(N)$
- They form bases of the cohomology ring of Grassmannians. (related to Schubert varieties)
- Littlewood-Richardson coefficients are structure constants of the algebra of Schur functions.
- Geometrically, they correspond to intersection theory on Grassmannians.

Schur functions and Littlewood-Richardson coefficien

- Schur functions are the most important family (basis) of symmetric functions in algebraic combinatorics.
- They are also characters of $G L(N)$.
- They form bases of the cohomology ring of Grassmannians. (related to Schubert varieties)
- Littlewood-Richardson coefficients are structure constants of the algebra of Schur functions.
- Geometrically, they correspond to intersection theory on Grassmannians.

Schur functions and Littlewood-Richardson coefficier

- Schur functions are the most important family (basis) of symmetric functions in algebraic combinatorics.
- They are also characters of $G L(N)$.
- They form bases of the cohomology ring of Grassmannians. (related to Schubert varieties)
- Littlewood-Richardson coefficients are structure constants of the algebra of Schur functions
- Geometrically, they correspond to intersection theory on Grassmannians.

Schur functions and Littlewood-Richardson coefficier

- Schur functions are the most important family (basis) of symmetric functions in algebraic combinatorics.
- They are also characters of $G L(N)$.
- They form bases of the cohomology ring of Grassmannians. (related to Schubert varieties)
- Littlewood-Richardson coefficients are structure constants of the algebra of Schur functions.
- Geometrically, they correspond to intersection theory on Grassmannians.

Schur functions and Littlewood-Richardson coefficier

- Schur functions are the most important family (basis) of symmetric functions in algebraic combinatorics.
- They are also characters of $G L(N)$.
- They form bases of the cohomology ring of Grassmannians. (related to Schubert varieties)
- Littlewood-Richardson coefficients are structure constants of the algebra of Schur functions.
- Geometrically, they correspond to intersection theory on Grassmannians.

Plane partitions

Plane partitions, lozenge tilings

 NILPs and Fermionic Fock space Schur functions and skew-Schur functions
Plane partitions

Introduction
Lozenge tilings and Schur functions Square-triangle-rhombus tilings and LR coefficients Inhomogeneities and equivariance Conclusion and prospects

Plane partitions, lozenge tilings NILPs and Fermionic Fock space
Schur functions and skew-Schur functions

Lozenge tilings

Introduction
Lozenge tilings and Schur functions Square-triangle-rhombus tilings and LR coefficients Inhomogeneities and equivariance Conclusion and prospects

Non-Intersecting Lattice Paths

Non-Intersecting Lattice Paths

Fermionic states and Young diagrams

Define a partition to be a weakly decreasing finite sequence of non-negative integers: $\lambda_{1} \geq \lambda_{2} \geq \cdots \geq \lambda_{n} \geq 0$. We usually represent partitions as Young diagrams: for example $\lambda=(5,2,1,1)$ is depicted as

To each partition $\lambda=\left(\lambda_{1}, \ldots, \lambda_{n}\right)$ one associates a fermionic state $|\lambda\rangle$ so that the black (resp. red) sites correspond to vertical (resp. horizontal) edges:
$\mathcal{F}=\bigoplus_{\lambda} \mathbb{C}|\lambda\rangle$ is the fermionic Fock space (with charge 0).

Definition of Schur polynomials

To a pair of Young diagrams λ, μ one associates the skew Schur polynomial $s_{\lambda / \mu}\left(x_{1}, \ldots, x_{n}\right)$:
$\mu=\square$
$\lambda=\square$

The (usual) Schur polynomial is $s_{\lambda}=s_{\lambda / \varnothing}$.
Remark: the number of plane partitions in $a \times b \times c$ is
$s_{[a \times c]}\left(x_{1}=\cdots=x_{a+b}=1\right)$.

Definition of Schur polynomials

To a pair of Young diagrams λ, μ one associates the skew Schur polynomial $s_{\lambda / \mu}\left(x_{1}, \ldots, x_{n}\right)$:
$\mu=\square$
$\lambda=\square$

The (usual) Schur polynomial is $s_{\lambda}=s_{\lambda / \varnothing}$.
Remark: the number of plane partitions in $a \times b \times c$ is
$s_{[a \times c]}\left(x_{1}=\cdots=x_{a+b}=1\right)$.

Plane partitions, lozenge tilings NILPs and Fermionic Fock space Schur functions and skew-Schur functions

Example

$$
x_{1}^{2}
$$

Transfer matrix formulation

Consider the operator $T(x)$ on \mathcal{F} with matrix elements

$$
\langle\mu| T(x)|\lambda\rangle=s_{\lambda / \mu}(x)
$$

It corresponds to the addition of one row of the tiling. In particular

$$
s_{\lambda / \mu}\left(x_{1}, \ldots, x_{n}\right)=\langle\mu| T\left(x_{1}\right) \ldots T\left(x_{n}\right)|\lambda\rangle
$$

Properties

- "Integrability" property:

$$
\left[T(x), T\left(x^{\prime}\right)\right]=0 \quad \Rightarrow \quad s_{\lambda / \mu} \text { symmetric polynomial }
$$

- Stability property:

$$
T(0)=1 \Rightarrow s_{\lambda / \mu}\left(x_{1}, \ldots, x_{n}, x_{n+1}=0\right)=s_{\lambda / \mu}\left(x_{1}, \ldots, x_{n}\right)
$$

Thus, the $s_{\lambda / \mu}$ are symmetric functions (symmetric polynomials in an infinite number of variables).
In fact, the s_{λ} are known to be a basis of the space of symmetric functions (which is thus isomorphic to \mathcal{F}).

Properties

- "Integrability" property:

$$
\left[T(x), T\left(x^{\prime}\right)\right]=0 \quad \Rightarrow \quad s_{\lambda / \mu} \text { symmetric polynomial }
$$

- Stability property:

$$
T(0)=I \quad \Rightarrow \quad s_{\lambda / \mu}\left(x_{1}, \ldots, x_{n}, x_{n+1}=0\right)=s_{\lambda / \mu}\left(x_{1}, \ldots, x_{n}\right)
$$

Thus, the $s_{\lambda / \mu}$ are symmetric functions (symmetric polynomials in an infinite number of variables)
In fact, the s_{λ} are known to be a basis of the space of symmetric functions (which is thus isomorphic to \mathcal{F}).

Properties

- "Integrability" property:

$$
\left[T(x), T\left(x^{\prime}\right)\right]=0 \quad \Rightarrow \quad s_{\lambda / \mu} \text { symmetric polynomial }
$$

- Stability property:

$$
T(0)=I \Rightarrow s_{\lambda / \mu}\left(x_{1}, \ldots, x_{n}, x_{n+1}=0\right)=s_{\lambda / \mu}\left(x_{1}, \ldots, x_{n}\right)
$$

Thus, the $s_{\lambda / \mu}$ are symmetric functions (symmetric polynomials in an infinite number of variables).
In fact, the s_{λ} are known to be a basis of the space of symmetric functions (which is thus isomorphic to \mathcal{F}).

Some identities

- An identity that can be derived using the formalism above:
$\sum_{\mu} s_{\lambda / \mu}\left(x_{1}, \ldots, x_{n}\right) s_{\mu / \rho}\left(y_{1}, \ldots, y_{m}\right)=s_{\lambda / \rho}\left(x_{1}, \ldots, x_{n}, y_{1}, \ldots, y_{m}\right)$
- Identities which remain mysterious:

Some identities

- An identity that can be derived using the formalism above:

$$
\sum_{\mu} s_{\lambda / \mu}\left(x_{1}, \ldots, x_{n}\right) s_{\mu / \rho}\left(y_{1}, \ldots, y_{m}\right)=s_{\lambda / \rho}\left(x_{1}, \ldots, x_{n}, y_{1}, \ldots, y_{m}\right)
$$

- Identities which remain mysterious:

$$
\begin{aligned}
s_{\lambda / \mu}\left(x_{1}, \ldots, x_{n}\right) & =\sum_{\nu} c_{\mu, \nu}^{\lambda} s_{\nu}\left(x_{1}, \ldots, x_{n}\right) \\
s_{\lambda}\left(x_{1}, \ldots, x_{n}\right) s_{\mu}\left(x_{1}, \ldots, x_{n}\right) & =\sum_{\nu} c_{\lambda, \mu}^{\nu} s_{\nu}\left(x_{1}, \ldots, x_{n}\right) \\
s_{\lambda}\left(x_{1}, \ldots, x_{n}, y_{1}, \ldots, y_{n}\right) & =\sum_{\mu, \nu} c_{\mu, \nu}^{\lambda} s_{\mu}\left(x_{1}, \ldots, x_{n}\right) s_{\nu}\left(y_{1}, \ldots, y_{n}\right)
\end{aligned}
$$

Introduction
Lozenge tilings and Schur functions Square-triangle-rhombus tilings and LR coefficients Inhomogeneities and equivariance Conclusion and prospects

Interacting fermions

Puzzles and square-triangle tilings
A new "integrable" proof

Two species of fermions

Introduction
Lozenge tilings and Schur functions Square-triangle-rhombus tilings and LR coefficients

Inhomogeneities and equivariance
Conclusion and prospects

Interacting fermions

Puzzles and square-triangle tilings
A new "integrable" proof

Two species of fermions

Pilings of (hyper)cubes in four dimensions!

Interacting fermions

Puzzles and square-triangle tilings A new "integrable" proof

Two species of fermions

Pilings of (hyper)cubes in four dimensions!

Interacting fermions

Puzzles and square-triangle tilings
A new "integrable" proof

The interaction

X
Z

Yang-Baxter equation

Theorem

If $x+y+z=0$, then

for any fixed boundaries and where tile $x($ resp. y, z) is only allowed where marked.

Yang-Baxter equation

Theorem

If $x+y+z=0$, then

for any fixed boundaries and where tile $x($ resp. y, z) is only allowed where marked.

Example:

P. Zinn-Justin

Yang-Baxter equation

Theorem

If $x+y+z=0$, then

for any fixed boundaries and where tile $x(r e s p . y, z)$ is only allowed where marked.

Example:

Puzzles

Remove all tiles x, y, z :

Some history...

- 1993: M. Widom introduces the square-triangle model, deforms it into a regular triangular lattice (\sim puzzles) and proves integrability.
- 1994: P. Kalugin (partially) solves the Coordinate Bethe Ansatz equations (size $\rightarrow \infty$)
- 1997-2006: B. Nienhuis et al reinvestigate it: underlying algebra, commuting transfer matrices, force networks (\sim honeycombs)
- 1992: Berenstein,

Zelevinsky introduce a new
Littlewood-Richardson
rule (honeycombs)

- 2003-2004: A. Knutson T. Tao and C. Woodward reexpress it in terms of puzzles.
- 2008: K. Purbhoo reformulates puzzles as mosaics (\sim square-triangle tilings)

Some history...

- 1993: M. Widom introduces the square-triangle model, deforms it into a regular triangular lattice (\sim puzzles) and proves integrability.
- 1994: P. Kalugin (partially) solves the Coordinate Bethe Ansatz equations (size $\rightarrow \infty$).
- 1997-2006: B. Nienhuis et al reinvestigate it: underlying algebra, commuting transfer matrices, force networks (\sim honeycombs)
- 1992: Berenstein,

Zelevinsky introduce a new
Littlewood-Richardson
rule (honeycombs)

- 2003-2004: A. Knutson
T. Tao and C. Woodward reexpress it in terms of
puzzles.
- 2008: K. Purbhoo
reformulates puzzles as
mosaics (\sim square-triangle tilings)

Some history...

- 1993: M. Widom introduces the square-triangle model, deforms it into a regular triangular lattice (\sim puzzles) and proves integrability.
- 1994: P. Kalugin (partially) solves the Coordinate Bethe Ansatz equations (size $\rightarrow \infty$).
- 1997-2006: B. Nienhuis et al reinvestigate it: underlying algebra, commuting transfer matrices, force networks (\sim honeycombs).
- 1992: Berenstein,

Zelevinsky introduce a new

Littlewood-Richardson

rule (honeycombs)

- 2003-2004: A. Knutson.
T. Tao and C. Woodward reexpress it in terms of
puzzles.
- 2008: K. Purbhoo
reformulates puzzles as
mosaics (~ square-triangle
tilings)

Some history...

- 1993: M. Widom introduces the square-triangle model, deforms it into a regular triangular lattice (\sim puzzles) and proves integrability.
- 1994: P. Kalugin (partially) solves the Coordinate Bethe Ansatz equations (size $\rightarrow \infty$).
- 1997-2006: B. Nienhuis et al reinvestigate it: underlying algebra, commuting transfer matrices, force networks (\sim honeycombs).
- 1992: Berenstein, Zelevinsky introduce a new Littlewood-Richardson rule (honeycombs).
- 2003-2004: A. Knutson
 reexpress it in terms of puzzles.
- 2008: K. Purbhoo reformulates puzzles as mosaics (\sim square-triangle tilings)

Some history...

- 1993: M. Widom introduces the square-triangle model, deforms it into a regular triangular lattice (\sim puzzles) and proves integrability.
- 1994: P. Kalugin (partially) solves the Coordinate Bethe Ansatz equations (size $\rightarrow \infty$).
- 1997-2006: B. Nienhuis et al reinvestigate it: underlying algebra, commuting transfer matrices, force networks (\sim honeycombs).
- 1992: Berenstein, Zelevinsky introduce a new Littlewood-Richardson rule (honeycombs).
- 2003-2004: A. Knutson, T. Tao and C. Woodward reexpress it in terms of puzzles.
- 2008: K. Purbhoo reformulates puzzles as mosaics (\sim square-triangle tilings)

Some history...

- 1993: M. Widom introduces the square-triangle model, deforms it into a regular triangular lattice (\sim puzzles) and proves integrability.
- 1994: P. Kalugin (partially) solves the Coordinate Bethe Ansatz equations (size $\rightarrow \infty$).
- 1997-2006: B. Nienhuis et al reinvestigate it: underlying algebra, commuting transfer matrices, force networks (\sim honeycombs).
- 1992: Berenstein, Zelevinsky introduce a new Littlewood-Richardson rule (honeycombs).
- 2003-2004: A. Knutson, T. Tao and C. Woodward reexpress it in terms of puzzles.
- 2008: K. Purbhoo reformulates puzzles as mosaics (\sim square-triangle tilings).

Introduction Lozenge tilings and Schur functions Square-triangle-rhombus tilings and LR coefficients Inhomogeneities and equivariance Conclusion and prospects

$\sum c_{\mu, \nu}^{\lambda} s_{\mu}\left(\tilde{x}^{-1}\right) s_{\nu}\left(y^{-1}\right)$

$$
s_{\lambda}\left(\tilde{x}^{-1}, y^{-1}\right)
$$

Cohomology of Grassmannians

The cohomology ring of $\operatorname{Gr}(n, k)=\left\{V \subset \mathbb{C}^{n}, \operatorname{dim} V=k\right\}$ is the quotient of the ring of symmetric functions by the span of the s_{λ}, $\lambda \not \subset[k \times(n-k)]$.
Given a fixed flag, one can build Schubert varieties indexed by $\lambda \subset[k \times(n-k)]$ such that the s_{λ} are their cohomology classes. There is a torus $T=\left(\mathbb{C}^{\times}\right)^{n}$ acting on $\operatorname{Gr}(n, k)$ and a corresponding equivariant cohomology ring. It is a module over $\mathbb{Z}\left[y_{1}, \ldots, y_{n}\right]$, with basis the $\tilde{s}_{\lambda}, \lambda \subset[k \times(n-k)]$ If flag and torus are compatible (so that the Schubert varieties are T-invariant), the \tilde{s}_{λ} are the equivariant cohomology classes of the Schubert varieties

Cohomology of Grassmannians

The cohomology ring of $\operatorname{Gr}(n, k)=\left\{V \subset \mathbb{C}^{n}, \operatorname{dim} V=k\right\}$ is the quotient of the ring of symmetric functions by the span of the s_{λ}, $\lambda \not \subset[k \times(n-k)]$.
Given a fixed flag, one can build Schubert varieties indexed by $\lambda \subset[k \times(n-k)]$ such that the s_{λ} are their cohomology classes.
corresponding equivariant cohomology ring. It is a module over $\mathbb{Z}\left[y_{1}, \ldots, y_{n}\right]$, with basis the $\tilde{s}_{\lambda}, \lambda \subset[k \times(n-k)]$ If flag and torus are compatible (so that the Schubert varieties are T-invariant), the \tilde{s}_{λ} are the equivariant cohomology classes of the Schubert varieties.

Cohomology of Grassmannians

The cohomology ring of $\operatorname{Gr}(n, k)=\left\{V \subset \mathbb{C}^{n}, \operatorname{dim} V=k\right\}$ is the quotient of the ring of symmetric functions by the span of the s_{λ}, $\lambda \not \subset[k \times(n-k)]$.
Given a fixed flag, one can build Schubert varieties indexed by $\lambda \subset[k \times(n-k)]$ such that the s_{λ} are their cohomology classes. There is a torus $T=\left(\mathbb{C}^{\times}\right)^{n}$ acting on $\operatorname{Gr}(n, k)$ and a corresponding equivariant cohomology ring. It is a module over $\mathbb{Z}\left[y_{1}, \ldots, y_{n}\right]$, with basis the $\tilde{s}_{\lambda}, \lambda \subset[k \times(n-k)]$. If flag and torus are compatible (so that the Schubert varieties are T-invariant), the \tilde{s}_{λ} are the equivariant cohomology classes of the Schubert varieties.

Cohomology of Grassmannians

The cohomology ring of $\operatorname{Gr}(n, k)=\left\{V \subset \mathbb{C}^{n}, \operatorname{dim} V=k\right\}$ is the quotient of the ring of symmetric functions by the span of the s_{λ}, $\lambda \not \subset[k \times(n-k)]$.
Given a fixed flag, one can build Schubert varieties indexed by $\lambda \subset[k \times(n-k)]$ such that the s_{λ} are their cohomology classes. There is a torus $T=\left(\mathbb{C}^{\times}\right)^{n}$ acting on $\operatorname{Gr}(n, k)$ and a corresponding equivariant cohomology ring. It is a module over $\mathbb{Z}\left[y_{1}, \ldots, y_{n}\right]$, with basis the $\tilde{s}_{\lambda}, \lambda \subset[k \times(n-k)]$.
If flag and torus are compatible (so that the Schubert varieties are T-invariant), the \tilde{s}_{λ} are the equivariant cohomology classes of the Schubert varieties.

Double Schur functions

The \tilde{s}_{λ} can be represented as polynomials $s_{\lambda}\left(x_{1}, \ldots, x_{n} \mid y_{1}, \ldots, y_{n}\right)$. (such that $s_{\lambda}\left(x_{1}, \ldots, x_{n} \mid 0, \ldots,{ }_{k}\right)=s_{\lambda}\left(x_{1}, \ldots, x_{n}\right)$).

Product formulae

- Knutson-Tao problem:

$$
\begin{aligned}
& s_{\lambda}\left(x_{1}, \ldots, x_{k} \mid z_{1}, \ldots, z_{n}\right) s_{\mu}\left(x_{1}, \ldots, x_{k} \mid z_{1}, \ldots, z_{n}\right) \\
&=\sum_{\nu} c_{\mu, \lambda}^{\nu}\left(z_{1}, \ldots, z_{n}\right) s_{\nu}\left(x_{1}, \ldots, x_{k} \mid z_{1}, \ldots, z_{n}\right)
\end{aligned}
$$

- Molev-Sagan problem:

Product formulae

- Knutson-Tao problem:

$$
\begin{aligned}
s_{\lambda}\left(x_{1}, \ldots, x_{k} \mid z_{1}\right. & \left., \ldots, z_{n}\right) s_{\mu}\left(x_{1}, \ldots, x_{k} \mid z_{1}, \ldots, z_{n}\right) \\
& =\sum_{\nu} c_{\mu, \lambda}^{\nu}\left(z_{1}, \ldots, z_{n}\right) s_{\nu}\left(x_{1}, \ldots, x_{k} \mid z_{1}, \ldots, z_{n}\right)
\end{aligned}
$$

- Molev-Sagan problem:

$$
\begin{aligned}
& s_{\lambda}\left(x_{1}, \ldots, x_{k} \mid z_{1}, \ldots, z_{n}\right) s_{\mu}\left(x_{1}, \ldots, x_{k} \mid y_{1}, \ldots, y_{n}\right) \\
& \quad=\sum_{\nu} e_{\lambda, \mu}^{\nu}\left(y_{1}, \ldots, y_{n} ; z_{1}, \ldots, z_{n}\right) s_{\nu}\left(x_{1}, \ldots, x_{k} \mid y_{1}, \ldots, y_{n}\right)
\end{aligned}
$$

Product formulae

- Knutson-Tao problem:

$$
\begin{aligned}
s_{\lambda}\left(x_{1}, \ldots, x_{k} \mid z_{1}\right. & \left., \ldots, z_{n}\right) s_{\mu}\left(x_{1}, \ldots, x_{k} \mid z_{1}, \ldots, z_{n}\right) \\
& =\sum_{\nu} c_{\mu, \lambda}^{\nu}\left(z_{1}, \ldots, z_{n}\right) s_{\nu}\left(x_{1}, \ldots, x_{k} \mid z_{1}, \ldots, z_{n}\right)
\end{aligned}
$$

- Molev-Sagan problem:

$$
\begin{aligned}
& s_{\lambda}\left(x_{1}, \ldots, x_{k} \mid z_{1}, \ldots, z_{n}\right) s_{\mu}\left(x_{1}, \ldots, x_{k} \mid y_{1}, \ldots, y_{n}\right) \\
& \quad=\sum_{\nu} e_{\lambda, \mu}^{\nu}\left(y_{1}, \ldots, y_{n} ; z_{1}, \ldots, z_{n}\right) s_{\nu}\left(x_{1}, \ldots, x_{k} \mid y_{1}, \ldots, y_{n}\right)
\end{aligned}
$$

Unifying solution of these two problems!

Cohomology of Grassmannians and Schur functions MS-alt puzzles, Equivariant puzzles
Another "integrable" proof

\longrightarrow

$\bar{\mu}$

Cohomology of Grassmannians and Schur functions MS-alt puzzles, Equivariant puzzles Another "integrable" proof

P. Zinn-Justin

Solvable tilings and Littlewood-Richardson coefficients

- "Integrable" proofs of combinatorial identities?
- Coproduct formula for double Schur functions?
- Use of Bethe Ansatz?
- Generalization to other families of symmetric polynomials? (Jack, Hall-Littlewood, Macdonald)
- Generalization to other families of polynomials of geometric origin? (Schubert, Grothendieck)
- Application to FPLs / Razumov-Stroganov conjecture? (cf Nadeau's talk)
- "Integrable" proofs of combinatorial identities?
- Coproduct formula for double Schur functions?
- Use of Bethe Ansatz?
- Generalization to other families of symmetric polynomials? (Jack, Hall-Littlewood, Macdonald)
- Generalization to other families of polynomials of geometric origin? (Schubert, Grothendieck)
- Application to FPLs/Razumov-Stroganov conjecture? (cf Nadeau's talk)
- "Integrable" proofs of combinatorial identities?
- Coproduct formula for double Schur functions?
- Use of Bethe Ansatz?
- Generalization to other families of symmetric polynomials? (Jack, Hall-Littlewood, Macdonald)
- Generalization to other families of polynomials of geometric origin? (Schubert, Grothendieck)
- Application to FPLs / Razumov-Stroganov conjecture? (cf Nadeau's talk)
- "Integrable" proofs of combinatorial identities?
- Coproduct formula for double Schur functions?
- Use of Bethe Ansatz?
- Generalization to other families of symmetric polynomials? (Jack, Hall-Littlewood, Macdonald)
- Generalization to other families of polynomials of geometric origin? (Schubert, Grothendieck)
- Application to FPLs / Razumov-Stroganov conjecture? (cf Nadeau's talk)
- "Integrable" proofs of combinatorial identities?
- Coproduct formula for double Schur functions?
- Use of Bethe Ansatz?
- Generalization to other families of symmetric polynomials? (Jack, Hall-Littlewood, Macdonald)
- Generalization to other families of polynomials of geometric origin? (Schubert, Grothendieck)
- Application to FPLs / Razumov-Stroganov conjecture? (cf Nadeau's talk)
- "Integrable" proofs of combinatorial identities?
- Coproduct formula for double Schur functions?
- Use of Bethe Ansatz?
- Generalization to other families of symmetric polynomials? (Jack, Hall-Littlewood, Macdonald)
- Generalization to other families of polynomials of geometric origin? (Schubert, Grothendieck)
- Application to FPLs / Razumov-Stroganov conjecture? (cf Nadeau's talk)

