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Hook Product Formulae

• Frame–Robinson–Thrall

fλ =
n!∏

v∈D(λ) hλ(v)

• Stanley (univariate z)
∑

π : reverse plane partition
of shape λ

z|π| =
1∏

v∈D(λ)(1− zhλ(v))

• Gansner (multivariate z = (· · · , z−1, z0, z1, · · · ) )
∑

π : reverse plane partition
of shape λ

zπ =
1∏

v∈D(λ)(1− z[HD(λ)(v)])



Goal : (q, t)-deformations of multivariate hook product formulae

1

1− x −→
(tx; q)∞
(x; q)∞

,

where (a; q)∞ =
∏
i≥0(1− aqi).

Our formulae look like
∑

σ∈A(P )

WP (σ; q, t)zσ =
∏

v∈P

(tz[HP (v)]; q)∞
(z[HP (v)]; q)∞

.

This talk is based on arXiv:0909.0086.



Plan

1. Symmetric function approach to Gansner’s formula

(an approach by Okounkov–Reshetikhin)

2. (q, t)-deformation of Gansner’s formula

(for ordinary or shifted reverse plane partitions)

3. (q, t)-deformation of Peterson–Proctor’s formula

(for P -partitions on d-complete poset P )



Symmetric Function Approach to Gansner’s Formula



Diagrams and Shifted Diagrams

For a partition λ, we denote its diagram by D(λ):

D(λ) = {(i, j) ∈ P2 : 1 ≤ j ≤ λi}.
For a strict partition µ, we denote its shifted diagram by S(µ):

S(µ) = {(i, j) ∈ P2 : i ≤ j ≤ µi + i− 1}.
Example :

D((4, 3, 1)) S((4, 3, 1))



Reverse Plane Partitions

A (weak) reverse plane partition of shape λ is an array of non-negative
integers

π =

π1,1 π1,2 · · · · · · π1,λ1
π2,1 π2,2 · · · π2,λ2

... ...
πr,1 πr,2 · · · πr,λr

(i.e., a map D(λ) −→ N) satisfying

πi,j ≤ πi,j+1, πi,j ≤ πi+1,j.

Let A(D(λ)) be the set of reverse plane partitions of shape λ :

A(D(λ)) = {π : reverse plane partition of shape λ}.



A shifted (weak) reverse plane partition of shifted shape µ is an array
of non-negative integers

σ =

σ1,1 σ1,2 σ1,3 · · · · · · σ1,µ1
σ2,2 σ2,3 · · · σ2,µ2+1

. . .
σr,r · · · σr,µr+r−1

(i.e., a map S(µ) −→ N) satisfying

σi,j ≤ σi,j+1, σi,j ≤ σi+1,j.

Let A(S(µ)) be the set of shifted reverse plane partitions of shape µ :

A(S(µ)) = {σ : shifted reverse plane partition of shape µ}.



Trace Generating Function
Given an ordinary or shifted reverse plane partition π = (πi,j), we

define its k-th trace tk(π) by

tk(π) =
∑

i

πi,i+k.

We write
zπ =

∏

k

z
tk(π)
k =

∏

i,j

z
πi,j
j−i,

and consider trace generating functions with respect to this weight.

Example : For π =
0 1 3 3
1 1 3
2 4

, we have

zπ = z−2
2z−1

1+4z0
0+1z1

1+3z2
3z3

3.



Hook and Shifted Hook
For a partition λ, the hook at (i, j) in D(λ) is defined by

HD(λ)(i, j) = {(i, j)} ∪ {(i, l) ∈ D(λ) : l > j}
∪ {(k, j) ∈ D(λ) : k > i}.

For a strict partition µ, the shifted hook at (i, j) in S(µ) is defined by

HS(µ)(i, j) = {(i, j)} ∪ {(i, l) ∈ S(µ) : l > j}
∪ {(k, j) ∈ S(µ) : k > i}
∪ {(j + 1, l) ∈ S(µ) : l > j}.

We write
z[H ] =

∏

(i,j)∈H
zj−i

for a finite subset H ⊂ P2.



Example :

The hook at (2, 2) The shifted hook at (2, 3)
in D((7, 5, 3, 3, 1)) in S((7, 6, 4, 3, 1))



Gansner’s Hook Product Formula

(a) For a partition λ, the trace generating function of A(D(λ)) is given
by ∑

π∈A(D(λ))

zπ =
∏

v∈D(λ)

1

1− z[HD(λ)(v)]
.

(b) For a strict partition µ, the trace generating function of A(S(µ)) is
given by ∑

σ∈A(S(µ))

zσ =
∏

v∈S(µ)

1

1− z[HS(µ)(v)]
.



Idea of Proof of Gansner’s formula
Consider generating functions

RS(µ),τ (z) =
∑

σ∈A(S(µ),τ )

zσ

of shifted reverse plane partitions of shifted shape µ with profile τ , and
express them in terms of Schur functions by using operator calculus on
the ring of symmetric functions.

Then we have ∑

π∈A(D(λ))

zπ =
∑
τ

RS(µ),τ (x)RS(ν),τ (y),

∑

σ∈A(S(µ))

zσ =
∑
τ

RS(µ),τ (z).

Hence Gansner’s formulae follow from Cauchy and Schur–Littlewood
identities.



Diagonals and Profile
For an array of non-negative integers σ of shifted shape µ, we define

its k-th diagonal σ[k] by putting

σ[k] = (· · · , σ2,k+2, σ1,k+1) (k = 0, 1, 2, · · · ).
We call σ[0] the profile and put

A(S(µ), τ ) = {σ ∈ A(S(µ)) : σ[0] = τ}.

Example : For σ =
0 0 1 2 3 3

1 2 3 3 3
2 4

, we have

σ[0] = (2, 1, 0), σ[1] = (4, 2, 0), σ[2] = (3, 1),
σ[3] = (3, 2), σ[4] = (3, 3), σ[5] = (3).



A key is the following observation.

Lemma The following are equivalent:

(i) σ is a shifted reverse plane partition.

(ii) Each σ[k] is a partition and{
σ[k − 1] � σ[k] if k is a part of µ,

σ[k − 1] ≺ σ[k] otherwise.

where we write α � β if

α1 ≥ β1 ≥ α2 ≥ β2 ≥ · · · ,
i.e., the skew diagram α/β is a horizontal strip.



Let hk and h⊥k be the multiplication and skewing operators on the ring
of symmetric functions Λ associated to the complete symmetric function
hk. Consider the generating functions

H+(u) =
∑

k≥0

hku
k, H−(u) =

∑

k≥0

h⊥k u
k.

and the operator D(z) : Λ→ Λ defined by

D(z)sλ = z|λ|sλ.
First we apply the Pieri rule

H+(t)sλ =
∑

κ�λ
t|κ|−|λ|sκ, H−(t)sλ =

∑

κ≺λ
t|λ|−|κ|sκ,

and Lemma above to obtain



Lemma If we define ε1, · · · , εN (N ≥ µ1) by

εk =

{
+ if k is a part of µ,

− otherwise,

then we have

D(z0)Hε1(1)D(z1)Hε2(1)D(z2)Hε2(1) · · ·HεN−1(1)D(zN−1)HεN (1)1

=
∑
τ

RS(µ),τ (z)sτ ,

where RS(µ),τ (z) is the generating function of shifted reverse plane par-
titions of shifted shape µ with profile τ :

RS(µ),τ (z) =
∑

σ∈A(S(µ),τ )

zσ.



Example : If µ = (6, 5, 2) and N = 6, then ε = (−,+,−,−,+,+) and
we compute

D(z0)H−(1)D(z1)H+(1)D(z2)H−(1)D(z3)H−(1)

D(z4)H+(1)D(z5)H+(1)1.

σ[0]σ[1]σ[2]σ[3]σ[4]σ[5] ∅

σ[0] ≺ σ[1] � σ[2] ≺ σ[3] ≺ σ[4] � σ[5] � ∅.



Commutation Relations
By using the commutation relations

D(z)H+(u) = H+(zu)D(z),

D(z)H−(u) = H−(z−1u)D(z),

D(z)D(z′) = D(zz′),
we obtain

D(z0)Hε1(1)D(z1)Hε2(1)D(z2)Hε2(1) · · ·HεN−1(1)D(zN−1)HεN (1)

= Hε1(z̃
ε1
1 )Hε2(z̃

ε2
2 ) · · ·HεN (z̃

εN
N )D(z̃N ),

where we put
z̃k = z0z1 · · · zk−1.



Further, by using the commutation relation

H−(u)H+(v) =
1

1− uvH
+(v)H−(u),

we can derive

Hε1(z̃
ε1
1 )Hε2(z̃

ε2
2 ) · · ·HεN (z̃

εN
N )

=
∏

µck<µl

1

1− z̃−1
µck
z̃µl

r∏

k=1

H+(z̃µk)

N−r∏

l=1

H−(z̃µcl
).

where µc is the strict partition formed by the complement of µ in
{1, 2, · · · , N}:

{µ1, · · · , µr} t {µc1, · · · , µcN−r} = {1, 2, · · · , N}.



Generating Functions in terms of Schur Functions
Finally, by using the Cauchy identity

r∏

k=1

H+(z̃µk)1 =
∑
τ

sτ (z̃µ1, · · · , z̃µr)sτ ,

we have

Proposition The generating function of shifted reverse plane partitions
of shifted shape µ with profile τ is given by

∑

σ∈A(S(µ);τ )

zσ =
∏

µck<µl

1

1− z̃−1
µck
z̃µl
· sτ (z̃µ1, · · · , z̃µr),

where {µ1, · · · , µr} t {µc1, · · · , µcN−r} = {1, 2, · · · , N}, and z̃k =
z0z1 · · · zk−1.



Proof of Gansner’s Formula (a) for Shapes
A reverse plane partition π ∈ A(D(λ)) is obtained by gluing two shifted

reverse plane partitions σ ∈ A(S(µ)) and ρ ∈ A(S(ν)) with the same
profile τ = σ[0] = ρ[0], where two strict partitions µ and ν are defined
by

µi = λi − i + 1, νi = tλi − i + 1 (1 ≤ i ≤ p(λ)).

Example If λ = (4, 3, 1), then µ = (4, 2), ν = (3, 1) and

0 0 1 3
1 2 2
3

←→
(

0 0 1 3
2 2

,
0 1 3

2

)
.

Hence Gansner’s formula follows from the Cauchy identity
∑
τ

sτ (X)sτ (Y ) =
∏

i,j

1

1− xiyj
.



Proof of Gansner’s Formula (b) for Shifted Shapes
We have ∑

σ∈A(S(µ))

zσ =
∑
τ

RS(µ),τ (z),

so Gansner’s formula follows from the Schur–Littlewood identity
∑
τ

sτ (X) =
∏

i

1

1− xi
∏

i<j

1

1− xixj
.



(q, t)-Deformation of Gansner’s Formula



Generalization by Macdonald Symmetric Functions

We can play the same game for Macdonald functions instead of Schur
functions to obtain weighted trace generating functions for reverse plane
partitions. (See also works by Foda–Wheeler-Zuparic, Vuletić.)

We denote by Pλ = Pλ(X ; q, t) the Macdonald symmetric function
characterized by

• Pλ = mλ +
∑

µ<λ

uλ,µmµ.

• If λ 6= µ, then 〈Pλ, Pµ〉 = 0.

Let Qλ = Qλ(X ; q, t) be the dual basis defined by

〈Pλ, Qµ〉 = δλ,µ.

Note that, if we put q = t, then

Pλ(X ; q, q) = Qλ(X ; q, q) = sλ(X).



We write
gk = gk(X ; q, t) = Q(k)(X ; q, t).

Note that, if we put q = t, then gk(X ; q, q) = hk(X).

Let g+
k : Λ → Λ be the multiplication operator by gk and let g−k :

Λ→ Λ be the skewing operator by gk, i.e., the adjoint operator of g+
k :

g+
k (h) = hgk (h ∈ Λ),

〈g−k (h), f〉 = 〈h, gkf〉 (f, h ∈ Λ).

Consider generating functions

G+(u) =
∑

k≥0

g+
k u

k, G−(u) =
∑

k≥0

g−k u
k,

and the operator D(z) : Λ→ Λ defined by

D(z)Pλ = z|λ|Pλ.



The Pieri rule for Macdonald functions can be stated as follows:

G+(u)Pβ=
∑

α�β
ϕ+
α,β(q, t)u|α|−|β|Pα,

G−(u)Pα=
∑

β≺α
ϕ−β,α(q, t)u|α|−|β|Pβ,

where

ϕ+
α,β(q, t) =

∏

i≤j

fq,t(αi − βj; j − i)fq,t(βi − αj+1; j − i)
fq,t(αi − αj; j − i)fq,t(βi − βj+1; j − i),

ϕ−β,α(q, t) =
∏

i≤j

fq,t(αi − βj; j − i)fq,t(βi − αj+1; j − i)
fq,t(αi − αj+1; j − i)fq,t(βi − βj; j − i)

,

and

fq,t(n;m) =

n−1∏

i=0

1− qitm+1

1− qi+1tm
.



Proposition The weighted generating function of shifted reverse plane
partitions of shape µ with profile τ is given by

∑

σ∈A(S(µ);τ )

VS(µ)(σ; q, t)zσ

=
∏

µck<µl

(tz̃−1
µck
z̃µl; q)∞

(z̃−1
µck
z̃µl; q)∞

·Qτ (z̃µ1, · · · , z̃µr; q, t),

where {µ1, · · · , µr} t {µc1, · · · , µcN−r} = {1, 2, · · · , N}, and z̃k =
z0z1 · · · zk−1. And the weight VS(µ)(σ; q, t) is given by

VS(µ)(σ; q, t) =

N∏

k=1

ϕ
εk
σ[k−1],σ[k]

(q, t),

where εk = + if k is a part of µ and εk = − otherwise.



This weight function can be written explicitly as

VS(µ)(σ; q, t)

=
∏

(i,j)∈S(µ)
i<j

∏

m≥0

fq,t(σi,j − σi−m,j−m−1;m)fq,t(σi,j − σi−m−1,j−m;m)

fq,t(σi,j − σi−m,j−m;m)fq,t(σi,j − σi−m−1,j−m−1,m)

×
∏

(i,i)∈S(µ)

∏

m≥0

fq,t(σi,i − σi−m−1,i−m;m)

fq,t(σi,i − σi−m,i−m;m)
.



Theorem A (for shapes)
Let λ be a partition. For a reverse plane partition π ∈ A(D(λ)), we

define

WD(λ)(π; q, t)

=
∏

(i,j)∈D(λ)

∏

m≥0

fq,t(πi,j − πi−m,j−m−1;m)fq,t(πi,j − πi−m−1,j−m;m)

fq,t(πi,j − πi−m,j−m;m)fq,t(πi,j − πi−m−1,j−m−1;m)
,

where πk,l = 0 if k < 0 or l < 0. Then we have

∑

π∈A(D(λ))

WD(λ)(π; q, t)zπ =
∏

v∈D(λ)

(tz[HD(λ)(v)]; q)∞
(z[HD(λ)(v)]; q)∞

.

Plane partitions of rectangular shape (cr) are obtained by 180◦ rota-
tion from reverse plane partitions of the same shape. Hence we obtain
Vuletić’s generalization of MacMahon formula.



Example : If λ = (3, 3), then the weight is given by

WD(3,3)

(
a b c
d e f

; q, t

)

= fq,t(a− 0; 0)× fq,t(b− a; 0)× fq,t(c− b; 0)× fq,t(d− a; 0)

× fq,t(e− b; 0)fq,t(e− d; 0)fq,t(e− 0; 1)

fq,t(e− a; 0)fq,t(e− a; 1)

× fq,t(f − c; 0)fq,t(f − e; 0)fq,t(f − a; 1)

fq,t(f − b; 0)fq,t(f − b; 1)
.



Theorem B (for shifted shapes)
Let µ be a strict partition. For a shifted reverse plane partition σ ∈
A(S(µ)), we define

WS(µ)(σ; q, t)

=
∏

(i,j)∈S(µ)
i<j

∏
m≥0

fq,t(σi,j − σi−m,j−m−1;m)fq,t(σi,j − σi−m−1,j−m;m)

fq,t(σi,j − σi−m,j−m;m)fq,t(σi,j − σi−m−1,j−m−1,m)

×
∏

(i,i)∈S(µ)

∏
m≥0

fq,t(σi,i − σi−2m−1,i−2m; 2m)fq,t(σi,i − σi−2m−2,i−2m−1; 2m + 1)

fq,t(σi,i − σi−2m,i−2m; 2m)fq,t(σi,i − σi−2m−2,i−2m−2; 2m + 1)
,

where σk,l = 0 if k < 0. Then we have

∑

σ∈A(S(µ))

WS(µ)(σ; q, t)zσ =
∏

v∈S(µ)

(tz[HS(µ)(v)]; q)∞
(z[HS(µ)(v)]; q)∞

.



Example : If µ = (3, 2, 1), then the weight is given by

WS(3,2,1)



a b c
d e
f

; q, t




= fq,t(a− 0; 0)× fq,t(b− a; 0)× fq,t(c− b; 0)× fq,t(d− b; 0)

× fq,t(e− c; 0)fq,t(e− d; 0)fq,t(e− a; 1)

fq,t(e− b; 0)fq,t(e− b; 1)

× fq,t(f − e; 0)fq,t(f − b; 1)fq,t(f − 0; 2)

fq,t(f − a; 1)fq,t(f − a; 2)
.



Proof of Theorems A and B : Same as the proof of Gansner’s formula.
Note that the weights are related as

WD(λ)(π; q, t) =
1

bτ (q, t)
VS(µ)(σ; q, t)VS(ν)(ρ; q, t),

WS(µ)(σ; q, t) =
bel
τ (q, t)

bτ (q, t)
VS(µ)(σ; q, t),

where

bτ (q, t) =
∏

i≤j

fq,t(τi − τj+1; j − i)
fq,t(τi − τj; j − i)

= 〈Pτ , Pτ〉,

bel
τ (q, t) =

∏

i≤j
j − i is even

fq,t(τi − τj+1; j − i)
fq,t(τi − τj; j − i)

.

Hence Theorems A and B follow from Cauchy-type and Schur–Littlewood–
type identities respectively.



(q, t)-Deformation
of

Peterson–Proctor’s Hook Product Formula
for

d-Complete Posets



P -Partitions
Let P be a poset. A P -partition is a map σ : P → N satisfying

x ≤ y in P =⇒ σ(x) ≥ σ(y) in N.

Let A(P ) be the set of P -partitions:

A(P ) = {σ : P → N : P -partition}.
The diagram D(λ) and the shifted diagram S(µ) are posets w.r.t

(i, j) ≥ (k, l) ⇐⇒ i ≤ k, and j ≤ l.

Then

D(λ)-partition = reverse plane partition of shape λ,
S(µ)-partition = shifted reverse plane partition of shifted shape µ.

Gansner’s hook product formula is generalized to the generating func-
tion of P -partitions for d-complete posets P (Peterson–Proctor).



d-Complete Posets

• The double-tailed diamond poset dk(1) is the poset depicted below:

k − 2

k − 2

top

side side

bottom

• A dk-interval is an interval isomorphic to dk(1).

• A d−k -interval (k ≥ 4) is an interval isomorphic to dk(1)− {top}.
• A d−3 -interval consists of three elements x, y and w such that w is

covered by x and y.



Definition A finite poset P is d-complete if it satisfies the following
three conditions for every k:

(D1) If I is a d−k -interval, then there exists an element v such that v
covers the maximal elements of I and I ∪ {v} is a dk-interval.

(D2) If I = [w, v] is a dk-interval and v covers u in P , then u ∈ I .
(D3) There are no d−k -intervals which differ only in the minimal ele-

ments.

∃
@

@

∃
@

@



Example :

• rooted tree

• shape

• shifted shape

• swivel



Fact If P is a connected d-complete poset, then
(a) P has a unique maximal element.
(b) P is ranked, i.e., there exists a rank function r : P → N such that

r(x) = r(y) + 1 if x covers y.

Fact
(a) Any connected d-complete poset is uniquely decomposed into a

slant sum of one-element posets and slant-irreducible d-complete posets.
(b) Slant-irreducible d-complete posets are classified into 15 families :

shapes, shifted shapes, birds, insets, tailed insets, banners, nooks,
swivels, tailed swivels, tagged swivels, swivel shifts, pumps, tailed
pumps, near bats, bat.



Top Tree
For a connected d-complete poset P , we define its top tree by putting

T = {x ∈ P : every y ≥ x is covered by at most one other element }



Example : Top trees

• rooted tree

• shape

• shifted shape

• swivel



Top Tree and d-Complete Coloring
For a connected d-complete poset P , we define its top tree by putting

T = {x ∈ P : every y ≥ x is covered by at most one other element }

Fact Let I be a set of colors such that #I = #T . Then a bijection
c : T → I can be uniquely extended to a map c : P → I satisfying the
following four conditions:

• If x and y are incomparable, then c(x) 6= c(y).

• If an interval [w, v] is a chain, then the colors c(x) (x ∈ [w, v]) are
distinct.

• If [w, v] is a dk-interval then c(w) = c(v).

Such a map c : P → I is called a d-complete coloring.



Example : d-Complete colorings

• rooted tree

• shape

• shifted shape

• swivel



Monomials associated to Hooks
Let P be a connected d-complete poset and T its top tree. Let zv

(v ∈ T ) be indeterminate. Let c : P → T be the d-complete coloring.
For each v ∈ P , we define monomials z[HP (v)] by induction as fol-

lows:

v

x y

w

(a) If v is not the top of any dk-interval, then we define

z[HP (v)] =
∏

w≤v
zc(w).

(b) If v is the top of a dk-interval [w, v], then we define

z[HP (v)] =
z[HP (x)] · z[HP (y)]

z[HP (w)]
,

where x and y are the sides of [w, v].



Conjecture
Let P be a connected d-complete poset with maximum element v0 and

top tree T . Let r : P → N be the rank function and c : P → T the
d-complete coloring. Given a P -partition σ ∈ A(P ), we define

WP (σ; q, t)

=

∏

x,y∈P
x<y, c(x)∼c(y)

fq,t(σ(x)− σ(y); d(x, y))
∏

x∈P
c(x)=v0

fq,t(σ(x); e(x, v0))

∏

x,y∈P
x<y, c(x)=c(y)

fq,t(σ(x)− σ(y); e(x, y))fq,t(σ(x)− σ(y); e(x, y)− 1)
,

where c(x) ∼ c(y) means that c(x) and c(y) are adjacent in T , and

d(x, y) = (r(y)− r(x)− 1)/2, e(x, y) = (r(y)− r(x))/2.

Recall fq,t(n;m) =
∏n−1
i=0 (1− qitm+1)/(1− qi+1tm).



And we write
zσ =

∏

v∈P
z
σ(v)
c(v)

.

Conjecture

∑

σ∈A(P )

WP (σ; q, t)zσ =
∏

v∈P

(tz[HP (v)]; q)∞
(z[HP (v)]; q)∞

.

Known cases

• q = t case (Peterson–Proctor’s hook product formula).

• Rooted trees (use the binomial theorem and induction).

• Shapes (Theorem A).

• Shifted shapes (a modification of Theorem B by Warnaar’s formula).


