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The (R)SOS models
» Variables: heights ¢; at the vertices of a square lattice
» SOS: i €Z
» Defining condition [¢; — ¢ = 1 for i,j nearest neighbors

» Interaction defined for the 4 sites of a paquette via w

w(a,b,c,d)




The (R)SOS models

» Variables: heights ¢; at the vertices of a square lattice

v

SOS: (€7

v

Defining condition [¢; — ¢| = 1 for i,j nearest neighbors

v

Interaction defined for the 4 sites of a paquette via w

d C
w(a,b,c,d)

v

RSOS version: {; €{1,2--- ,p—1}and

8V _ K(p—p')
1 p

[Andrews-Baxter-Forrester; Forrester-Baxter]



Scaling limit at criticality : minimal models

» Transition from regimes Ill to IV:

critical theory related to M (p’,p) with

(p—p')?

c=1-6 -
pp

unitary case: p’ =p—1
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» Local state probabiblities: use CTM:

P, O 1D configuration sum
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Minimal models: states vs paths

v

Local state probabiblities: use CTM:

P, O 1D configuration sum

v

Regime llI: [Kyoto group]

configuration sum = sum over paths = Virasoro character

v

General goal: derive the
fermionic characters (= GF in a manifestly positive form)
constructively from RSOS paths by via their ‘particle content’

v

Focus here: display a weight preserving bijection between
certain Dick paths (RSOS) to new Motzkin-type paths
(generalized Bressoud)



Defining RSOS paths

and

relating paths to states



RSOS(p’,p) paths (regime-IIl)

Configurations

» Configuration = sequence of
values of the
4 e{1,2,---,p—1}
(0<i<L

> with \(%l *£i+1‘ =1

» and the boundary conditions:
fo, EL,]_ and QL fixed



RSOS(p’,p) paths (regime-IIl)

Configurations Paths
» Configuration = sequence of > Apath is the contour of a
values of the configuration.
ei 6{1)2) )p_l}
(0<i<lL) » Path = sequence of NE or SE
edges

> with \El *€i+l‘ =1

» and the boundary conditions: » choice (| ; =1{ +1: fixed last
Lo, £ 1 and ¢, fixed edge: SE
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=3

1, {19 = 4,820

A typical RSOS(p’,7) configuration: {q

L

4
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and the corresponding path (with {,g = 3)




A typical RSOS(p’,7) path : {g =1 and {5y = 3 and final SE
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A typical RSOS(p’,7) path : {g =1 and {5y = 3 and final SE
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11

» But this corresponds to a state for which model ? (value of p’?)

...and to which module (r,s)?

>

...and what is its conformal dimension?

>



Weighting the path

The dependence of the path upon the parameter p’ is via the weight:
L-1
W= W
i=1

Vertex Wi Vertex Wi
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The expressions of W; /i for the extrema

min

max

min

max

max | min

h

The weight function is not positive



Weight vs conformal dimension

v

Classes of paths are specified by {y and £,

v

Ground-state path = unique path with minimal weight, given {g, {_

v

This path represents a highest-weight state

v

Let its weight be Wgs

v

The relative weight

is the (relative) conformal dimension (function of p’)



Generating functions for paths

» The GF is the g-enumeration of the paths

(P"P) () AW
Xep o) =) q
paths with
Lo and ¢, fixed
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Generating functions for paths

» The GF is the g-enumeration of the paths

(P"P) () AW
Xep o) =) q
paths with
Lo and ¢, fixed

» For L — oo: when is this a character of M(p’,p)?
Need to restrict £ :

the tail of the path must lie in one of the RSOS vaccua



A new weight function for the paths
[Foda-Lee-Pugai-Welsh]

» Make the defining rectangle looks p’-dependent

» Color the p’ — 1 strips between the heights h and h + 1 for which:

e
p p '

» Solutions:



Our RSOS(p’,7) path
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Our RSOS(p’,7) path
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The same path for the RSOS(2,7) model.
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The same path for the RSOS(3,7) model.
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The same path for the RSOS(3,7) model.
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The same path for the RSOS(4,7) model.
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The same path for the RSOS(5,7) model.
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The same path for the RSOS(5,7) model.
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The same path for the RSOS(6,7) model.
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Scoring vertices

Vertex Weight Vertex Weight
N 0 AN Ui
AV 0 A4 Vi
/ U; / 0
N N

U %Uff +4{9), Vi %( + 4 —4o)



Our RSOS(2,7) path with the “scoring vertices”

i+ —4o)

— N

® — Vi

i — ¢ +4o)
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Our RSOS(2,7) path with the “scoring vertices”

+ 4 —1{o)

JeN

oV

1.
o0& U :§(|f€i+€0)
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1+1+24+7+5+8+9+8

W =



Remark: this weighting is absolute

=3

The ground-state path for the case {o =1 and {,

\\\\\\\\\\\\\\\\\
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The weight is absolute:

=w

W — Wgs

=

=0

Wgs



A constraint on {|

» Tails in colored bands have weight w =0

Or: colored bands correspond to the RSOS vacua

» Such tails are the proper ends for infinite paths



A constraint on {|

» Tails in colored bands have weight w =0

Or: colored bands correspond to the RSOS vacua

» Such tails are the proper ends for infinite paths

» Previous question: When is

(P'P) () —
PP = > g
paths with
£o and ¢, fixed

AW

a character of M(p’,p) for L — 00?

Answer: When



Module identification vs boundaries
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Module identification vs boundaries

>

/

szﬁo—pJ with 1<t<p'—1

» There is no constraints on £,
1<lp<p-1

» How can we relate the Kac labels r,s where
1<s<p-1 1<r<p’'—1

to {y and t?

» Comparing the ranges suggests

s=1{y and r=t



A bit of Virasoro representation theory

M(p’,p) irreducible modules:

» Highest-weight states of conformal dimensions

(pr—p’s)?>—(p—p’)?
4pp’

hrs= = hp’*f,pfs

1<r<p’—1 and 1<s<p-1

» Highest-weight modules are completely degenerate



Embedding pattern of singular vectors
(r,s)~(p'—r,p—s)

s (p’=r)(p—s)

, 1 s qP'—n(p—s)  grs+(p/+1)(p-s)
x®P g =——— 3 1 +4 +oo
(Moo (oo (@)oo (@)oo




Paths vs states
» Paths are blind to hy s:
W = h - hr‘s
with r, s fixed by £y and ¢, (but yet to be fixed)

= w cannot fixr,s
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Paths vs states

» Paths are blind to hy s:
W = h - hr‘s
with r, s fixed by £y and ¢, (but yet to be fixed)

= w cannot fixr,s

» Recall

RSOS= restriction of SOS

Restriction of the space of states: captured by the defining strip

» Release the restrictions and identify the first two removed paths:
candidates for the primitive SV

wi=rs  wp=(p’—r)(p—s)



Identify singular vectors: extend the band structure

\\\\\\\

\\\\\\




path below

First singular vector




First singular vecto

» The first excluded path from below has w = 1:

=1has a SV at level 1

landt

» Thus: the module with £



Second singular vector: path above




Second singular vector: path above

=6:

» The first excluded path from above has w

=1 has a SV at level 6

landt

» Thus: the module with £



Module identification vs boundaries

» In our example

sr=1

(p'=r)(p—s)=(2—-r)(7—s)=6
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Module identification vs boundaries

» In our example

sr=1

(p'=r)(p—s)=(2—-r)(7—s)=6

» More generally: SV analysis supports the identification

s=1{g and r=t

» The Virasoro character is

!

X% () = tim X ®'P(q)
L— oo S,LW



The first few sates in the M(2,7) vacuum module

These correspond to the first few terms in the character

1+9?+9*+29*+29°+3q°+---

2,7
Xt (@)



RSOS paths, Partitions

and

Bressoud paths



Partitions: hook differences
» To a partition (Ag,Az, -+ ), i.e., Ay > Ajj1

» corresponds a Young diagram, with A; boxes in the i-th row

(4’ 2’ 2’ 1) :




Partitions: hook differences
» To a partition (Ag,Az, -+ ), i.e., Ay > Ajj1

» corresponds a Young diagram, with A; boxes in the i-th row

(4’ 2’ 2’ 1) :

» For the box (i,j), the hook difference H(i,j) is

H(i,j) = #boxes in row i — #boxes in column j

3]3]

™
1l
|

2

P

ENINE



Partitions: diagonals

» Diagonal d: the set of boxes (i,i —d).




Partitions with prescribed hook differences (PHD)

[Andrews-Baxter-Bressoud-Burge-Forrester-Viennot]

Introduce 4 numbers
p,p’r,s
such that

1<r<p’—1 and 1<s<p—-1 and p>p'>2



Partitions with prescribed hook differences (PHD)

[Andrews-Baxter-Bressoud-Burge-Forrester-Viennot]

Introduce 4 numbers
p,p’r,s
such that

1<r<p’—1 and 1<s<p—-1 and p>p'>2
On the two diagonals
p'—r—1 and 1—r

impose the PHD

H(i,i—(p'—r—1)) <p—p’'—s+r—1
H(,i—(1—r)) > —s+r+1



» Let
Pp.s(p’—r,r;n) =#of partitions of n with PHD



> Let
Pp,s(p’fr,r;n) = # of partitions of n with PHD

» Then we have the amazing [ABBBFV]

X2 @) =Y Pps(p’—r,r5n)q".

n>0



» Let
Pp.s(p’—r,r;n) =#of partitions of n with PHD

» Then we have the amazing [ABBBFV]

X2 @) =Y Pps(p’—r,r5n)q".

n>0

» Or

RSOS paths « Partitions PHD



Partitions with prescribed successive ranks

» Special case where

sothat (recall 1 <r <p’—1)

r=1 = r-1=p'—-r—1=0



Partitions with prescribed successive ranks

» Special case where

sothat (recall 1 <r <p’—1)

r=1 = r—1=p’'—r—1=0

» The PHD reduce to

—s+2 <H(i,i)<2k—1-s

» H(i,i) : successive ranks [Dyson, Andrews]



Restricted partitions

» Partitions with

~Ss+2<H(i,i)<2k—1-s

are in 1-1 correspondence with
» Restricted partitions: (A1,Az,---) S.t.
A —Aijk-1>2
and containing at most s parts equal to 1
k = 2: combinatorics of the sum-side of the RR identities

are in 1-1 correspondence with



Bressoud paths [Burge]

Integer lattice paths

» defined in the strip:

with initial point (0,k —s)
» composed of NE, SE and Horizontal edges (H iff y =0)

» weight = x-position of the peaks



A Bressoud path fork =5and s =3

P N W b

w=24+6+10+14+18+27



A Bressoud path : sequence of charged peaks

Isolated peak:
Charge = height

In a charge complex:

Charge = relative height

P N W b

2 6 10 14 18

The charge (= particle) content of the path is:

m=2m=2mg=1my=1



{Bressoud paths}

as a fermi gas



Bressoud paths : generating function [\Warnaar]

» For a fixed charge content (fixed {m;}): determine the
configuration of minimal weight (mwc)
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v

For a fixed charge content (fixed {m;}): determine the
configuration of minimal weight (mwc)

Example: m; =3, my, =2, m3 =1 (yo =0):
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Evaluate its weight: above Wy =14+3+5+8+12+17



Bressoud paths : generating function [\Warnaar]

v

For a fixed charge content (fixed {m;}): determine the
configuration of minimal weight (mwc)

Example: m; =3, my, =2, m3 =1 (yo =0):

v

Evaluate its weight: above Wy =14+3+5+8+12+17

In general

k—1
Wmwe = Z min(i,j)m; m;
ij—1



» Move the particles (peaks) in all possible ways and g-count them
Ex: consider m; =3
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Ex: consider m; =3

» Rule 1: Identical particles are impenetrable (hard-core repulsion):
Ex: move the rightmost by 9, the next by 6 and the third by 4




» Move the particles (peaks) in all possible ways and g-count them
Ex: consider m; =3

» Rule 1: Identical particles are impenetrable (hard-core repulsion):
Ex: move the rightmost by 9, the next by 6 and the third by 4

» Generating factor for these moves
= the number of partitions with at most three parts:

1 _ 1 B 1
(1-9)(1—qg?)(1—qg3)  (a)3 (A)m,




v

Rule 2: Particles of different charges can penetrate
Consider the successive displacements of the peak 1 in 3:




» Every move of 1 unit increases the weight by 1 independently of
the presence of higher charged particles

is generic
G

» The same holds for the other particles:

factor

foreachtype 1 <j<k-—1
(@)m,

» Generating functions for all paths with fixed charge content

q Wmwce

G = g @
with

k—1
Wmwe = Z min(i,j) m; m
-1



» Full generating function:

00 N2+~'+N2 ENg Ny
qt k=171 k—1
G= Z Gm)= Y
M1 oo (@my e (@)my

with N; defined as



» Full generating function:

00 N2+~'+N2 ENg Ny
qt k=171 k—1
G= Z Gm)= Y
M1 oo (@my e (@)my

with N; defined as
N]‘ =m; +e Mg

» This is the fermionic character of the M(2,2k + 1) vacuum
module (FNO)

» Bressoud paths have a clear particle interpretation



Particles in RSOS paths



RSOS(2,2k + 1) vs Bressoud paths

» RSOS(2,2k + 1) paths «» Partitions PSR « Bressoud paths
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RSOS(2,2k + 1) vs Bressoud paths

» RSOS(2,2k + 1) paths «» Partitions PSR « Bressoud paths

Search for a direct bijection:
» RSOS(2,2k + 1) paths « Bressoud paths

» Objective: identify particles in (generic) RSOS paths



Particles in RSOS(2,p) paths?

E.g. in the RSOS(2,7) path

\\\\\\\\\\\\\\\\\

13

11



Particles in RSOS(2,p) paths?

E.g. in the RSOS(2,7) path
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Particles in RSOS(2,p) paths?

E.g. in the RSOS(2,7) path
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Particles in RSOS(2,p) paths?

E.g. in the RSOS(2,7) path
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Observations:

» Peak above the yellow band: pair o e with weight = position of o

» Valley below the yellow band: pair e o with weight = position of e



Transformation of the RSOS(2,p) paths

These observations suggest to transform the RSOS(2,7) path
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Transformation of the RSOS(2,p) paths

These observations suggest to transform the RSOS(2,7) path
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by flattening the colored band
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redefine the vertical axis
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redefine the vertical axis
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and fold the lower part onto the upper one
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redefine the vertical axis

and fold the lower part onto the upper one

17

14

the result is a Bressoud path: weight = x position of the peaks:

24+9+14417

W =



Is this 1-1?




Is this 1-1?
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Is this 1-1?

2

1
0

17

14

is also related to

13

11

But this has a final NE edge: enforcing a final SE: 1-1.relation



From RSOS(p’,p) to generalized Bressoud paths

» Flatten all colored bands



From RSOS(p’,p) to generalized Bressoud paths

» Flatten all colored bands

» But restrictions are required: e.g., RSOS(6,7):
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From RSOS(p’,p) to generalized Bressoud paths

» Restriction to p > 2p’ — 1: isolated colored bands



From RSOS(p’,p) to generalized Bressoud paths
» Restriction to p > 2p’ — 1: isolated colored bands
» Flatten all colored bands

Fold the part below the first band



From RSOS(p’,p) to generalized Bressoud paths

» Restriction to p > 2p’ — 1: isolated colored bands
» Flatten all colored bands
Fold the part below the first band

» Result: generalized Bressoud paths defined in

0<y<p-p'— L)BJ

» ...with H edges allowed at height

tp p

Y(t):{EJ{aJt‘Fl (1<t<p'—1)
(with a condition relating the parity of successive H edges and
the change of direction of the path)



From RSOS(p’,p) to generalized Bressoud paths

» Restriction to p > 2p’ — 1: isolated colored bands
» Flatten all colored bands
Fold the part below the first band

» Result: generalized Bressoud paths defined in

0<y<p-p'— L)BJ

» ...with H edges allowed at height

tp p

Y(t):{EJ{FJt‘Fl (1<t<p'—1)
(with a condition relating the parity of successive H edges and
the change of direction of the path)

» ..and
w = (half) x position of the (half) peaks



Our RSOS(3,7) path
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Our RSOS(3,7) path
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is transformed into

VAN

19
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11

=2

0,1 but noty

with H edges allowed at y



Our RSOS(3,7) path
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is transformed into

19
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1
2—|—5—|—9—|—19—|—§(7—|—11—|—13—|—15)

W =



Similary, our RSOS(4,7) path

13

11

is transformed into:

0,1,2 and

H edges aty

1)

1
14+ 5 (4+8+10+16+18) — (wgs

W =



Fermi-gas analysis of the B(3,p) paths

3k +2): 3 particles

RSOS(3,11) (case p
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Fermi-gas analysis of the B(3,p) paths

3k +2): 3 particles

RSOS(3,11) (case p

kinks-anitkinks

13 15 17 19 21 23 25 27
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Fermi-gas analysis of the B(3,p) paths

3k +2): 3 particles

RSOS(3,11) (case p

kinks-anitkinks

breathers

13 15 17 19 21 23 25 27

11
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Fermi-gas analysis of the B(p’,2p’ +1) paths

RSOS(5,11): 4 particles

13 15 17 19 21 23 25 27 29 31 33 35
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Fermi-gas analysis of the B(p’,2p’ +1) paths
RSOS(5,11): 4 particles

13 15 17 19 21 23 25 27 29 31 33 35

11

1 breather and kinks-antikinks of topological charge from 1 to 3



Fermi-gas analysis of the B(p’,2p’ —1) paths

RSOS(6,11): 4 particles

13 15 17 19 21 23 25 27 29 31 33 35

11




Fermi-gas analysis of the B(p’,2p’ —1) paths
RSOS(6,11): 4 particles

kinks-antikinks of topological charge from 1 to 4

no breathers



Particle content of RSOS paths

» Numbers of kinks = number of vacua -1

kinks interpolate between yellow bands

#kinks = (p'—1)—1

» Numbers of breathers = number bands below the first yellow one

#breathers = {BJ -1

/

no breathers if p < 2p’

» Match the spectrum of the restricted sine-Gordon model with

Bz p’
8t p



A duality relation

» The finitized (polynomial e.g., L < co) form of the character
allows for a duality relation

q-:
q

» Under this transformation

M(p',p) = M(p—p’,p)

» Bands under duality: colored < white



Duality M(p’,p) — M(p —p’,p) in color

Compare RSOS(3,7)

13

11

vs RSOS(4,7)
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11



Conclusion

» The transformation of RSOS(p’,p) to B(p’,p) paths is a key step
for a direct fermi-gas analysis; it makes the particle interpretation
transparent

» The particle interpretation match that of RSG which is a
¢1 3-perturbation of M(p’,p) (= scaling limit of RSOS(p’,p) in
regiime IlI)

» More to be extracted from this?

» Can this be lifted to a CFT interpretation?



M (k + 2,2k + 3) fermionic character

From the direct Fermi-gas analysis (k particles, no breathers)

k—1
(k+2,2k+3 Z qum+Cm [mi +Pj]
11 Po i1 m; )
where
and .
dla ;
{a} _ @as@p T 0=b=a
bl, 0 otherwise,
and
so that

po = number of half peaks



