Combinatorics of RSOS paths

Pierre Mathieu

(partly with Patrick Jacob)

The (R)SOS models

- Variables: heights ℓ_{i} at the vertices of a square lattice
- SOS: $\ell_{i} \in \mathbb{Z}$
- Defining condition $\left|\ell_{i}-\ell_{j}\right|=1$ for i, j nearest neighbors
- Interaction defined for the 4 sites of a paquette via w

$$
w(a, b, c, d)
$$

The (R)SOS models

- Variables: heights ℓ_{i} at the vertices of a square lattice
- SOS: $\ell_{i} \in \mathbb{Z}$
- Defining condition $\left|\ell_{i}-\ell_{j}\right|=1$ for i, j nearest neighbors
- Interaction defined for the 4 sites of a paquette via w

- RSOS version: $\ell_{i} \in\{1,2 \cdots, p-1\}$ and

$$
\eta^{8 \vee}=\frac{K\left(p-p^{\prime}\right)}{p}
$$

Scaling limit at criticality : minimal models

- Transition from regimes III to IV:
critical theory related to $M\left(p^{\prime}, p\right)$ with

$$
c=1-6 \frac{\left(p-p^{\prime}\right)^{2}}{p p^{\prime}}
$$

unitary case: $p^{\prime}=p-1$

Minimal models: states vs paths

- Local state probabiblities: use CTM:

$$
P_{a} \propto 1 \mathrm{D} \text { configuration sum }
$$

Minimal models: states vs paths

- Local state probabiblities: use CTM:

$$
P_{a} \propto 1 D \text { configuration sum }
$$

- Regime III: [Kyoto group]
configuration sum \equiv sum over paths = Virasoro character

Minimal models: states vs paths

- Local state probabiblities: use CTM:

$$
P_{a} \propto 1 \mathrm{D} \text { configuration sum }
$$

- Regime III: [Kyoto group]
configuration sum \equiv sum over paths $=$ Virasoro character
- General goal: derive the fermionic characters (= GF in a manifestly positive form) constructively from RSOS paths by via their 'particle content'

Minimal models: states vs paths

- Local state probabiblities: use CTM:

$$
P_{a} \propto 1 \mathrm{D} \text { configuration sum }
$$

- Regime III: [Kyoto group]
configuration sum \equiv sum over paths $=$ Virasoro character
- General goal: derive the fermionic characters (= GF in a manifestly positive form) constructively from RSOS paths by via their 'particle content'
- Focus here: display a weight preserving bijection between certain Dick paths (RSOS) to new Motzkin-type paths (generalized Bressoud)

Defining RSOS paths

and

relating paths to states

$\operatorname{RSOS}\left(p^{\prime}, p\right)$ paths (regime-III)

Configurations

- Configuration = sequence of values of the
$\ell_{i} \in\{1,2, \cdots, p-1\}$

$$
(0 \leq i \leq L)
$$

- with $\left|\ell_{i}-\ell_{i+1}\right|=1$
- and the boundary conditions:
ℓ_{0}, ℓ_{L-1} and ℓ_{L} fixed

$\operatorname{RSOS}\left(p^{\prime}, p\right)$ paths (regime-III)

Configurations

- Configuration = sequence of values of the

$$
\begin{aligned}
& \ell_{i} \in\{1,2, \cdots, p-1\} \\
& (0 \leq i \leq L)
\end{aligned}
$$

- with $\left|\ell_{i}-\ell_{i+1}\right|=1$
- and the boundary conditions: ℓ_{0}, ℓ_{L-1} and ℓ_{L} fixed

Paths

- A path is the contour of a configuration.
- Path = sequence of NE or SE edges
- choice $\ell_{L-1}=\ell_{L}+1$: fixed last edge: SE

A typical $\operatorname{RSOS}\left(p^{\prime}, 7\right)$ configuration: $\ell_{0}=1, \ell_{19}=4, \ell_{20}=3$

A typical RSOS $\left(p^{\prime}, 7\right)$ configuration: $\ell_{0}=1, \ell_{19}=4, \ell_{20}=3$

and the corresponding path (with $\ell_{20}=3$)

A typical $\operatorname{RSOS}\left(p^{\prime}, 7\right)$ path : $\ell_{0}=1$ and $\ell_{20}=3$ and final SE

A typical $\operatorname{RSOS}\left(p^{\prime}, 7\right)$ path : $\ell_{0}=1$ and $\ell_{20}=3$ and final SE

- But this corresponds to a state for which model ? (value of p^{\prime} ?)
- ...and to which module (r, s) ?
- ...and what is its conformal dimension?

Weighting the path

The dependence of the path upon the parameter p^{\prime} is via the weight:

$$
\tilde{W}=\sum_{i=1}^{L-1} \tilde{W}_{i}
$$

Vertex \tilde{w}_{i}

The expressions of \tilde{w}_{i} / i for the extrema

	$p^{\prime}=2$		$p^{\prime}=3$		$p^{\prime}=6$	
h	\max	\min	\max	\min	\max	\min
6	-3	-	-2	-	0	-
5	-2	4	-2	3	0	0
4	-2	3	-1	2	0	0
3	-1	2	-1	2	0	0
2	0	2	0	1	0	0
1	-	1	-	1	-	0

The weight function is not positive

Weight vs conformal dimension

- Classes of paths are specified by ℓ_{0} and ℓ_{L}
- Ground-state path $=$ unique path with minimal weight, given ℓ_{0}, ℓ_{L}
- This path represents a highest-weight state
- Let its weight be $\tilde{W}_{g s}$
- The relative weight

$$
\Delta \tilde{w}=\tilde{w}-\tilde{w}_{\mathrm{gs}}
$$

is the (relative) conformal dimension (function of p^{\prime})

Generating functions for paths

- The GF is the q-enumeration of the paths

$$
X_{\ell_{0}, \ell_{L}}^{\left(p^{\prime}, p\right)}(q)=\sum_{\substack{\text { paths with } \\ \ell_{0} \text { and } \ell_{L} \text { fixed }}} q^{\Delta \tilde{w}}
$$

Generating functions for paths

- The GF is the q-enumeration of the paths

$$
X_{\ell_{0}, \ell_{L}}^{\left(p^{\prime}, p\right)}(q)=\sum_{\substack{\text { paths with } \\ \ell_{0} \text { and } \ell_{L} \text { fixed }}} q^{\Delta \tilde{w}}
$$

- For $L \rightarrow \infty$: when is this a character of $M\left(p^{\prime}, p\right)$?

Generating functions for paths

- The GF is the q-enumeration of the paths

$$
X_{\ell_{0}, \ell_{L}}^{\left(p^{\prime}, p\right)}(q)=\sum_{\substack{\text { paths with } \\ \ell_{0} \text { and } \ell_{L} \text { fixed }}} q^{\Delta \tilde{w}}
$$

- For $L \rightarrow \infty$: when is this a character of $M\left(p^{\prime}, p\right)$?

Need to restrict ℓ_{L} :
the tail of the path must lie in one of the RSOS vaccua

A new weight function for the paths

[Foda-Lee-Pugai-Welsh]

- Make the defining rectangle looks p^{\prime}-dependent
- Color the $p^{\prime}-1$ strips between the heights h and $h+1$ for which:

$$
\left\lfloor\frac{h p^{\prime}}{p}\right\rfloor=\left\lfloor\frac{(h+1) p^{\prime}}{p}\right\rfloor-1
$$

- Solutions:

$$
h=h_{t} \equiv\left\lfloor\frac{t p}{p^{\prime}}\right\rfloor \quad \text { for } \quad 1 \leq t \leq p^{\prime}-1 .
$$

Our RSOS $\left(p^{\prime}, 7\right)$ path

Our $\operatorname{RSOS}\left(p^{\prime}, 7\right)$ path

The same path for the $\operatorname{RSOS}(2,7)$ model.

The same path for the $\operatorname{RSOS}(3,7)$ model.

The same path for the RSOS $(3,7)$ model.

The same path for the $\operatorname{RSOS}(4,7)$ model.

The same path for the $\operatorname{RSOS}(5,7)$ model.

The same path for the $\operatorname{RSOS}(5,7)$ model.

The same path for the $\operatorname{RSOS}(6,7)$ model.

Scoring vertices

Vertex Weight

$$
u_{i}=\frac{1}{2}\left(i-\ell_{i}+\ell_{0}\right), \quad v_{i}=\frac{1}{2}\left(i+\ell_{i}-\ell_{0}\right)
$$

Our RSOS $(2,7)$ path with the "scoring vertices"

$$
\circ \leftrightarrow u_{i}=\frac{1}{2}\left(i-\ell_{i}+\ell_{0}\right) \quad \bullet \leftrightarrow v_{i}=\frac{1}{2}\left(i+\ell_{i}-\ell_{0}\right)
$$

Our RSOS $(2,7)$ path with the "scoring vertices"

$$
\circ \leftrightarrow u_{i}=\frac{1}{2}\left(i-\ell_{i}+\ell_{0}\right) \quad \bullet \leftrightarrow v_{i}=\frac{1}{2}\left(i+\ell_{i}-\ell_{0}\right)
$$

Remark: this weighting is absolute

The ground-state path for the case $\ell_{0}=1$ and $\ell_{L}=3$

The weight is absolute:

$$
w_{\mathrm{gs}}=0 \quad \Rightarrow \quad w-w_{\mathrm{gs}}=w
$$

A constraint on ℓ_{L}

- Tails in colored bands have weight $w=0$

Or: colored bands correspond to the RSOS vacua

- Such tails are the proper ends for infinite paths

A constraint on ℓ_{L}

- Tails in colored bands have weight $w=0$

Or: colored bands correspond to the RSOS vacua

- Such tails are the proper ends for infinite paths
- Previous question: When is

$$
X_{\ell_{0}, \ell_{L}}^{\left(p^{\prime}, p\right)}(q)=\sum_{\substack{\text { paths with } \\ \ell_{0} \text { and } \ell_{L} \text { fixed }}} q^{\Delta \tilde{w}}
$$

a character of $M\left(p^{\prime}, p\right)$ for $L \rightarrow \infty$?
Answer: When

$$
\ell_{L}=\left\lfloor\frac{t p}{p^{\prime}}\right\rfloor \quad \text { with } \quad 1 \leq t \leq p^{\prime}-1
$$

Module identification vs boundaries

$$
\ell_{L}=\left\lfloor\frac{t p}{p^{\prime}}\right\rfloor \quad \text { with } \quad 1 \leq t \leq p^{\prime}-1
$$

- There is no constraints on ℓ_{0}

$$
1 \leq \ell_{0} \leq p-1
$$

Module identification vs boundaries

$$
\ell_{L}=\left\lfloor\frac{t p}{p^{\prime}}\right\rfloor \quad \text { with } \quad 1 \leq t \leq p^{\prime}-1
$$

- There is no constraints on ℓ_{0}

$$
1 \leq \ell_{0} \leq p-1
$$

- How can we relate the Kac labels r, s where

$$
1 \leq s \leq p-1 \quad 1 \leq r \leq p^{\prime}-1
$$

to ℓ_{0} and t ?

Module identification vs boundaries

$$
\ell_{L}=\left\lfloor\frac{t p}{p^{\prime}}\right\rfloor \quad \text { with } \quad 1 \leq t \leq p^{\prime}-1
$$

- There is no constraints on ℓ_{0}

$$
1 \leq \ell_{0} \leq p-1
$$

- How can we relate the Kac labels r, s where

$$
1 \leq s \leq p-1 \quad 1 \leq r \leq p^{\prime}-1
$$

to ℓ_{0} and t ?

- Comparing the ranges suggests

$$
s=\ell_{0} \quad \text { and } \quad r=t
$$

A bit of Virasoro representation theory

$M\left(p^{\prime}, p\right)$ irreducible modules:

- Highest-weight states of conformal dimensions

$$
\begin{gathered}
h_{r, s}=\frac{\left(p r-p^{\prime} s\right)^{2}-\left(p-p^{\prime}\right)^{2}}{4 p p^{\prime}}=h_{p^{\prime}-r, p-s} \\
1 \leq r \leq p^{\prime}-1 \quad \text { and } \quad 1 \leq s \leq p-1
\end{gathered}
$$

- Highest-weight modules are completely degenerate

Embedding pattern of singular vectors

Paths vs states

- Paths are blind to $h_{r, s}$:

$$
w=h-h_{r, s}
$$

with r, s fixed by ℓ_{0} and ℓ_{L} (but yet to be fixed)
$\Rightarrow w$ cannot fix r, s

Paths vs states

- Paths are blind to $h_{r, s}$:

$$
w=h-h_{r, s}
$$

with r, s fixed by ℓ_{0} and ℓ_{L} (but yet to be fixed)
$\Rightarrow w$ cannot fix r, s

- Recall

RSOS = restriction of SOS

Restriction of the space of states: captured by the defining strip

Paths vs states

- Paths are blind to $h_{r, s}$:

$$
w=h-h_{r, s}
$$

with r, s fixed by ℓ_{0} and ℓ_{L} (but yet to be fixed)
$\Rightarrow w$ cannot fix r, s

- Recall

RSOS = restriction of SOS

Restriction of the space of states: captured by the defining strip

- Release the restrictions and identify the first two removed paths: candidates for the primitive SV

$$
w_{1}=r s \quad w_{2}=\left(p^{\prime}-r\right)(p-s)
$$

Identify singular vectors: extend the band structure

First singular vector: path below

First singular vector: path below

- The first excluded path from below has $w=1$:
- Thus: the module with $\ell_{0}=1$ and $t=1$ has a SV at level 1

Second singular vector: path above

Second singular vector: path above

- The first excluded path from above has $w=6$:
- Thus: the module with $\ell_{0}=1$ and $t=1$ has a SV at level 6

Module identification vs boundaries

- In our example

$$
\begin{gathered}
s r=1 \\
\left(p^{\prime}-r\right)(p-s)=(2-r)(7-s)=6
\end{gathered}
$$

$$
\Rightarrow \quad s=r=1
$$

Module identification vs boundaries

- In our example

$$
\begin{array}{ccc}
s r=1 \\
\left(p^{\prime}-r\right)(p-s)=(2-r)(7-s)=6 & \Rightarrow & s=r=1
\end{array}
$$

- More generally: SV analysis supports the identification

$$
s=\ell_{0} \quad \text { and } \quad r=t
$$

Module identification vs boundaries

- In our example

$$
\begin{array}{ccc}
s r=1 \\
\left(p^{\prime}-r\right)(p-s)=(2-r)(7-s)=6 & \Rightarrow & s=r=1
\end{array}
$$

- More generally: SV analysis supports the identification

$$
s=\ell_{0} \quad \text { and } \quad r=t
$$

- The Virasoro character is

$$
x_{r, s}^{\left(p^{\prime}, p\right)}(q)=\lim _{L \rightarrow \infty} X_{s,\left\lfloor\frac{p}{p^{\prime}}\right\rfloor}^{\left(p^{\prime}, p\right)}(q)
$$

The first few sates in the $M(2,7)$ vacuum module

These correspond to the first few terms in the character

$$
x_{1,1}^{(2,7)}(q)=1+q^{2}+q^{3}+2 q^{4}+2 q^{5}+3 q^{6}+\cdots
$$

RSOS paths, Partitions

and

Bressoud paths

Partitions: hook differences

- To a partition $\left(\lambda_{1}, \lambda_{2}, \cdots\right)$, i.e., $\lambda_{i} \geq \lambda_{i+1}$
- corresponds a Young diagram, with λ_{i} boxes in the i-th row

$$
(4,2,2,1):
$$

Partitions: hook differences

- To a partition $\left(\lambda_{1}, \lambda_{2}, \cdots\right)$, i.e., $\lambda_{i} \geq \lambda_{i+1}$
- corresponds a Young diagram, with λ_{i} boxes in the i-th row

$$
(4,2,2,1):
$$

- For the box (i, j), the hook difference $H(i, j)$ is

$$
H(i, j)=\text { \#boxes in row } i-\text { \#boxes in column } j
$$

0	1	3	3
$\overline{2}$	$\overline{1}$		
$\overline{2}$	$\overline{1}$		
$\overline{3}$			

$$
(\bar{a} \equiv-a)
$$

Partitions: diagonals

- Diagonal d : the set of boxes $(i, i-d)$.

$d=0$

$d=1$

$d=-1$

Partitions with prescribed hook differences (PHD)

[Andrews-Baxter-Bressoud-Burge-Forrester-Viennot]
Introduce 4 numbers

$$
p, p^{\prime}, r, s
$$

such that

$$
1 \leq r \leq p^{\prime}-1 \quad \text { and } \quad 1 \leq s \leq p-1 \quad \text { and } \quad p>p^{\prime} \geq 2
$$

Partitions with prescribed hook differences (PHD)

[Andrews-Baxter-Bressoud-Burge-Forrester-Viennot]
Introduce 4 numbers

$$
p, p^{\prime}, r, s
$$

such that

$$
1 \leq r \leq p^{\prime}-1 \quad \text { and } \quad 1 \leq s \leq p-1 \quad \text { and } p>p^{\prime} \geq 2
$$

On the two diagonals

$$
p^{\prime}-r-1 \quad \text { and } \quad 1-r
$$

impose the PHD

$$
\begin{aligned}
H\left(i, i-\left(p^{\prime}-r-1\right)\right) & \leq p-p^{\prime}-s+r-1 \\
H(i, i-(1-r)) & \geq-s+r+1
\end{aligned}
$$

- Let

$$
\mathrm{P}_{p, s}\left(p^{\prime}-r, r ; n\right)=\# \text { of partitions of } n \text { with PHD }
$$

- Let

$$
\mathrm{P}_{p, s}\left(p^{\prime}-r, r ; n\right)=\# \text { of partitions of } n \text { with PHD }
$$

- Then we have the amazing [ABBBFV]

$$
x_{r, s}^{\left(p^{\prime}, p\right)}(q)=\sum_{n \geq 0} P_{p, s}\left(p^{\prime}-r, r ; n\right) q^{n} .
$$

- Let

$$
\mathrm{P}_{p, s}\left(p^{\prime}-r, r ; n\right)=\# \text { of partitions of } n \text { with PHD }
$$

- Then we have the amazing [ABBBFV]

$$
x_{r, s}^{\left(p^{\prime}, p\right)}(q)=\sum_{n \geq 0} P_{p, s}\left(p^{\prime}-r, r ; n\right) q^{n} .
$$

- Or

RSOS paths \leftrightarrow Partitions PHD

Partitions with prescribed successive ranks

- Special case where

$$
p^{\prime}=2 \quad \text { and } \quad p=2 k+1
$$

so that (recall $1 \leq r \leq p^{\prime}-1$)

$$
r=1 \quad \Rightarrow \quad r-1=p^{\prime}-r-1=0
$$

Partitions with prescribed successive ranks

- Special case where

$$
p^{\prime}=2 \quad \text { and } \quad p=2 k+1
$$

so that (recall $1 \leq r \leq p^{\prime}-1$)

$$
r=1 \quad \Rightarrow \quad r-1=p^{\prime}-r-1=0
$$

- The PHD reduce to

$$
-s+2 \leq H(i, i) \leq 2 k-1-s
$$

- $H(i, i)$: successive ranks [Dyson, Andrews]

Restricted partitions

- Partitions with

$$
-s+2 \leq H(i, i) \leq 2 k-1-s
$$

are in 1-1 correspondence with

- Restricted partitions: $\left(\lambda_{1}, \lambda_{2}, \cdots\right)$ s.t.

$$
\lambda_{i}-\lambda_{i+k-1} \geq 2
$$

and containing at most s parts equal to 1
$k=2$: combinatorics of the sum-side of the RR identities
are in 1-1 correspondence with

Bressoud paths [Burge]

Integer lattice paths

- defined in the strip:

$$
0 \leq x \leq \infty, \quad 0 \leq y \leq k-1
$$

with initial point $(0, k-s)$

- composed of NE, SE and Horizontal edges (H iff $y=0$)
- weight $=x$-position of the peaks

A Bressoud path for $k=5$ and $s=3$

$$
0 \leq y \leq k-1=4, \quad y_{0}=k-s=2
$$

Weight

$$
w=2+6+10+14+18+27
$$

A Bressoud path : sequence of charged peaks

Isolated peak:
Charge $=$ height

In a charge complex:
Charge $=$ relative height

The charge (\equiv particle) content of the path is:

$$
m_{1}=2, m_{2}=2, m_{3}=1, m_{4}=1
$$

\{Bressoud paths\}

as a fermi gas

Bressoud paths : generating function [Warnaar]

- For a fixed charge content (fixed $\left\{m_{j}\right\}$): determine the configuration of minimal weight (mwc)

Bressoud paths : generating function [Warnaar]

- For a fixed charge content (fixed $\left\{m_{j}\right\}$): determine the configuration of minimal weight (mwc)

Example: $m_{1}=3, m_{2}=2, m_{3}=1\left(y_{0}=0\right)$:

Bressoud paths : generating function [Warnaar]

- For a fixed charge content (fixed $\left\{m_{j}\right\}$): determine the configuration of minimal weight (mwc)

Example: $m_{1}=3, m_{2}=2, m_{3}=1\left(y_{0}=0\right)$:

- Evaluate its weight: above $w_{\mathrm{mwc}}=1+3+5+8+12+17$

Bressoud paths : generating function [Warnaar]

- For a fixed charge content (fixed $\left\{m_{j}\right\}$): determine the configuration of minimal weight (mwc)

Example: $m_{1}=3, m_{2}=2, m_{3}=1\left(y_{0}=0\right)$:

- Evaluate its weight: above $w_{\mathrm{mwc}}=1+3+5+8+12+17$

In general

$$
w_{\mathrm{mwc}}=\sum_{i, j=1}^{k-1} \min (i, j) m_{i} m_{j}
$$

- Move the particles (peaks) in all possible ways and q-count them Ex: consider $m_{1}=3$

- Move the particles (peaks) in all possible ways and q-count them Ex: consider $m_{1}=3$

- Rule 1: Identical particles are impenetrable (hard-core repulsion): Ex: move the rightmost by 9 , the next by 6 and the third by 4

- Move the particles (peaks) in all possible ways and q-count them Ex: consider $m_{1}=3$

- Rule 1: Identical particles are impenetrable (hard-core repulsion): Ex: move the rightmost by 9 , the next by 6 and the third by 4

- Generating factor for these moves
= the number of partitions with at most three parts:

$$
\frac{1}{(1-q)\left(1-q^{2}\right)\left(1-q^{3}\right)} \equiv \frac{1}{(q)_{3}} \quad \rightarrow \quad \frac{1}{(q)_{m_{1}}}
$$

- Rule 2: Particles of different charges can penetrate Consider the successive displacements of the peak 1 in 3 :

- Every move of 1 unit increases the weight by 1 independently of the presence of higher charged particles

$$
\text { i.e. } \frac{1}{(q)_{m_{1}}} \text { is generic }
$$

- The same holds for the other particles:

$$
\text { factor } \frac{1}{(q) m_{j}} \quad \text { for each type } 1 \leq j \leq k-1
$$

- Generating functions for all paths with fixed charge content

$$
G\left(\left\{m_{j}\right\}\right)=\frac{q^{w_{m w c}}}{(q)_{m_{1}} \ldots(q)_{m_{k-1}}}
$$

with

$$
w_{\mathrm{mwc}}=\sum_{i, j=1}^{k-1} \min (i, j) m_{i} m_{j}
$$

- Full generating function:

$$
G=\sum_{m_{1}, \cdots, m_{k-1}} G\left(\left\{m_{j}\right\}\right)=\sum_{m_{1}, \cdots, m_{k-1}=0}^{\infty} \frac{q^{N_{1}^{2}+\cdots+N_{k-1}^{2}+N_{1}+\cdots+N_{k-1}}}{(q)_{m_{1}} \cdots(q)_{m_{k-1}}}
$$

with N_{j} defined as

$$
N_{j}=m_{j}+\cdots+m_{k-1}
$$

- Full generating function:

$$
G=\sum_{m_{1}, \cdots, m_{k-1}} G\left(\left\{m_{j}\right\}\right)=\sum_{m_{1}, \cdots, m_{k-1}=0}^{\infty} \frac{q^{N_{1}^{2}+\cdots+N_{k-1}^{2}+N_{1}+\cdots+N_{k-1}}}{(q)_{m_{1}} \cdots(q)_{m_{k-1}}}
$$

with N_{j} defined as

$$
N_{j}=m_{j}+\cdots+m_{k-1}
$$

- This is the fermionic character of the $M(2,2 k+1)$ vacuum module (FNO)
- Bressoud paths have a clear particle interpretation

Particles in RSOS paths

RSOS $(2,2 k+1)$ vs Bressoud paths

- RSOS $(2,2 k+1)$ paths \leftrightarrow Partitions PSR \leftrightarrow Bressoud paths

RSOS $(2,2 k+1)$ vs Bressoud paths

- RSOS $(2,2 k+1)$ paths \leftrightarrow Partitions PSR \leftrightarrow Bressoud paths

Search for a direct bijection:

- RSOS $(2,2 k+1)$ paths \leftrightarrow Bressoud paths

RSOS $(2,2 k+1)$ vs Bressoud paths

- RSOS $(2,2 k+1)$ paths \leftrightarrow Partitions PSR \leftrightarrow Bressoud paths

Search for a direct bijection:

- RSOS $(2,2 k+1)$ paths \leftrightarrow Bressoud paths
- Objective: identify particles in (generic) RSOS paths

Particles in $\operatorname{RSOS}(2, p)$ paths?

E.g. in the RSOS $(2,7)$ path

Particles in $\operatorname{RSOS}(2, p)$ paths?

E.g. in the $\operatorname{RSOS}(2,7)$ path

Particles in $\operatorname{RSOS}(2, p)$ paths?

E.g. in the RSOS $(2,7)$ path

Particles in $\operatorname{RSOS}(2, p)$ paths?

E.g. in the RSOS $(2,7)$ path

Observations:

- Peak above the yellow band: pair $\circ \bullet$ with weight $=$ position of \circ
- Valley below the yellow band: pair $\bullet \circ$ with weight $=$ position of \bullet

Transformation of the $\operatorname{RSOS}(2, p)$ paths

These observations suggest to transform the RSOS $(2,7)$ path

Transformation of the $\operatorname{RSOS}(2, p)$ paths

These observations suggest to transform the RSOS $(2,7)$ path

by flattening the colored band

redefine the vertical axis

redefine the vertical axis

and fold the lower part onto the upper one

redefine the vertical axis

and fold the lower part onto the upper one

the result is a Bressoud path: weight $=x$ position of the peaks:

$$
w=2+9+14+17
$$

Is this 1-1?

Is this 1-1?

is also related to

Is this 1-1?

is also related to

But this has a final NE edge: enforcing a final SE: 1-1 relation

From $\operatorname{RSOS}\left(p^{\prime}, p\right)$ to generalized Bressoud paths

- Flatten all colored bands

From $\operatorname{RSOS}\left(p^{\prime}, p\right)$ to generalized Bressoud paths

- Flatten all colored bands
- But restrictions are required: e.g., RSOS(6,7):

From $\operatorname{RSOS}\left(p^{\prime}, p\right)$ to generalized Bressoud paths

- Restriction to $p \geq 2 p^{\prime}-1$: isolated colored bands

From $\operatorname{RSOS}\left(p^{\prime}, p\right)$ to generalized Bressoud paths

- Restriction to $p \geq 2 p^{\prime}-1$: isolated colored bands
- Flatten all colored bands

Fold the part below the first band

From $\operatorname{RSOS}\left(p^{\prime}, p\right)$ to generalized Bressoud paths

- Restriction to $p \geq 2 p^{\prime}-1$: isolated colored bands
- Flatten all colored bands

Fold the part below the first band

- Result: generalized Bressoud paths defined in

$$
0 \leq y \leq p-p^{\prime}-\left\lfloor\frac{p}{p^{\prime}}\right\rfloor
$$

- ... with H edges allowed at height

$$
y(t)=\left\lfloor\frac{t p}{p^{\prime}}\right\rfloor-\left\lfloor\frac{p}{p^{\prime}}\right\rfloor-t+1 \quad\left(1 \leq t \leq p^{\prime}-1\right)
$$

(with a condition relating the parity of successive H edges and the change of direction of the path)

From $\operatorname{RSOS}\left(p^{\prime}, p\right)$ to generalized Bressoud paths

- Restriction to $p \geq 2 p^{\prime}-1$: isolated colored bands
- Flatten all colored bands

Fold the part below the first band

- Result: generalized Bressoud paths defined in

$$
0 \leq y \leq p-p^{\prime}-\left\lfloor\frac{p}{p^{\prime}}\right\rfloor
$$

- ... with H edges allowed at height

$$
y(t)=\left\lfloor\frac{t p}{p^{\prime}}\right\rfloor-\left\lfloor\frac{p}{p^{\prime}}\right\rfloor-t+1 \quad\left(1 \leq t \leq p^{\prime}-1\right)
$$

(with a condition relating the parity of successive H edges and the change of direction of the path)

- ...and

$$
w=\text { (half) } x \text { position of the (half) peaks }
$$

Our RSOS(3,7) path

Our RSOS(3,7) path

is transformed into

with H edges allowed at $y=0,1$ but not $y=2$

Our RSOS(3,7) path

is transformed into

$$
w=2+5+9+19+\frac{1}{2}(7+11+13+15)
$$

Similary, our RSOS $(4,7)$ path

is transformed into:

H edges at $y=0,1,2$ and

$$
w=14+\frac{1}{2}(4+8+10+16+18)-\left(w_{\mathrm{gs}}=1\right)
$$

Fermi-gas analysis of the $B(3, p)$ paths

$\operatorname{RSOS}(3,11)$ (case $p=3 k+2)$: 3 particles

Fermi-gas analysis of the $B(3, p)$ paths

 $\operatorname{RSOS}(3,11)$ (case $p=3 k+2): 3$ particles

Fermi-gas analysis of the $B(3, p)$ paths

$\operatorname{RSOS}(3,11)$ (case $p=3 k+2)$: 3 particles

kinks-anitkinks

Fermi-gas analysis of the $B(3, p)$ paths

$\operatorname{RSOS}(3,11)$ (case $p=3 k+2)$: 3 particles

breathers
kinks-anitkinks

Fermi-gas analysis of the $B\left(p^{\prime}, 2 p^{\prime}+1\right)$ paths

$\operatorname{RSOS}(5,11): 4$ particles

Fermi-gas analysis of the $B\left(p^{\prime}, 2 p^{\prime}+1\right)$ paths

RSOS $(5,11): 4$ particles

1 breather and kinks-antikinks of topological charge from 1 to 3

Fermi-gas analysis of the $\mathrm{B}\left(p^{\prime}, 2 p^{\prime}-1\right)$ paths

RSOS $(6,11): 4$ particles

Fermi-gas analysis of the $B\left(p^{\prime}, 2 p^{\prime}-1\right)$ paths

RSOS $(6,11): 4$ particles

kinks-antikinks of topological charge from 1 to 4
no breathers

Particle content of RSOS paths

- Numbers of kinks = number of vacua -1
kinks interpolate between yellow bands

$$
\# \text { kinks }=\left(p^{\prime}-1\right)-1
$$

- Numbers of breathers = number bands below the first yellow one

$$
\text { \#breathers }=\left\lfloor\frac{p}{p^{\prime}}\right\rfloor-1
$$

no breathers if $p<2 p^{\prime}$

- Match the spectrum of the restricted sine-Gordon model with

$$
\frac{\beta^{2}}{8 \pi}=\frac{p^{\prime}}{p}
$$

A duality relation

- The finitized (polynomial e.g., $L<\infty$) form of the character allows for a duality relation

$$
q \rightarrow \frac{1}{q}
$$

- Under this transformation

$$
M\left(p^{\prime}, p\right) \rightarrow M\left(p-p^{\prime}, p\right)
$$

- Bands under duality: colored \leftrightarrow white

Duality $M\left(p^{\prime}, p\right) \rightarrow M\left(p-p^{\prime}, p\right)$ in color

Compare $\operatorname{RSOS}(3,7)$

vs $\operatorname{RSOS}(4,7)$

Conclusion

- The transformation of $\operatorname{RSOS}\left(p^{\prime}, p\right)$ to $\mathrm{B}\left(p^{\prime}, p\right)$ paths is a key step for a direct fermi-gas analysis; it makes the particle interpretation transparent
- The particle interpretation match that of RSG which is a $\phi_{1,3}$-perturbation of $M\left(p^{\prime}, p\right)$ (= scaling limit of $\operatorname{RSOS}\left(p^{\prime}, p\right)$ in regiime III)
- More to be extracted from this?
- Can this be lifted to a CFT interpretation?

$M(k+2,2 k+3)$ fermionic character

From the direct Fermi-gas analysis (k particles, no breathers)

$$
x_{1,1}^{(k+2,2 k+3)}(q)=\sum_{m_{1}, \cdots, m_{k}} \frac{q^{m B m+C m}}{(q)_{p_{0}}} \prod_{i=1}^{k-1}\left[\begin{array}{c}
m_{i}+p_{j} \\
m_{j}
\end{array}\right]
$$

where

$$
B_{i, j}=B_{j, i} \quad B_{i, j}=(2 i-1) j \quad \text { if } \quad i \leq j \quad \text { and } \quad C_{j}=j
$$

and

$$
\left[\begin{array}{l}
a \\
b
\end{array}\right]_{q}=\left\{\begin{array}{ccc}
\frac{(q)_{a}}{(q)_{a-b}(q)_{b}} & \text { if } & 0 \leq b \leq a \\
0 & \text { otherwise }
\end{array}\right.
$$

and

$$
p_{j}=2 m_{j+2}+4 m_{j+2}+\cdots+2(k-j+1) m_{k}
$$

so that

$$
p_{0}=\text { number of half peaks }
$$

