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The (R)SOS models

◮ Variables: heights ℓi at the vertices of a square lattice

◮ SOS: ℓi ∈ Z

◮ Defining condition |ℓi − ℓj | = 1 for i, j nearest neighbors

◮ Interaction defined for the 4 sites of a paquette via w
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◮ RSOS version: ℓi ∈ {1,2 · · · ,p −1} and

η8V =
K (p −p ′)

p

[Andrews-Baxter-Forrester; Forrester-Baxter]



Scaling limit at criticality : minimal models

◮ Transition from regimes III to IV:

critical theory related to M(p ′,p) with

c = 1−6
(p −p ′)2

pp ′

unitary case: p ′ = p −1



Minimal models: states vs paths

◮ Local state probabiblities: use CTM:

Pa ∝ 1D configuration sum
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Minimal models: states vs paths

◮ Local state probabiblities: use CTM:

Pa ∝ 1D configuration sum

◮ Regime III: [Kyoto group]

configuration sum ≡ sum over paths = Virasoro character

◮ General goal: derive the

fermionic characters (= GF in a manifestly positive form)

constructively from RSOS paths by via their ‘particle content’

◮ Focus here: display a weight preserving bijection between
certain Dick paths (RSOS) to new Motzkin-type paths
(generalized Bressoud)



Defining RSOS paths

and

relating paths to states



RSOS(p ′,p) paths (regime-III)

Configurations

◮ Configuration = sequence of
values of the
ℓi ∈ {1,2, · · · ,p −1}

(0 ≤ i ≤ L)

◮ with |ℓi − ℓi+1| = 1

◮ and the boundary conditions:
ℓ0, ℓL−1 and ℓL fixed



RSOS(p ′,p) paths (regime-III)

Configurations

◮ Configuration = sequence of
values of the
ℓi ∈ {1,2, · · · ,p −1}

(0 ≤ i ≤ L)

◮ with |ℓi − ℓi+1| = 1

◮ and the boundary conditions:
ℓ0, ℓL−1 and ℓL fixed

Paths

◮ A path is the contour of a
configuration.

◮ Path = sequence of NE or SE
edges

◮ choice ℓL−1 = ℓL +1: fixed last
edge: SE



A typical RSOS(p ′,7) configuration: ℓ0 = 1, ℓ19 = 4, ℓ20 = 3
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and the corresponding path (with ℓ20 = 3)
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A typical RSOS(p ′,7) path : ℓ0 = 1 and ℓ20 = 3 and final SE
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A typical RSOS(p ′,7) path : ℓ0 = 1 and ℓ20 = 3 and final SE
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◮ But this corresponds to a state for which model ? (value of p ′?)

◮ ...and to which module (r ,s)?

◮ ...and what is its conformal dimension?



Weighting the path

The dependence of the path upon the parameter p ′ is via the weight:

w̃ =

L−1∑

i=1

w̃i

Vertex w̃i Vertex w̃i

i
2

i
2

h

h

i

i

−i
⌊

h (p−p ′)
p

⌋

i
⌊

h (p−p ′)
p

⌋

h+1

h−1

i

i

b

b

b

b
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6

The expressions of w̃i/i for the extrema

p ′ = 2 p ′ = 3 p ′ = 6
h max min max min max min
6 −3 − −2 − 0 −

5 −2 4 −2 3 0 0
4 −2 3 −1 2 0 0
3 −1 2 −1 2 0 0
2 0 2 0 1 0 0
1 − 1 − 1 − 0

The weight function is not positive



Weight vs conformal dimension

◮ Classes of paths are specified by ℓ0 and ℓL

◮ Ground-state path = unique path with minimal weight, given ℓ0, ℓL

◮ This path represents a highest-weight state

◮ Let its weight be w̃gs

◮ The relative weight
∆w̃ = w̃ − w̃gs

is the (relative) conformal dimension (function of p ′)



Generating functions for paths

◮ The GF is the q-enumeration of the paths

X (p ′,p)
ℓ0,ℓL

(q) =
∑

paths with
ℓ0 and ℓL fixed

q∆w̃
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Generating functions for paths

◮ The GF is the q-enumeration of the paths

X (p ′,p)
ℓ0,ℓL

(q) =
∑

paths with
ℓ0 and ℓL fixed

q∆w̃

◮ For L → ∞: when is this a character of M(p ′,p)?

Need to restrict ℓL:

the tail of the path must lie in one of the RSOS vaccua



A new weight function for the paths

[Foda-Lee-Pugai-Welsh]

◮ Make the defining rectangle looks p ′-dependent

◮ Color the p ′ −1 strips between the heights h and h +1 for which:

⌊

hp ′

p

⌋

=

⌊

(h +1)p ′

p

⌋

−1.

◮ Solutions:

h = ht ≡

⌊

tp
p ′

⌋

for 1 ≤ t ≤ p ′ −1.
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The same path for the RSOS(5,7) model.
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The same path for the RSOS(5,7) model.
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Scoring vertices

Vertex Weight Vertex Weight

0

0

ui

vi

ui

vi

0

0b

b

b

b

b

b

b

b

ui =
1
2

(i − ℓi + ℓ0) , vi =
1
2

(i + ℓi − ℓ0)

This is a positive definite weighting



Our RSOS(2,7) path with the “scoring vertices”

◦ ↔ ui =
1
2
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1
2
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Our RSOS(2,7) path with the “scoring vertices”

◦ ↔ ui =
1
2

(i − ℓi + ℓ0) •↔ vi =
1
2

(i + ℓi − ℓ0)
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r = 1
0

1 1
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7
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9 9
8bc

bc

bc

bc bc

b b

b

b

w = 1+1+2+7+5+8+9+8



Remark: this weighting is absolute

The ground-state path for the case ℓ0 = 1 and ℓL = 3
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t = 1

0

bc

The weight is absolute:

wgs = 0 ⇒ w −wgs = w



A constraint on ℓL

◮ Tails in colored bands have weight w = 0

Or: colored bands correspond to the RSOS vacua

◮ Such tails are the proper ends for infinite paths



A constraint on ℓL

◮ Tails in colored bands have weight w = 0

Or: colored bands correspond to the RSOS vacua

◮ Such tails are the proper ends for infinite paths

◮ Previous question: When is

X (p ′,p)
ℓ0,ℓL

(q) =
∑

paths with
ℓ0 and ℓL fixed

q∆w̃

a character of M(p ′,p) for L → ∞?

Answer: When

ℓL =

⌊

tp
p ′

⌋

with 1 ≤ t ≤ p ′ −1



Module identification vs boundaries

◮

ℓL =

⌊

tp
p ′

⌋

with 1 ≤ t ≤ p ′ −1

◮ There is no constraints on ℓ0

1 ≤ ℓ0 ≤ p −1
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Module identification vs boundaries

◮

ℓL =

⌊

tp
p ′

⌋

with 1 ≤ t ≤ p ′ −1

◮ There is no constraints on ℓ0

1 ≤ ℓ0 ≤ p −1

◮ How can we relate the Kac labels r ,s where

1 ≤ s ≤ p −1 1 ≤ r ≤ p ′ −1

to ℓ0 and t?

◮ Comparing the ranges suggests

s = ℓ0 and r = t



A bit of Virasoro representation theory

M(p ′,p) irreducible modules:

◮ Highest-weight states of conformal dimensions

hr ,s =
(pr −p ′s)2 −(p −p ′)2

4pp ′
= hp ′−r ,p−s

1 ≤ r ≤ p ′ −1 and 1 ≤ s ≤ p −1

◮ Highest-weight modules are completely degenerate



Embedding pattern of singular vectors
(r ,s) ∼ (p ′ − r ,p −s)

r s
(p ′ − r)(p −s)

b

b

b

b

b

χ
(p ′,p)
r ,s (q) =

1
(q)∞

−
qrs

(q)∞
−

q(p ′−r)(p−s)

(q)∞
+

qrs+(p ′+r)(p−s)

(q)∞
+ · · ·



Paths vs states

◮ Paths are blind to hr ,s:

w = h −hr ,s

with r ,s fixed by ℓ0 and ℓL (but yet to be fixed)

⇒ w cannot fix r ,s
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Paths vs states

◮ Paths are blind to hr ,s:

w = h −hr ,s

with r ,s fixed by ℓ0 and ℓL (but yet to be fixed)

⇒ w cannot fix r ,s

◮ Recall

RSOS= restriction of SOS

Restriction of the space of states: captured by the defining strip

◮ Release the restrictions and identify the first two removed paths:
candidates for the primitive SV

w1 = rs w2 = (p ′ − r)(p −s)



Identify singular vectors: extend the band structure
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First singular vector: path below
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First singular vector: path below
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◮ The first excluded path from below has w = 1:

◮ Thus: the module with ℓ0 = 1 and t = 1 has a SV at level 1



Second singular vector: path above
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Second singular vector: path above

1 3 5 7 9 11 13 15 17 19

1
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t = 1

bc
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6
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◮ The first excluded path from above has w = 6:

◮ Thus: the module with ℓ0 = 1 and t = 1 has a SV at level 6
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Module identification vs boundaries

◮ In our example

s r = 1

(p ′ − r)(p −s) = (2− r)(7−s) = 6
⇒ s = r = 1

◮ More generally: SV analysis supports the identification

s = ℓ0 and r = t

◮ The Virasoro character is

χ
(p ′,p)
r ,s (q) = lim

L→∞
X (p ′,p)

s,

⌊

rp
p ′

⌋(q)



The first few sates in the M(2,7) vacuum module

1
2
3
4
5
6

0 0 0 0 0 0
w = 0 w = 2 w = 3 w = 4 w = 4 w = 5

1
2
3
4
5
6

0 0 0 0
w = 5 w = 6 w = 6 w = 6

These correspond to the first few terms in the character

χ
(2,7)
1,1 (q) = 1+q2 +q3 +2q4 +2q5 +3q6 + · · ·



RSOS paths, Partitions

and

Bressoud paths



Partitions: hook differences

◮ To a partition (λ1,λ2, · · · ), i.e., λi ≥ λi+1

◮ corresponds a Young diagram, with λi boxes in the i-th row

(4,2,2,1) :



Partitions: hook differences

◮ To a partition (λ1,λ2, · · · ), i.e., λi ≥ λi+1

◮ corresponds a Young diagram, with λi boxes in the i-th row

(4,2,2,1) :

◮ For the box (i, j), the hook difference H(i, j) is

H(i, j) = #boxes in row i − #boxes in column j

0 1 3 3
2̄ 1̄
2̄ 1̄
3̄

(ā ≡ −a)



Partitions: diagonals

◮ Diagonal d : the set of boxes (i, i −d).

⋆

⋆

⋆

⋆

⋆

d = 0 d = 1 d = −1



Partitions with prescribed hook differences (PHD)

[Andrews-Baxter-Bressoud-Burge-Forrester-Viennot]

Introduce 4 numbers
p, p ′, r , s

such that

1 ≤ r ≤ p ′ −1 and 1 ≤ s ≤ p −1 and p > p ′ ≥ 2



Partitions with prescribed hook differences (PHD)

[Andrews-Baxter-Bressoud-Burge-Forrester-Viennot]

Introduce 4 numbers
p, p ′, r , s

such that

1 ≤ r ≤ p ′ −1 and 1 ≤ s ≤ p −1 and p > p ′ ≥ 2

On the two diagonals

p ′ − r −1 and 1− r

impose the PHD

H(i, i −(p ′ − r −1)) ≤ p −p ′ −s + r −1

H(i, i −(1− r)) ≥ −s + r +1



◮ Let
Pp,s(p ′ − r , r ;n) = # of partitions of n with PHD
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◮ Let
Pp,s(p ′ − r , r ;n) = # of partitions of n with PHD

◮ Then we have the amazing [ABBBFV]

χ
(p ′,p)
r ,s (q) =

∑

n≥0

Pp,s(p ′ − r , r ;n)qn.

◮ Or

RSOS paths ↔ Partitions PHD



Partitions with prescribed successive ranks

◮ Special case where

p ′ = 2 and p = 2k +1

so that (recall 1 ≤ r ≤ p ′ −1)

r = 1 ⇒ r −1 = p ′ − r −1 = 0



Partitions with prescribed successive ranks

◮ Special case where

p ′ = 2 and p = 2k +1

so that (recall 1 ≤ r ≤ p ′ −1)

r = 1 ⇒ r −1 = p ′ − r −1 = 0

◮ The PHD reduce to

−s +2 ≤ H(i, i) ≤ 2k −1−s

◮ H(i, i) : successive ranks [Dyson, Andrews]



Restricted partitions

◮ Partitions with

−s +2 ≤ H(i, i) ≤ 2k −1−s

are in 1-1 correspondence with

◮ Restricted partitions: (λ1,λ2, · · · ) s.t.

λi −λi+k−1 ≥ 2

and containing at most s parts equal to 1

k = 2: combinatorics of the sum-side of the RR identities

are in 1-1 correspondence with



Bressoud paths [Burge]

Integer lattice paths

◮ defined in the strip:

0 ≤ x ≤ ∞, 0 ≤ y ≤ k −1

with initial point (0,k −s)

◮ composed of NE, SE and Horizontal edges (H iff y = 0)

◮ weight = x -position of the peaks



A Bressoud path for k = 5 and s = 3

0 ≤ y ≤ k −1 = 4, y0 = k −s = 2

2 6 10 14 18 27

2

4

1

3

Weight
w = 2+6+10+14+18+27



A Bressoud path : sequence of charged peaks

Isolated peak:
Charge = height

In a charge complex:

Charge = relative height

2 6 10 14 18 27

2

4

1

3 (1)

(4) (2)

(1)

(3)

(2)

The charge (≡ particle) content of the path is:

m1 = 2, m2 = 2, m3 = 1, m4 = 1



{Bressoud paths}

as a fermi gas



Bressoud paths : generating function [Warnaar]

◮ For a fixed charge content (fixed {mj }): determine the
configuration of minimal weight (mwc)
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Bressoud paths : generating function [Warnaar]

◮ For a fixed charge content (fixed {mj }): determine the
configuration of minimal weight (mwc)

Example: m1 = 3, m2 = 2, m3 = 1 (y0 = 0):

0

1

2

◮ Evaluate its weight: above wmwc = 1+3+5+8+12+17

In general

wmwc =

k−1∑

i,j=1

min(i, j)mi mj



◮ Move the particles (peaks) in all possible ways and q-count them
Ex: consider m1 = 3

0

1
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◮ Rule 1: Identical particles are impenetrable (hard-core repulsion):
Ex: move the rightmost by 9, the next by 6 and the third by 4
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◮ Move the particles (peaks) in all possible ways and q-count them
Ex: consider m1 = 3

0

1

2

◮ Rule 1: Identical particles are impenetrable (hard-core repulsion):
Ex: move the rightmost by 9, the next by 6 and the third by 4

0

1

2

◮ Generating factor for these moves
= the number of partitions with at most three parts:

1
(1−q)(1−q2)(1−q3)

≡
1

(q)3
→

1
(q)m1



◮ Rule 2: Particles of different charges can penetrate
Consider the successive displacements of the peak 1 in 3:

w = 6 w = 7
0

1

2

0

1

2

w = 8 + identity flip w = 9

0

1

2

w = 10 w = 11



◮ Every move of 1 unit increases the weight by 1 independently of
the presence of higher charged particles

i.e.
1

(q)m1

is generic

◮ The same holds for the other particles:

factor
1

(q)mj

for each type 1 ≤ j ≤ k −1

◮ Generating functions for all paths with fixed charge content

G({mj }) =
qwmwc

(q)m1 . . . (q)mk−1

with

wmwc =

k−1∑

i,j=1

min(i, j)mi mj



◮ Full generating function:

G =
∑

m1,···,mk−1

G({mj }) =

∞∑

m1,···,mk−1=0

qN2
1 +···+N2

k−1+N1+···+Nk−1

(q)m1 · · ·(q)mk−1

with Nj defined as
Nj = mj + · · ·+mk−1



◮ Full generating function:

G =
∑

m1,···,mk−1

G({mj }) =

∞∑

m1,···,mk−1=0

qN2
1 +···+N2

k−1+N1+···+Nk−1

(q)m1 · · ·(q)mk−1

with Nj defined as
Nj = mj + · · ·+mk−1

◮ This is the fermionic character of the M(2,2k +1) vacuum
module (FNO)

◮ Bressoud paths have a clear particle interpretation



Particles in RSOS paths



RSOS(2,2k +1) vs Bressoud paths

◮ RSOS(2,2k +1) paths ↔ Partitions PSR ↔ Bressoud paths
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RSOS(2,2k +1) vs Bressoud paths

◮ RSOS(2,2k +1) paths ↔ Partitions PSR ↔ Bressoud paths

Search for a direct bijection:

◮ RSOS(2,2k +1) paths ↔ Bressoud paths

◮ Objective: identify particles in (generic) RSOS paths



Particles in RSOS(2,p) paths?

E.g. in the RSOS(2,7) path
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E.g. in the RSOS(2,7) path
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r = 1
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Particles in RSOS(2,p) paths?
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Particles in RSOS(2,p) paths?

E.g. in the RSOS(2,7) path

1 3 5 7 9 11 13 15 17 19
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r = 1
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1 1
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9

8bc

bc

bc

bc bc

b b

b

b

17

14

9
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Observations:

◮ Peak above the yellow band: pair ◦• with weight = position of ◦

◮ Valley below the yellow band: pair •◦ with weight = position of •



Transformation of the RSOS(2,p) paths

These observations suggest to transform the RSOS(2,7) path
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Transformation of the RSOS(2,p) paths

These observations suggest to transform the RSOS(2,7) path
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by flattening the colored band
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redefine the vertical axis

1 3 5 7 9 11 13 15 17 19
−2

−1

0

1

2

and fold the lower part onto the upper one

0

1

2

2 9 14 17

the result is a Bressoud path: weight = x position of the peaks:

w = 2+9+14+17



Is this 1-1?
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Is this 1-1?
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Is this 1-1?

0

1

2

2 9 14 17

is also related to

1

2

3

4

5

6

1 3 5 7 9 11 13 15 17 19

But this has a final NE edge: enforcing a final SE: 1-1 relation



From RSOS(p ′,p) to generalized Bressoud paths

◮ Flatten all colored bands



From RSOS(p ′,p) to generalized Bressoud paths

◮ Flatten all colored bands

◮ But restrictions are required: e.g., RSOS(6,7):
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From RSOS(p ′,p) to generalized Bressoud paths

◮ Restriction to p ≥ 2p ′ −1: isolated colored bands
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From RSOS(p ′,p) to generalized Bressoud paths

◮ Restriction to p ≥ 2p ′ −1: isolated colored bands

◮ Flatten all colored bands

Fold the part below the first band

◮ Result: generalized Bressoud paths defined in

0 ≤ y ≤ p −p ′ −

⌊

p
p ′

⌋

◮ ...with H edges allowed at height

y(t) =

⌊

tp
p ′

⌋

−

⌊

p
p ′

⌋

− t +1 (1 ≤ t ≤ p ′ −1)

(with a condition relating the parity of successive H edges and
the change of direction of the path)



From RSOS(p ′,p) to generalized Bressoud paths

◮ Restriction to p ≥ 2p ′ −1: isolated colored bands

◮ Flatten all colored bands

Fold the part below the first band

◮ Result: generalized Bressoud paths defined in

0 ≤ y ≤ p −p ′ −

⌊

p
p ′

⌋

◮ ...with H edges allowed at height

y(t) =

⌊

tp
p ′

⌋

−

⌊

p
p ′

⌋

− t +1 (1 ≤ t ≤ p ′ −1)

(with a condition relating the parity of successive H edges and
the change of direction of the path)

◮ ...and
w = (half) x position of the (half) peaks



Our RSOS(3,7) path
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Our RSOS(3,7) path

1 3 5 7 9 11 13 15 17 19
1

2

3

4

5

6

r = 2

r = 1

is transformed into
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with H edges allowed at y = 0,1 but not y = 2



Our RSOS(3,7) path

1 3 5 7 9 11 13 15 17 19
1

2

3

4

5

6

r = 2

r = 1

is transformed into

0

1

2

2 5 7 9 11 13 15 19

bc bc bc bcbc bc

bc

bc

w = 2+5+9+19+
1
2

(7+11+13+15)



Similary, our RSOS(4,7) path
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is transformed into:

0
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1 3 5 7 9 11 13 15 17 19

bc

bc

bc bc

bc bc

H edges at y = 0,1,2 and

w = 14+
1
2

(4+8+10+16+18)− (wgs = 1)



Fermi-gas analysis of the B(3,p) paths

RSOS(3,11) (case p = 3k +2): 3 particles
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Fermi-gas analysis of the B(3,p) paths

RSOS(3,11) (case p = 3k +2): 3 particles
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7
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9

10

1 3 5 7 9 11 13 15 17 19 21 23 25 27

→

0

1

2

3

1 3 5 7 9 11 13 15 17 19 21 23 25 27

→

breathers kinks-anitkinks



Fermi-gas analysis of the B(p ′,2p ′ +1) paths

RSOS(5,11): 4 particles
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Fermi-gas analysis of the B(p ′,2p ′ +1) paths

RSOS(5,11): 4 particles
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1 3 5 7 9 11 13 15 17 19 21 23 25 27 29 31 33 35

1 breather and kinks-antikinks of topological charge from 1 to 3



Fermi-gas analysis of the B(p ′,2p ′ −1) paths

RSOS(6,11): 4 particles
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Fermi-gas analysis of the B(p ′,2p ′ −1) paths

RSOS(6,11): 4 particles

1
2
3
4
5
6
7
8
9
10

1 3 5 7 9 11 13 15 17 19 21 23 25 27 29 31 33 35

0
1
2
3
4

1 3 5 7 9 11 13 15 17 19 21 23 25 27 29 31 33 35

kinks-antikinks of topological charge from 1 to 4

no breathers



Particle content of RSOS paths

◮ Numbers of kinks = number of vacua -1

kinks interpolate between yellow bands

#kinks = (p ′ −1)−1

◮ Numbers of breathers = number bands below the first yellow one

#breathers =

⌊

p
p ′

⌋

−1

no breathers if p < 2p ′

◮ Match the spectrum of the restricted sine-Gordon model with

β2

8π
=

p ′

p



A duality relation

◮ The finitized (polynomial e.g., L < ∞) form of the character
allows for a duality relation

q →
1
q

◮ Under this transformation

M(p ′,p) → M(p −p ′,p)

◮ Bands under duality: colored ↔ white



Duality M(p ′,p) → M(p −p ′,p) in color

Compare RSOS(3,7)
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vs RSOS(4,7)
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Conclusion

◮ The transformation of RSOS(p ′,p) to B(p ′,p) paths is a key step
for a direct fermi-gas analysis; it makes the particle interpretation
transparent

◮ The particle interpretation match that of RSG which is a
φ1,3-perturbation of M(p ′,p) (= scaling limit of RSOS(p ′,p) in
regiime III)

◮ More to be extracted from this?

◮ Can this be lifted to a CFT interpretation?



M(k +2,2k +3) fermionic character

From the direct Fermi-gas analysis (k particles, no breathers)

χ
(k+2,2k+3)

1,1 (q) =
∑

m1,··· ,mk

qmBm+Cm

(q)p0

k−1∏

i=1

[

mi +pj
mj

]

,

where

Bi,j = Bj,i Bi,j = (2i −1)j if i ≤ j and Cj = j

and
[

a
b

]

q
=

{
(q)a

(q)a−b(q)b
if 0 ≤ b ≤ a,

0 otherwise,

and
pj = 2mj+2 +4mj+2 + · · ·+2(k − j +1)mk

so that
p0 = number of half peaks


