A matrix model for counting plane partitions and tilings

Bertrand Eynard, IPHT CEA-SACLAY

In all those limits: statistics of cubes \sim random matrix eigenvalues statistics.

Question: is there a matrix model whose eigenvalues statistics = statistics of cubes ? before any limit ?

Outline

Outline:

- Plane partitions, tilings and TASEP
- Rewriting as a matrix integral
- Tools available for matrix models Orthogonal polynomials, determinantal formulae, integrability, loop equations.
- topological expansion of the matrix model Large size asymptotics, liquid region.

Examples

Tiling the hexagon, the cardioid, TSSCPPs.

Conclusion

□ ▶ ▲ 臣 ▶ ▲ 臣 ▶ □

• Plane partition, with 3 given boundaries λ, μ, ν :

・ 回 ト ・ ヨ ト ・ ヨ ト

• Plane partition, with 3 given boundaries λ, μ, ν :

프 > 프

・ 同 ト ・ 三 ト ・

• Plane partition, with 3 given boundaries λ, μ, ν :

ъ

・ 同 ト ・ 三 ト ・

• Plane partition, with 3 given boundaries λ, μ, ν :

= N self avoiding particles moving in a given region of the Rhombus lattice.

▲ @ ▶ ▲ ⊇ ▶ ▲

크 > 크

• Plane partition, with 3 given boundaries λ, μ, ν :

= N self avoiding particles moving in a given region of the Rhombus lattice.

 $h_i(t), i = 1, ..., N, h_i(t) - \frac{t}{2} \in \mathbb{Z},$ $h_i(t+1) = h_i(t) \pm \frac{1}{2},$ $h_1(t) > h_2(t) > h_3(t) > \cdots > h_N(t).$

Generalization

N self avoiding particles moving in a given arbitrary domain \mathcal{D} of the Rhombus lattice.

$$h_i(t), i = 1, ..., N, h_i(t) - \frac{t}{2} \in \mathbb{Z},$$

 $h_1(t) > h_2(t) > h_3(t) > \cdots > h_N(t),$
 $h_i(t+1) = h_i(t) + \frac{1}{2}$ with proba $\alpha(t+\frac{1}{2})$
 $h_i(t+1) = h_i(t) - \frac{1}{2}$ with proba $\beta(t+\frac{1}{2})$

Possibility of having forbidden places, obliged places, non flat landscape, jumps other than $\pm \frac{1}{2}$,...

Partition function

Plane partitions:

$$Z_{m{N}_{\lambda},m{N}_{\mu},m{N}_{
u}}(\lambda,\mu,
u) = \sum_{\pi,\partial\pi=(\lambda,\mu,
u)} \; m{q}^{|\pi|}$$

Example, Mac-Mahon formula $N_{\lambda} = N_{\mu} = N_{\nu} = \infty$, $\lambda, \mu, \nu = \emptyset$:

$$Z = \sum_{\pi} q^{|\pi|} = \prod_{k=1}^{\infty} (1 - q^k)^{-k} = 1 + q + 3q^2 + 6q^3 + 13q^4 + \dots$$

Partition function, TASEP

Generalization self-avoiding process in a domain $\ensuremath{\mathcal{D}}$:

$$Z = \sum_{h_1(t) > \dots > h_N(t)} \prod_{t=t_{\min}}^{t_{\max} - 1} \prod_{i=1}^{N} e^{-V_t(h_i(t))} q^{h_i(t)}$$
$$\prod_{t'} \prod_i \left(\alpha(t') \,\delta_{h_i(t' + \frac{1}{2}), h_i(t' - \frac{1}{2}) + \frac{1}{2}} + \beta(t') \,\delta_{h_i(t' + \frac{1}{2}), h_i(t' - \frac{1}{2}) - \frac{1}{2}} \right)$$

(ロ) (同) (三) (三) (三) (○)

Idea:

Gessel-Viennot: Σ_{h1}(t)>···>h_N(t) ∏_i paths = Σ_{hi}(t) det(paths).
 Fourrier transform δ-functions:

- Harish Chandra-Itzykson-Zuber: $H = \text{diag}(h_i), R = \text{diag}(r_i)$
- Matrices: $M(t) = U H(t) U^{\dagger}$, $\Delta (H(t))^2 dH(t) dU = dM(t)$, and $\tilde{M}(t') = U^{\dagger} R(t') U$, $\Delta (R(t'))^2 dR(t') dU = d\tilde{M}(t')$.
- $h_i(t)$ =eigenvalues of M(t), and $r_i(t)$ =eigenvalues of $\tilde{M}(t')$.

→ Matrix model

▲圖 ▶ ▲ 理 ▶ ▲ 理 ▶ …

Idea:

Gessel-Viennot: Σ_{h1}(t)>···>h_N(t) ∏_i paths = Σ_{hi}(t) det(paths).
Fourrier transform δ-functions:

• Harish Chandra-Itzykson-Zuber: $H = \text{diag}(h_i), R = \text{diag}(r_i)$

• Matrices: $M(t) = U H(t) U^{\dagger}$, $\Delta (H(t))^2 dH(t) dU = dM(t)$, and $\tilde{M}(t') = U^{\dagger} R(t') U$, $\Delta (R(t'))^2 dR(t') dU = d\tilde{M}(t')$.

 $h_i(t)$ =eigenvalues of M(t), and $r_i(t)$ =eigenvalues of $\tilde{M}(t')$.

→ Matrix model

▲御 ▶ ▲ 臣 ▶ ▲ 臣 ▶ 二 臣

Idea:

- Gessel-Viennot: $\sum_{h_1(t)>\dots>h_N(t)} \prod_i \text{paths} = \sum_{h_i(t)} \text{det(paths)}.$ • Fourrier transform δ -functions: $\delta(h(t+1) - h(t) \pm \frac{1}{2}) = \int_{-i\infty}^{i\infty} dr \ e^{r(h(t+1)-h(t))} \ e^{\pm r/2}.$ • Harish Chandra-Itzykson-Zuber: $H = \text{diag}(h_i), R = \text{diag}(r_i)$ • Matrices: $M(t) = U \ H(t) \ U^{\dagger}, \ \Delta(H(t))^2 \ dH(t) \ dU = dM(t).$
- and $\tilde{M}(t') = U^{\dagger} R(t') U$, $\Delta(R(t'))^2 dR(t') dU = d\tilde{M}(t')$.
- $h_i(t)$ =eigenvalues of M(t), and $r_i(t)$ =eigenvalues of $\tilde{M}(t')$.

→ Matrix model

▲□▶ ▲□▶ ▲三▶ ▲三▶ 三三 ののの

Idea:

- Gessel-Viennot: $\sum_{h_1(t) > \dots > h_N(t)} \prod_i \text{paths} = \sum_{h_i(t)} \text{det}(\text{paths}).$ • Fourrier transform δ -functions:
- $\alpha \,\delta(h(t+1) h(t) + \frac{1}{2}) + \beta \,\delta(h(t+1) h(t) \frac{1}{2}) = \\ \int_{-i\infty}^{i\infty} dr \,\,\mathrm{e}^{r(h(t+1) h(t))} \,\,(\alpha \,\mathrm{e}^{r/2} + \beta \,\mathrm{e}^{-r/2}).$
- Harish Chandra-Itzykson-Zuber: $H = \text{diag}(h_i)$, $R = \text{diag}(r_i)$ • Matrices: $M(t) = U H(t) U^{\dagger}$, $\Delta(H(t))^2 dH(t) dU = dM(t)$, and $\tilde{M}(t') = U^{\dagger} R(t') U$, $\Delta(R(t'))^2 dR(t') dU = d\tilde{M}(t')$.
- $h_i(t)$ =eigenvalues of M(t), and $r_i(t)$ =eigenvalues of $\tilde{M}(t')$.

→ Matrix model

イロト イポト イヨト イヨト 三日

Idea:

- Gessel-Viennot: Σ_{h1(t)>···>hN(t)} ∏_i paths = Σ_{hi(t)} det(paths).
 Fourrier transform δ-functions:
- $\alpha \,\delta(h(t+1) h(t) + \frac{1}{2}) + \beta \,\delta(h(t+1) h(t) \frac{1}{2}) = \int_{-i\infty}^{i\infty} dr \, e^{r(h(t+1) h(t))} \,(\alpha \, e^{r/2} + \beta \, e^{-r/2}).$
- Harish Chandra-Itzykson-Zuber: $H = \text{diag}(h_i), R = \text{diag}(r_i)$ $\det(e^{r_i h_j}) = \Delta(H)\Delta(R) \int_{U(N)} dU e^{\text{Tr} R U H U^{\dagger}}.$
- Matrices: $M(t) = U H(t) U^{\dagger}$, $\Delta (H(t))^2 dH(t) dU = dM(t)$, and $\tilde{M}(t') = U^{\dagger} R(t') U$, $\Delta (R(t'))^2 dR(t') dU = d\tilde{M}(t')$.
- $h_i(t)$ =eigenvalues of M(t), and $r_i(t)$ =eigenvalues of $\tilde{M}(t')$.

→ Matrix model

ヘロン 人間 とくほ とくほ とう

Idea:

- Gessel-Viennot: Σ_{h1}(t)>···>h_N(t) ∏_i paths = Σ_{hi}(t) det(paths).
 Fourrier transform δ-functions:
- $\alpha \,\delta(h(t+1) h(t) + \frac{1}{2}) + \beta \,\delta(h(t+1) h(t) \frac{1}{2}) = \int_{-i\infty}^{i\infty} dr \, e^{r(h(t+1) h(t))} \,(\alpha \, e^{r/2} + \beta \, e^{-r/2}).$
- Harish Chandra-Itzykson-Zuber: $H = \text{diag}(h_i), R = \text{diag}(r_i)$ $\text{det}(e^{r_i(t+\frac{1}{2})h_j(t+1)}) =$
- $\Delta(H(t+1))\Delta(R(t+\frac{1}{2})) \int_{U(N)} dU \, e^{\operatorname{Tr} R(t+\frac{1}{2}) \, U \, H(t+1) \, U^{\dagger}}, \\ \det(e^{-r_i(t+\frac{1}{2})h_j(t)}) =$
- $\Delta(H(t))\Delta(R(t+\frac{1}{2})) \int_{U(N)} dU e^{-\operatorname{Tr} R(t+\frac{1}{2}) U H(t) U^{\dagger}}.$
- Matrices: $M(t) = U H(t) U^{\dagger}$, $\Delta (H(t))^2 dH(t) dU = dM(t)$, and $\tilde{M}(t') = U^{\dagger} R(t') U$, $\Delta (R(t'))^2 dR(t') dU = d\tilde{M}(t')$. $h_i(t) = eigenvalues of M(t)$ and $r_i(t) = eigenvalues of \tilde{M}(t')$.

→ Matrix model

ヘロン ヘアン ヘビン ヘビン

Idea:

- Gessel-Viennot: Σ_{h1}(t)>···>h_N(t) ∏_i paths = Σ_{hi}(t) det(paths).
 Fourrier transform δ-functions:
- $\alpha \,\delta(h(t+1) h(t) + \frac{1}{2}) + \beta \,\delta(h(t+1) h(t) \frac{1}{2}) = \int_{-i\infty}^{i\infty} dr \, e^{r(h(t+1) h(t))} \,(\alpha \, e^{r/2} + \beta \, e^{-r/2}).$
- Harish Chandra-Itzykson-Zuber: $H = \text{diag}(h_i), R = \text{diag}(r_i)$ $\text{det}(e^{r_i(t+\frac{1}{2})h_j(t+1)}) =$
- $\Delta(H(t+1))\Delta(R(t+\frac{1}{2})) \int_{U(N)} dU \, e^{\operatorname{Tr} R(t+\frac{1}{2}) \, U \, H(t+1) \, U^{\dagger}}, \\ \det(e^{-r_i(t+\frac{1}{2})h_j(t)}) =$
- $\Delta(H(t))\Delta(R(t+\frac{1}{2})) \int_{U(N)} dU e^{-\operatorname{Tr} R(t+\frac{1}{2}) U H(t) U^{\dagger}}.$
- Matrices: $M(t) = U H(t) U^{\dagger}$, $\Delta (H(t))^2 dH(t) dU = dM(t)$, and $\tilde{M}(t') = U^{\dagger} R(t') U$, $\Delta (R(t'))^2 dR(t') dU = d\tilde{M}(t')$.
- $h_i(t)$ = eigenvalues of M(t), and $r_i(t)$ = eigenvalues of $\tilde{M}(t')$.

→ Matrix model

ヘロア 人間 アメヨア 人口 ア

Idea:

- Gessel-Viennot: Σ_{h1}(t)>···>h_N(t) ∏_i paths = Σ_{hi}(t) det(paths).
 Fourrier transform δ-functions:
- $\alpha \,\delta(h(t+1) h(t) + \frac{1}{2}) + \beta \,\delta(h(t+1) h(t) \frac{1}{2}) = \int_{-i\infty}^{i\infty} dr \, e^{r(h(t+1) h(t))} \,(\alpha \, e^{r/2} + \beta \, e^{-r/2}).$
- Harish Chandra-Itzykson-Zuber: $H = \text{diag}(h_i), R = \text{diag}(r_i)$ $\text{det}(e^{r_i(t+\frac{1}{2})h_j(t+1)}) =$
- $\Delta(H(t+1))\Delta(R(t+\frac{1}{2})) \int_{U(N)} dU \, e^{\operatorname{Tr} R(t+\frac{1}{2}) \, U \, H(t+1) \, U^{\dagger}}, \\ \det(e^{-r_i(t+\frac{1}{2})h_j(t)}) =$
- $\Delta(H(t))\Delta(R(t+\frac{1}{2})) \int_{U(N)} dU e^{-\operatorname{Tr} R(t+\frac{1}{2}) U H(t) U^{\dagger}}.$
- Matrices: $M(t) = U H(t) U^{\dagger}$, $\Delta (H(t))^2 dH(t) dU = dM(t)$, and $\tilde{M}(t') = U^{\dagger} R(t') U$, $\Delta (R(t'))^2 dR(t') dU = d\tilde{M}(t')$. $h_i(t)$ = eigenvalues of M(t), and $r_i(t)$ = eigenvalues of $\tilde{M}(t')$.

→ Matrix model

ヘロト ヘ戸ト ヘヨト ヘヨト

Matrix integral

We end up with

$$Z = \frac{\Delta(H_{t_{\max}})}{\Delta(H_{t_{\min}})} \int \prod_{t=t_{\min}}^{t_{\max}-1} dM(t) e^{-\operatorname{Tr} V_t(M(t))} q^{\operatorname{Tr} M(t)}$$
$$\int \prod_{t'=t_{\min}+\frac{1}{2}}^{t_{\max}-\frac{1}{2}} d\tilde{M}(t') e^{-\operatorname{Tr} \tilde{V}_{t'}(\tilde{M}(t'))} e^{\operatorname{Tr} \tilde{M}(t')(M(t'+\frac{1}{2})-M(t'-\frac{1}{2}))}$$

The potentials $V_t(h)$ encode the domain, and landscape weight. The potentials $\tilde{\mathcal{V}}_{t'}$ encode the jumps: $e^{-\tilde{\mathcal{V}}_{t'}(x)} = (\alpha(t')e^{-\frac{x}{2}} + \beta(t')e^{\frac{x}{2}}).$

The eigenvalues of M(t) are $h_i(t)$ =position of the *i*th particle at time *t*.

▲ 圖 ▶ ▲ 国 ▶ ▲ 国 ▶ ……

Theorem

The "lozenge tiling/plane partitions/particle process" generating function *Z*, is a matrix integral.

 \rightarrow Chain of matrices, with $2(t_{max} - t_{min}) + 1$ matrices.

Summary:

• matrices M(t), $t \in \mathbb{Z}$: eigenvalues $h_i(t)$ = particles, potential $e^{-V_t(h)}$ characterizes the domain+landscape.

• matrices $\tilde{M}(t')$, $t' \in \mathbb{Z} + \frac{1}{2}$, eigenvalues $r_i(t')$ = Lagrange multipliers for jumps, potential $e^{-\tilde{V}_{t'}(r)} = \alpha(t')e^{-r/2} + \beta(t')e^{r/2}$.

• Angular parts= Fourier transform of Gessel-Viennot \rightarrow HCIZ.

・ロン ・聞 と ・ ヨ と ・ ヨ と …

Generalities: Chain of matrices

Consider a general chain of matrices:

$$Z = \int dM_1 \dots dM_k e^{-Q \operatorname{Tr} \sum_{i=1}^k V_i(M_i) - c_i M_i M_{i+1}}$$

 method of biorthogonal polynomials → determinantal formuale. Correlation functions of eigenvalues are determinant of some Christoffel-Darboux kernel [E., Mehta 1997].

- Integrability $\rightarrow Z$ =tau-function, Hirota equation, various pde's.
- method of loop equations \rightarrow topological expansion $\ln Z = \sum_{g=0}^{\infty} Q^{2-2g} F_g.$
- Matrix laws universal limits = Bergman, Sine, Tracy-Widom (= (1, 2)), Pearcey, Hermit, (p, q) conformal laws,...

◆□▶ ◆□▶ ◆三▶ ◆三▶ ● ○ ○ ○

Generalities: Loop equations

Consider a general chain of matrices

$$Z = \int dM_1 \dots dM_k e^{-Q \operatorname{Tr} \sum_{i=1}^k V_i(M_i) - c_i M_i M_{i+1}}$$

Assume it has a topological expansion: $\ln Z = \sum_{g=0}^{\infty} Q^{2-2g} F_g.$

$$W_n(x_1,...,x_n) = \left\langle \operatorname{Tr} \frac{1}{x_1 - M_1} \dots \operatorname{Tr} \frac{1}{x_n - M_1} \right\rangle_c = \sum_g Q^{2-2g-n} W_n^{(g)}$$

then, by solving loop equations (=integration by parts \Rightarrow equations relating correlation functions) we get:

Theorem (E.-Prats Ferrer 2008)

For every chain of matrices having a topological expansion, the $W_n^{(g)}$'s and F_g 's satisfy the "topological recursion".

Topological recursion

Define the recursion kernel:

$$H(x_0, x) = \frac{\int_x^{\bar{x}} W_2^{(0)}(x_0, x') \, dx'}{2(W_1^{(0)}(x) - W_1^{(0)}(\bar{x}))}$$

Then the topological recursion [E.-Orantin 2007] is:

$$W_{n+1}^{(g)}(x_0, \overline{x_1, \dots, x_n}) = \sum_{i} \operatorname{Res}_{x \to a_i} H(x_0, x) \left[W_{n+2}^{(g-1)}(x, x, J) + \sum_{h=0}^{g} \sum_{l \subset J}^{\prime} W_{1+\#l}^{(h)}(x, l) W_{1+n-\#l}^{(g-h)}(x, J \setminus l) \right]$$

 \rightarrow if one knows $W_1^{(0)}(x)$ (called spectral curve S) and $W_2^{(0)}$ (called Bergman kernel of S), then this recursion easily computes every $W_n^{(g)}$.

The $F_g = W_0^{(g)}$'s are computed (for $g \ge 2$) by:

$$F_g = W_0^{(g)} = \frac{1}{2 - 2g} \sum_i \operatorname{Res}_{x \to a_i} \Phi(x) W_1^{(g)} dx$$

where $d\Phi/dx = W_1^{(0)}(x)$.

+ more sophisticated expressions for F_0 and F_1 , see [E. Orantin 2007].

Remark: F_g 's and $W_n^{(g)}$'s can be computed for any function $W_1^{(0)}(x)$, related to any matrix model or not.

The $F_g(S)$'s and $W_n^{(g)}$'s are functionals of a spectral curve $S = \{W_1^{(0)}(x)\}.$

▲□ ▶ ▲ □ ▶ ▲ □ ▶ □ ● ● ● ●

The $F_g(S)$'s are functionals of a spectral curve $S = \{W_1^{(0)}(x)\}$. Examples:

• $W_1^{(0)}(x) = \sqrt{x}$, then $W_n = \sum_g W_n^{(g)} = \det_{n \times n}(\text{Airy kernel})$.

• $W_1^{(0)}(x) = t x \sqrt{x^2 - a^2}$, $a^2 = \frac{2}{3} (1 - \sqrt{1 - 12t})$, then $F_g =$ enumerating quadrangulations of genus g.

• $W_1^{(0)}(x) = \sin(\sqrt{x})$, then $F_g = \operatorname{Vol}(\mathcal{M}_g)$ = Weil-Petersson.

• $y = W_1^{(0)}(x)$, solution of $e^x = ye^{-y}$, then $W_n^{(g)}$ =gen. function of Hurwitz numbers of genus g.

• $y = W_1^{(0)}(x)$, solution of $0 = P(e^x, e^y)$ =mirror curve of some toric CY 3-fold \mathfrak{X} , then $F_g = \text{Gromov} - \text{Witten}_g(\mathfrak{X})$ (=[BKMP 2007] conjecture).

• + plenty of other examples...

◆□ > ◆□ > ◆豆 > ◆豆 > →

The $F_g(S)$'s are functionals of a spectral curve $S = \{W_1^{(0)}(x)\}$.

Examples:

•
$$W_1^{(0)}(x) = \sqrt{x}$$
, then $W_n = \sum_g W_n^{(g)} = \det_{n \times n}(\text{Airy kernel})$.

• $W_1^{(0)}(x) = t x \sqrt{x^2 - a^2}$, $a^2 = \frac{2}{3} (1 - \sqrt{1 - 12t})$, then $F_g =$ enumerating quadrangulations of genus g.

• $W_1^{(0)}(x) = \sin(\sqrt{x})$, then $F_g = \operatorname{Vol}(\mathcal{M}_g)$ = Weil-Petersson.

• $y = W_1^{(0)}(x)$, solution of $e^x = ye^{-y}$, then $W_n^{(g)}$ =gen. function of Hurwitz numbers of genus g.

• $y = W_1^{(0)}(x)$, solution of $0 = P(e^x, e^y)$ =mirror curve of some toric CY 3-fold \mathfrak{X} , then $F_g = \text{Gromov} - \text{Witten}_g(\mathfrak{X})$ (=[BKMP 2007] conjecture).

• + plenty of other examples...

・ロト ・ 理 ト ・ ヨ ト ・

The $F_g(S)$'s are functionals of a spectral curve $S = \{W_1^{(0)}(x)\}$.

Examples:

•
$$W_1^{(0)}(x) = \sqrt{x}$$
, then $W_n = \sum_g W_n^{(g)} = \det_{n \times n}(\text{Airy kernel})$.

• $W_1^{(0)}(x) = t x \sqrt{x^2 - a^2}$, $a^2 = \frac{2}{3} (1 - \sqrt{1 - 12t})$, then $F_g =$ enumerating quadrangulations of genus *g*.

*W*₁⁽⁰⁾(*x*) = sin (√*x*), then *F_g* = Vol(*M_g*)= Weil-Petersson. *y* = *W*₁⁽⁰⁾(*x*), solution of e^{*x*} = *y*e^{-*y*}, then *W_n*^(g) =gen. function of Hurwitz numbers of genus *g*.

• $y = W_1^{(0)}(x)$, solution of $0 = P(e^x, e^y)$ =mirror curve of some toric CY 3-fold \mathfrak{X} , then $F_g = \text{Gromov} - \text{Witten}_g(\mathfrak{X})$ (=[BKMP 2007] conjecture).

• + plenty of other examples...

<ロ> (四) (四) (三) (三) (三) (三)

The $F_g(S)$'s are functionals of a spectral curve $S = \{W_1^{(0)}(x)\}$.

Examples:

•
$$W_1^{(0)}(x) = \sqrt{x}$$
, then $W_n = \sum_g W_n^{(g)} = \det_{n \times n}(\text{Airy kernel})$.

•
$$W_1^{(0)}(x) = t x \sqrt{x^2 - a^2}$$
, $a^2 = \frac{2}{3} (1 - \sqrt{1 - 12t})$, then $F_g =$ enumerating quadrangulations of genus g .

•
$$W_1^{(0)}(x) = \sin(\sqrt{x})$$
, then $F_g = \operatorname{Vol}(\mathcal{M}_g)$ = Weil-Petersson.

• $y = W_1^{(0)}(x)$, solution of $e^x = ye^{-y}$, then $W_n^{(g)}$ =gen. function of Hurwitz numbers of genus g.

• $y = W_1^{(0)}(x)$, solution of $0 = P(e^x, e^y)$ =mirror curve of some toric CY 3-fold \mathfrak{X} , then $F_g = \text{Gromov} - \text{Witten}_g(\mathfrak{X})$ (=[BKMP 2007] conjecture).

• + plenty of other examples...

(本間) (本語) (本語) (二語)

The $F_g(S)$'s are functionals of a spectral curve $S = \{W_1^{(0)}(x)\}$.

Examples:

•
$$W_1^{(0)}(x) = \sqrt{x}$$
, then $W_n = \sum_g W_n^{(g)} = \det_{n \times n}(\text{Airy kernel})$.

•
$$W_1^{(0)}(x) = t x \sqrt{x^2 - a^2}$$
, $a^2 = \frac{2}{3} (1 - \sqrt{1 - 12t})$, then $F_g =$ enumerating quadrangulations of genus g .

•
$$W_1^{(0)}(x) = \sin(\sqrt{x})$$
, then $F_g = \operatorname{Vol}(\mathcal{M}_g)$ = Weil-Petersson.

• $y = W_1^{(0)}(x)$, solution of $e^x = ye^{-y}$, then $W_n^{(g)}$ =gen. function of Hurwitz numbers of genus g.

• $y = W_1^{(0)}(x)$, solution of $0 = P(e^x, e^y)$ =mirror curve of some toric CY 3-fold \mathfrak{X} , then $F_g = \text{Gromov} - \text{Witten}_g(\mathfrak{X})$ (=[BKMP 2007] conjecture).

• + plenty of other examples...

<ロ> (四) (四) (三) (三) (三) (三)

The $F_g(S)$'s are functionals of a spectral curve $S = \{W_1^{(0)}(x)\}$.

Examples:

•
$$W_1^{(0)}(x) = \sqrt{x}$$
, then $W_n = \sum_g W_n^{(g)} = \det_{n \times n}(\text{Airy kernel})$.

•
$$W_1^{(0)}(x) = t x \sqrt{x^2 - a^2}$$
, $a^2 = \frac{2}{3} (1 - \sqrt{1 - 12t})$, then $F_g =$ enumerating quadrangulations of genus g .

•
$$W_1^{(0)}(x) = \sin(\sqrt{x})$$
, then $F_g = \operatorname{Vol}(\mathcal{M}_g)$ = Weil-Petersson.

• $y = W_1^{(0)}(x)$, solution of $e^x = ye^{-y}$, then $W_n^{(g)}$ =gen. function of Hurwitz numbers of genus g.

• $y = W_1^{(0)}(x)$, solution of $0 = P(e^x, e^y)$ =mirror curve of some toric CY 3-fold \mathfrak{X} , then $F_g = \text{Gromov} - \text{Witten}_g(\mathfrak{X})$ (=[BKMP 2007] conjecture).

• + plenty of other examples...

◆□▶ ◆□▶ ◆三▶ ◆三▶ ● ○ ○ ○

The $F_g(S)$'s are functionals of a spectral curve $S = \{W_1^{(0)}(x)\}$.

Examples:

•
$$W_1^{(0)}(x) = \sqrt{x}$$
, then $W_n = \sum_g W_n^{(g)} = \det_{n \times n}(\text{Airy kernel})$.

- $W_1^{(0)}(x) = t x \sqrt{x^2 a^2}$, $a^2 = \frac{2}{3} (1 \sqrt{1 12t})$, then $F_g =$ enumerating quadrangulations of genus *g*.
- $W_1^{(0)}(x) = \sin(\sqrt{x})$, then $F_g = \operatorname{Vol}(\mathcal{M}_g)$ = Weil-Petersson.

• $y = W_1^{(0)}(x)$, solution of $e^x = ye^{-y}$, then $W_n^{(g)}$ =gen. function of Hurwitz numbers of genus g.

• $y = W_1^{(0)}(x)$, solution of $0 = P(e^x, e^y)$ =mirror curve of some toric CY 3-fold \mathfrak{X} , then $F_g = \text{Gromov} - \text{Witten}_g(\mathfrak{X})$ (=[BKMP 2007] conjecture).

• + plenty of other examples...

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

Some general properties of the invariants $F_g(S)$: ($S = \{y(x)\}$)

- homogeneity $(g \ge 2)$: $F_g(\lambda S) = \lambda^{2-2g} F_g(S)$.
- symplectic invariance $F_g(\{y(x) + \operatorname{Ratl}(x)\}) = F_g(\{y(x)\}),$ $F_g(\{-x(y)\}) = F_g(\{y(x)\}), F_g(\{\lambda y(x/\lambda)\}) = F_g(\{y(x)\}).$
- Special geometry formulae for the derivatives $\partial_t F_g = \oint_{t^*} W_1^{(g)}$, where t^* =dual cycle to the form $\partial_t y dx$.
- Commute with limits: $\lim F_g(S)^{"} = "F_g(\lim S)$.
- Integrability: $\tau = e^{\sum_{g} F_g} \Theta$ =Tau-function, satisfies Hirota. Determinantal formulae: $W_n = \sum_{g} W_n^{(g)}$ =determinants.
- modular properties, ... etc

◆□▶ ◆□▶ ◆三▶ ◆三▶ ● ○ ○ ○

Summary loop equations

Summary of the loop equation method:

• If one knows the "spectral curve"

$$S = W_1^{(0)}(x)$$
 " = " $\lim \frac{1}{Q} \left\langle \operatorname{tr} \left(\frac{1}{x - M_1} \right) \right\rangle$

- then: $W_2^{(0)} =$ Bergman kernel of $\mathcal{S} (\rightarrow$ heat equation on \mathcal{S}).
- then: $\ln Z = \sum_{g} Q^{2-2g} F_g(S)$, where $F_g(S)$ =symplectic invariants of S.
- and the $W_n^{(g)}$'s satisfy the topological recursion:

$$W_n(x_1,...,x_n) = \left\langle \operatorname{Tr} \frac{1}{x_1 - M_1} \dots \operatorname{Tr} \frac{1}{x_n - M_1} \right\rangle_c = \sum_g Q^{2-2g-n} W_n^{(g)}$$

 \rightarrow so, once $W_1^{(0)}(x)$ is known, corrections to all orders can be easily computed.

Spectral curve for plane-partitions and TASEP

Result: Matrix model's spectral curve $W_1^{(0)}(x) \leftrightarrow \text{limit shape of [Kenyon-Okounkov-Sheffield]}$

▲圖 > ▲ 国 > ▲ 国 > …

ヘロト 人間 とくほとくほとう

 $b = 2, a = 0.3, \qquad q = 0.001$

Hexagon' spectral curve:

 $b = 2, a = 0.3, \qquad q = 0.1$

イロト 不得 とくほと くほとう

Hexagon' spectral curve:

 $b = 2, a = 0.3, \qquad q = 0.3$

Hexagon' spectral curve:

 $b = 2, a = 0.3, \qquad q = 0.8$

Hexagon' spectral curve:

 $b = 2, a = 0.3, \qquad q = 10$

Hexagon' spectral curve:

 $b = 2, a = 0.3, \qquad q = 1000$

Totally Symmetric Self Complementary Plane Partitions

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

Totally Symmetric Self Complementary Plane Partitions

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

Example: N = 3

$$Z_{3}(1^{2}) = \frac{1}{144} \int dM_{1} dM_{2} d\tilde{M}_{3/2} d\tilde{M}_{5/2} \ e^{-\operatorname{tr}(V_{1}(M_{1}))} q^{\operatorname{tr}(M_{1}+M_{2}+M_{3})} \\ e^{-\operatorname{tr}(\tilde{V}_{3/2}(\tilde{M}_{3/2})+\tilde{V}_{5/2}(\tilde{M}_{5/2}))} \ e^{\operatorname{tr}(\tilde{M}_{3/2}(M_{2}-M_{1})+\tilde{M}_{5/2}(M_{3}-M_{2}))} \\ \operatorname{tr}(P_{2}(M_{2}))$$

$$M_3 = \operatorname{diag}(2,3,4), \quad P_2(x) = \frac{1}{2}(x-\frac{3}{2})(x-\frac{7}{2})(x-\frac{9}{2})$$
$$e^{-V_1(x)} = (x-2)(x-5)$$

$$Z_{3}(1^{2}) = \frac{1}{144} \int dM_{1} dM_{2} d\tilde{M}_{3/2} d\tilde{M}_{5/2} e^{-\operatorname{tr}(V_{1}(M_{1}))} q^{\operatorname{tr}(M_{1}+M_{2}+M_{3})} \\ e^{-\operatorname{tr}(\tilde{V}_{3/2}(\tilde{M}_{3/2})+\tilde{V}_{5/2}(\tilde{M}_{5/2}))} e^{\operatorname{tr}(\tilde{M}_{3/2}(M_{2}-M_{1})+\tilde{M}_{5/2}(M_{3}-M_{2}))} \\ \operatorname{tr}(P_{2}(M_{2}))$$

$$M_3 = \operatorname{diag}(2,3,4), \quad P_2(x) = \frac{1}{2}(x - \frac{3}{2})(x - \frac{7}{2})(x - \frac{9}{2})$$
$$e^{-V_1(x)} = (x - 2)(x - 5)$$

• General method: tiling problem \rightarrow matrix model

• saying that limit laws of plane partitions = matrix models limit laws, is a truism.

• possibility to use the huge matrix models toolbox: orthogonal polynomials, integrability, loop equations, ...

• loop equations \rightarrow possibility to use the "topological recursion" to find the asymptotic expansion (large size, or small ln *q*), to ALL ORDERS.

• Possible application: Gromov-Witten invariants of toric CY 3-folds, [BKMP 2007] conjecture ("remodelling the B-model"): *The Gromov-Witten invariants do satisfy the topological recursion ?*

ヘロン 人間 とくほとく ほとう