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1. Cluster DMFT methods.

2. Application to high-Tc superconductors.



General references for Cluster DMFTs

• G. Kotliar, S. Y. Savrasov, K. Haule, V. S. Oudovenko, O. Parcollet, 
C.A. Marianetti, Rev. Mod. Phys. 78, 865 (2006)

• A. Georges, G. Kotliar, W. Krauth and M. Rozenberg, Rev. Mod. 
Phys. 68, 13, (1996).

• G. Biroli, O. Parcollet, G. Kotliar, PRB, 69,205108 (2004) 

• T. Maier et al, Rev. Mod. Phys. 77,1027 (2005)
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DMFT is a good starting point to study Mott physics.

But it has many limitations ...



Is the Mean Field picture correct ?

• Favorable comparisons (See lecture 1), but : 

• Stability with 1/d corrections.

• Shape of the transition line.  Description of the insulator.

• Uc1,Uc2, Tc  beyond mean field.
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Clusters : an interpolation between mean field and d=2,3



The self-energy in not local !

• In DMFT,  no k-dependence of the self-energy.

• Consequences : 

• Effective mass and Z are linked 

• Finite temperature lifetime, Z are constant along the FS.
Not sufficient for high-Tc.
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Glatt(k,ω) =
1

ω + µ− εk − Σlatt(k,ω)

Σlatt(k,ω) = Σimpurity(ω) ≡ G−1
0 −G−1

c

Z =
m

m∗

33

Figure 2.1: Angle Resolved Photo-Emission Spectra A(k,ω = 0+) = − 1
π G(k,ω = 0+)

in the first quadrant of the Brillouin Zone for the normal state of a hole-doped cuprate
superconductor material close to the Mott metal-insulator transition. Doping is labeled
x. (data taken form [27])

spectral function A(k,ω → 0) = − 1
π ImG(k, 0+) in a doped cuprate superconductor

[27] in the first quadrant of the two dimensional (kx, ky)-plane in the Brillouin zone.

The color scale spans from blue to bright red for the highest spectral weight. Close to

optimal doping (right-hand panel at 10% doping) we observe that the spectral weight

remains in the region close to the point (π/2,π/2) of momentum space and almost

completely disappears around (0,π) (π, 0), indicating that in the last regions the quasi-

particles have disappeared and the Fermi Surface (FS) has broken up. An arc remains

instead close to the (π/2,π/2) region. If we then look at A(k,ω)vs ω in the specific

direction (0, 0) → (π,π) of the k-space (Fig. 5.24), we observe around (π/2,π/2) a

quasiparticle peak (the line-width is of the order of 0.05-0.1 eV at T = 100K [26]) and

a wave-vector dispersion of this peak together with the temperature dependence can

be followed. On the contrary, in the regions around (0,π) (π, 0) the spectral function

is very broad (the line-width is of the order of 0.2-0.3 eV at T = 100K [26]) and a

quasiparticle cannot easily be distinguished. These features are typical of incoherent

(localized) states where a very strong scattering mechanism is dominant. The ratio of

the Fermi velocities in the two regions is vF (π/2,π/2)/vF (0,π) # 3. The quasiparticle

states around the nodal points (π/2,π/2) look therefore coherent (delocalized states)

and the scattering mechanism is weaker and more conventional.

A(k, ω = 0+)

Shen et al. Science 307, 901 (2005) 

Clusters reintroduce some k-dependence in Σ



DMFT is only 1 site in a bath....

• d-wave superconductivity ? or DDW ? (need at least a link)

• Competition AF-SC ?

• Non trivial insulator a la RVB ? (need at least a singlet ?)

• Effect of J in the paramagnet not in DMFT 
e.g. cut divergence of the effective mass 
(See slave-bosons or large N,  
e.g. G. Kotliar, Les Houches 1988).
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Clusters fix these problems (to some extent)



Cluster extensions of DMFT 
• Principle :  a finite number of sites in a self consistent bath.
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G0
G0

short range quantum fluctuationslocal quantum fluctuations

• Interpolate between DMFT and finite dimensions

• Finite size systems BUT with “boundary conditions” G0.  

• Many choices : 

• Type of clusters (e.g. shape, size)

• Self-consistency condition : 

• How to approximate lattice quantities from cluster quantities ?
G0(iωn) = Flattice[Gc](iωn)

Cluster DMFT is not unique



How to build cluster methods ?

• 3 points of view on DMFT  : 

• DMFT is 1 site in a self-consistent bath.

➡ Real space cluster  : CDMFT (G. Kotliar et al. PRL 87 186401 2001)

• DMFT is about neglecting the k-dependence of Σ

➡ Σ piecewise constant in the Brillouin zone:  DCA 
M.H. Hettler, A.N. Tahvildar-Zadeh, M. Jarrell, T. Pruschke,H.R. Krishnamurthy  PRB 98

• DMFT is an approximation of the Luttinger-Ward functional

➡ Higher approximation on phi. 
(A. Georges, G. Kotliar, W. Krauth and M. Rozenberg, Rev. Mod. Phys. 68, 13, (1996))

• There are other methods (more later) !
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Equivalent for 1 site but lead to different cluster methods.

Φ ≈ φAIM (Gii)



Reminder : DMFT equations (1 site, 1 orbital) 9

Glatt(k,ω) =
1

ω + µ− εk − Σlatt(k,ω)

Σlatt(k,ω) = Σimpurity(ω) ≡ G−1
0 −G−1

c

• Evaluation of lattice quantities.

H = −J
∑

ij

σiσj H = −
∑

ijσ

tijc
†
iσcjσ + Uni↑ni↓

m = 〈σ〉 Gc(τ) = −〈Tc(τ)c†(0)〉Seff

Heff = −Jheffσ Seff = −
∫ β

0
c†σ(τ)G−1

0 (τ − τ ′)cσ(τ ′) +
∫ β

0
dτUn↑(τ)n↓(τ)

m = tanh(βheff)
Σ = G−1

0 − G−1
c

heff = zJm G−1
0 (iωn) =

(
∑

k

1
iωn + µ − t(k) − Σ(iωn)

)−1

+ Σ(iωn)



C-DMFT

• 4 Anderson impurities coupled to an effective bath 
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Cluster DMFT (1)

Missing in DMFT . . .

Various orders : e.g. d-SC,DDW, (AF).

k dependence of Σ(k, ω) =⇒ Z ∼ m
m∗

Variations of Z, m∗, τ on the Fermi surface.

Non trivial insulators (frustrated magnets ?)

Non-local interactions (e.g. nearest neighbours).

. . . but present in cluster methods

spatially short range quantum fluctuations

DMFT Cluster DMFT

G0

=⇒

G0

Cologne 18-01-2006 – p.12/42 Superlattice

CDMFT equations

CDMFT

H = −
∑

RmµRnν

t̂µν(Rm−Rn)c+
RmµcRnν+

∑

R1µR2ν

R3ρR4ς

Uµνρς({Ri})c
+
R1µ

c+
R2ν

cR4ςcR3ρ

Seff = −

∫∫ β

0
dτdτ ′c†µ(τ)G−1

0,µν(τ, τ
′)cν(τ

′) +

∫ β

0
dτUαβγδ(0)(c†αcβc†γcδ)(τ)

Gcµν(τ) = −
〈

Tcµ(τ)c†ν(0)
〉

Seff

Σc = G−1
0 − G−1

c

G−1
0 (iωn) =

[

′
∑

K∈R.B.Z.

(

iωn + µ − t̂(K) − Σc(iωn)

)−1
]−1

+ Σc(iωn)

Cologne 18-01-2006 – p.15/42

1 ≤ µ, ν ≤ 4

Seff = −
∫∫ β

0
dτdτ ′c†µ(τ)G−1

0,µν(τ, τ ′)cν(τ ′) +
∫ β

0
dτU(ni↑ni↓)(τ)

Gcµν(τ) = −〈Tcµ(τ)c†ν(0)〉Seff

Σc = G−1
0 − G−1

c

G−1
0 (iωn) =

[ ′∑

K∈R.B.Z.

(
iωn + µ − t̂(K) − Σc(iωn)

)−1
]−1

+ Σc(iωn)



C-DMFT (2)

• How to evaluate lattice quantities ?

• Need to restore the translation 
invariance by periodization :
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ALattice
ij =

∑

α,β:α−β=i−j

wα,βACluster
αβ

with w > 0 and
∑

αβ;α−β=x

wα,β → 1 ∀x as Lc →∞

• Which quantity should we periodize ?

• Most irreducible (Σ rather than G !)

• Σ-periodisation versus M-periodization  (cumulant)

• That choice is part of the cluster method.

SELF CONSISTENCY

IMPURITY PROBLEM

G0 Gc, Σ

Cluster to lattice conversion

Simplest case : w =1/L²



C-DMFT : Σ-Periodization
• The original proposal (G. Kotliar et al. PRL 87 186401 2001) 

• Example : 2x2 cluster on a square lattice, w= const
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ΣLattice(k) =
1
4

4∑

i=1

ΣCluster
ii +

1
2

[(
ΣCluster

12 + ΣCluster
34

)
cos(kx)+

(
ΣCluster

24 + ΣCluster
13

)
cos(ky) + ΣCluster

14 cos(kx + ky) + ΣCluster
23 cos(kx − ky)

]

1 2

43

t

t

t’

Cluster site labeling

Cluster quantities  ⇔ harmonics on the lattice 

Size of cluster  = resolution in k space



• Σ- periodization generates spurious mid-gap states in Mott insulator 
(B. Kyung, A.M. Tremblay et al)

• Definition of the irreducible cumulant  :
Sum of all diagrams 1-particle irreducible in an expansion around the 
atomic limit (i.e. in t, not in U).

• For a presentation of this diagrammatics : (W. Metzner, PRB 43, 8549 1991)

• Relation with the self-energy :

• The Green function is : 

C-DMFT : M-Periodization (1) 13

M−1(k,ω) = ω + µ− Σ(k,ω)

G(k, ω) =
(
t(k)−M−1(k,ω)

)−1



C-DMFT : M-Periodization (2)

• In DMFT,  Σ and M are local.

• Hubbard, 1/2 filled,2x2 CDMFT, U/D = 2, ED solver, cluster 
quantities 
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(T. Stanescu, G. Kotliar PRB 74, 125110, 2006)

reconstruction schemes. The results for the on-site lattice
Green function are shown in Fig. 3 and compared with the
cluster local Green function. The agreement between the lat-
tice local Green function obtained using the cumulant recon-
struction scheme and the cluster G11 is striking. In contrast,
the self-energy periodization scheme fails. This failure is a
direct consequence of the nonlocal nature of the self-energy.

We have constructed a cluster DMFT scheme that uses
cumulants as basic irreducible quantities. This approach ad-
dresses the serious problem of the nonlocality of the self-
energy in the vicinity of a Mott insulating phase by identify-
ing a local irreducible quantity, the cumulant. Next, we study
some of the implications of this new perspective on the low-
energy physics of a correlated metal.

III. PSEUDOGAPS, FERMI ARCS, AND THE ZEROS
OF THE GREEN FUNCTION

As an application of our method to a strongly correlated
metal, we study the weakly doped 2D Hubbard model using
a four-site cluster approximation. In general, the lattice
Green function can be written as

G!k,!" =
1

! − r!k,!" − i"!k,!"
, !11"

where "!k ,!" represents the imaginary part of the self-
energy and r!k ,!"=#!k"−$+Re%!k ,!" is the energy. In the
self-energy periodization scheme doping values, %!k ,!" is a
linear combination of the lattice self-energies given by

!!k,!" = !0!!" + !1!!"&!k" + !2!!"'!k" . !12"

In the cumulant reconstruction scheme, which describes bet-
ter the system near the Mott transition, the lattice self-energy
is given by a highly nonlinear relation

%!k,!" = ! − $

− # 1
2 !1 − '"

! + $ − %A
+

1
4 !1 − & + '"
! + $ − %B

+
1
4 !1 + & + '"
! + $ − %C

$−1

,

!13"

where &!k" and '!k" were defined above, and the diagonal
cluster self-energies are %A=%0−%2 and %B!C"=%0(2%1

+%2. Using exact diagonalization as an impurity solver11 one
finds that at zero temperature the imaginary parts of the clus-
ter self-energies go to zero at zero frequency. For the real
parts, on the other hand, we distinguish two regimes. At large
dopings the diagonal cluster self-energies are dominated by
the local component %0 and Eq. !13" reduces in the first
approximation to Eq. !12". In this regime the physics is al-
most local with small corrections due to short-range correla-
tions. All the periodization schemes converge and the single-
site DMFT represents a good first-order approximation. In
contrast, close to the Mott transition the short-range correla-
tions become important and the off-diagonal components of
the cluster self-energy become comparable with %0. As a
consequence, at zero frequency the denominators in Eq. !13"
may acquire opposite signs generating a divergence in the
lattice self-energy. This pole of %!k ,!=0", or equivalently
of r!k", gives rise to a zero of the lattice Green function. We
show in Fig. 4 the renormalized energy r!k" and the spectral
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FIG. 2. !Color online" Cluster cumulant as a function of the
imaginary frequency for the half-filled 2D Hubbard model with U
=8t. We compare the on-site cumulant M11 !blue/dark gray" with
the next-nearest-neighbor cumulant M13 !orange/light gray", as both
components are purely imaginary. The nearest-neighbor cumulant
M12 !not shown" is real. Notice that Im%M13&) Im%M11& for all fre-
quencies, as a result of the local nature of the cumulant. The inset
shows the imaginary components of the cluster self-energy, %11
!blue/dark gray" and %13 !orange/light gray". Notice that !i" both
components diverge as !n→0, and !ii" the two components become
comparable at small energies, as proved by the vanishing of the sum
%11+%13 !dashed red line". This behavior is a result of the nonlocal
nature of the self-energy.
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FIG. 3. !Color online" Comparison of the local cluster Green
function !green line" with the lattice local Green function calculated
using the cumulant periodization scheme !blue circles" and the self-
energy periodization scheme !orange triangles". The good agree-
ment between the cluster G11 and the lattice Green function ob-
tained using cumulants is a result of the local nature of this
irreducible quantity. In contrast, the self-energy is nonlocal and the
reconstruction scheme based on % fails. The results are for a 2D
half-filled Hubbard model with U=8t and were obtained using a
four-site cluster CDMFT with an ED impurity solver.

TUDOR D. STANESCU AND GABRIEL KOTLIAR PHYSICAL REVIEW B 74, 125110 !2006"

125110-4

M is more localized than Σ.



C-DMFT : M-Periodization (3)

➡ Periodize the irreducible cumulant 

• Same formula as for the self-energy : 
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MLattice(k) =
1
4

4∑

i=1

MCluster
ii +

1
2

[(
MCluster

12 + MCluster
34

)
cos(kx)+

(
MCluster

24 +MCluster
13

)
cos(ky)+MCluster

14 cos(kx+ky)+MCluster
23 cos(kx−ky)

]

Some results (pockets) will rely on this periodization

(T. Stanescu, G. Kotliar PRB 74, 125110, 2006)

• A non-linear relation   ⇒                         can have singularity !Σlattice(k, 0)



C-DMFT : test of periodization procedure

• Consistency check : 

• Example of 1/2 filled Hubbard : 
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(T. Stanescu, G. Kotliar PRB 74, 125110, 2006)

GCluster(ω) =
∑

k

GLattice(k, ω)

reconstruction schemes. The results for the on-site lattice
Green function are shown in Fig. 3 and compared with the
cluster local Green function. The agreement between the lat-
tice local Green function obtained using the cumulant recon-
struction scheme and the cluster G11 is striking. In contrast,
the self-energy periodization scheme fails. This failure is a
direct consequence of the nonlocal nature of the self-energy.

We have constructed a cluster DMFT scheme that uses
cumulants as basic irreducible quantities. This approach ad-
dresses the serious problem of the nonlocality of the self-
energy in the vicinity of a Mott insulating phase by identify-
ing a local irreducible quantity, the cumulant. Next, we study
some of the implications of this new perspective on the low-
energy physics of a correlated metal.

III. PSEUDOGAPS, FERMI ARCS, AND THE ZEROS
OF THE GREEN FUNCTION

As an application of our method to a strongly correlated
metal, we study the weakly doped 2D Hubbard model using
a four-site cluster approximation. In general, the lattice
Green function can be written as

G!k,!" =
1

! − r!k,!" − i"!k,!"
, !11"

where "!k ,!" represents the imaginary part of the self-
energy and r!k ,!"=#!k"−$+Re%!k ,!" is the energy. In the
self-energy periodization scheme doping values, %!k ,!" is a
linear combination of the lattice self-energies given by

!!k,!" = !0!!" + !1!!"&!k" + !2!!"'!k" . !12"

In the cumulant reconstruction scheme, which describes bet-
ter the system near the Mott transition, the lattice self-energy
is given by a highly nonlinear relation

%!k,!" = ! − $

− # 1
2 !1 − '"

! + $ − %A
+

1
4 !1 − & + '"
! + $ − %B

+
1
4 !1 + & + '"
! + $ − %C

$−1

,

!13"

where &!k" and '!k" were defined above, and the diagonal
cluster self-energies are %A=%0−%2 and %B!C"=%0(2%1

+%2. Using exact diagonalization as an impurity solver11 one
finds that at zero temperature the imaginary parts of the clus-
ter self-energies go to zero at zero frequency. For the real
parts, on the other hand, we distinguish two regimes. At large
dopings the diagonal cluster self-energies are dominated by
the local component %0 and Eq. !13" reduces in the first
approximation to Eq. !12". In this regime the physics is al-
most local with small corrections due to short-range correla-
tions. All the periodization schemes converge and the single-
site DMFT represents a good first-order approximation. In
contrast, close to the Mott transition the short-range correla-
tions become important and the off-diagonal components of
the cluster self-energy become comparable with %0. As a
consequence, at zero frequency the denominators in Eq. !13"
may acquire opposite signs generating a divergence in the
lattice self-energy. This pole of %!k ,!=0", or equivalently
of r!k", gives rise to a zero of the lattice Green function. We
show in Fig. 4 the renormalized energy r!k" and the spectral
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FIG. 2. !Color online" Cluster cumulant as a function of the
imaginary frequency for the half-filled 2D Hubbard model with U
=8t. We compare the on-site cumulant M11 !blue/dark gray" with
the next-nearest-neighbor cumulant M13 !orange/light gray", as both
components are purely imaginary. The nearest-neighbor cumulant
M12 !not shown" is real. Notice that Im%M13&) Im%M11& for all fre-
quencies, as a result of the local nature of the cumulant. The inset
shows the imaginary components of the cluster self-energy, %11
!blue/dark gray" and %13 !orange/light gray". Notice that !i" both
components diverge as !n→0, and !ii" the two components become
comparable at small energies, as proved by the vanishing of the sum
%11+%13 !dashed red line". This behavior is a result of the nonlocal
nature of the self-energy.
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FIG. 3. !Color online" Comparison of the local cluster Green
function !green line" with the lattice local Green function calculated
using the cumulant periodization scheme !blue circles" and the self-
energy periodization scheme !orange triangles". The good agree-
ment between the cluster G11 and the lattice Green function ob-
tained using cumulants is a result of the local nature of this
irreducible quantity. In contrast, the self-energy is nonlocal and the
reconstruction scheme based on % fails. The results are for a 2D
half-filled Hubbard model with U=8t and were obtained using a
four-site cluster CDMFT with an ED impurity solver.

TUDOR D. STANESCU AND GABRIEL KOTLIAR PHYSICAL REVIEW B 74, 125110 !2006"

125110-4



• Impurity model : same as for CDMFT.

• G, Σ cyclic on the cluster

DCA
• Cluster method in k-space : Σ piecewise constant on B.Z.

M.H. Hettler, A.N. Tahvildar-Zadeh, M. Jarrell, T. Pruschke,H.R. Krishnamurthy  PRB (1998)

• Example for 2x2 cluster on square lattice. 
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kc K

k k
~

(0,!)

(!,0)(0,0)

(!,!)

Cluster momenta 

G(kc, iωn) =
∑

k̃

1
iωn + µ− t(k̃)− Σ(kc, iωn)

Σ(k, iωn) ≈ Σc(kc(k), iωn)

G−1
0 (kc, iωn) = G−1(kc, iωn) + Σc(kc, iωn)



• A real space formulation : 
CDMFT self-consistency condition with a modified hopping 
Also valid in the AF phase.
(G. Biroli, O. Parcollet, G. Kotliar, PRB, 69,205108 (2004))

DCA (2) 18

Seff = −
∫∫ β

0
dτdτ ′c†µ(τ)G−1

0,µν(τ, τ ′)cν(τ ′) +
∫ β

0
dτUnµ↓nµ↑(τ)

Gcµν(τ) = −
〈
Tcµ(τ)c†ν(0)

〉
Seff

Σc = G−1
0 −G−1

c

G−1
0 (iωn) =

[ ′∑

K∈R.B.Z.

(
iωn + µ− t̂DCA(K)− Σc(iωn)

)−1
]−1

+ Σc(iωn)

tDCA
αβ (K) =

∑

kc

eikc(α−β)t(K + kc)



DCA (3) 

• Lattice quantities : 

• In DCA, translation invariance is preserved by construction

• But there is still a need for cluster to lattice conversion

• Use spline interpolation to get a smooth Σ(k,ω) on the lattice 
(M. Jarrell et al.).

19



Functional point of view

• DMFT as an approximation of the Baym-Kadanoff functional.

• Exact in large dimension  (Metzner-Vollhardt,1989)

• Anderson impurity model = machinery to solve this approximation
(Kotliar-Georges 1992)

20

Φ ≈ φAIM (Gii)

DMFT : a Spectral Density Functional Theory (2)

Strongly correlated electronic systems (SCES) :

ΓBK [Gij ] = Tr lnGij − Tr(g
−1
0ijGij) + ΦBKLW [Gij ]

Gij(t) ≡ −
〈

Tci(t)c
†
j(0)

〉

Σij =
δΦBKLW

δGij

Local Green Function G(t) ≡ Gii(t)

Dynamical Mean Field Theory (DMFT) : ΦBKLW [Gij ] ≈ φ[Gii]

A. Georges, G. Kotliar, W. Krauth, M. Rozenberg RMP (1996)

Realistic calculations in SCES

Mix DFT (LDA) and DMFT

G. Kotliar, S. Savrasov,K. Haule, V. Oudovenko, OP, C. Marianetti, Rev. Mod. Phys. To appear

Various codes at http://dmft.rutgers.edu

Cologne 18-01-2006 – p.8/42

• Functional formulation of DMFT 



Φ-derivability
• CDMFT : the impurity problem is Φ-derivable : 

but the lattice conversion breaks the Φ-derivability.

• DCA is also Φ-derivable (but not the lattice conversion !).

Coarse-graining of the momentum conservation at the vertex.

21

ΦCDMFT (G) =
∑

R

Φ(Gµ,R;ν,R|Gρ,R;λR′ = 0)

ΦDCA(G) = Nsites Φ(G(k))|U(k1,k2,k3,k4)=UDCA(k1,k2,k3,k4)

UDCA(k1, k2, k3, k4) = δKc(k1)+Kc(k2),Kc(k3)+Kc(k4)/Nsites

• Φ-derivability ⇒ conservative approximation (Baym-Kadanoff)

In particular, Luttinger Theorem ....

T. Maier et al, Rev. Mod. Phys. 77,1027 (2005)



Luttinger Theorem

• In Fermi liquid, volume of the Fermi surface is conserved.

• Derivation is based on the existence of the Φ functional
(See e.g. Abrikosov-Gorkov-Dzyaloshinky, sect 19.4)

• When Σ becomes singular : problem !

• Fermi surface : location of poles of G(k,0)
Luttinger surface : location of zeros of G(k,0)

• BUT when Σ has a singularity, volume enclosed by both surfaces not 
necessarily conserved !
(A. Georges, O. Parcollet and S.Sachdev, PRB 63 134406, (2001))
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∫
G∂ωΣ != 0



Nested Schemes

• Take a higher approximation of the Luttinger Ward functional.

23

Φ =
∑

i

φ̃1(Gii) +
∑

<ij>

φ̃2(Gii, Gjj , Gij) + · · ·

• Apply it to a 1 site and a 2 site problem : 

φ1site(Gii) = φ̃1(Gii)
φ2sites(Gii, Gjj , Gij) = φ̃2(Gii, Gjj , Gij) + φ̃1(Gii) + φ̃1(Gjj)

• Introducing z,  the connectivity of the lattice :

ΦNested ≈ (1− z)
∑

i

φ1site(Gii) +
∑

<ij>

φ2sites(Gii, Gjj , Gij)



Nested Schemes (2)

• Complete equations :
(A. Georges, G. Kotliar, W. Krauth and M. Rozenberg, Rev. Mod. Phys. 68, 13, (1996))
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Σloc =
δΦ

δGii
=

δΦ1site

δGii
+ z

(
δΦ2sites

δGii
− δΦ1site

δGii

)

Σnn =
δΦ2sites

δGij

Σlatt = Σloc(iωn) + t(k)Σnn(iωn)

Gloc =
∑

k

1
iωn − t(k)− Σloc(iωn)− t(k)Σnn(iωn)

Gnn =
∑

k

eik.!δ

iωn − t(k)− Σloc(iωn)− t(k)Σnn(iωn)

G =
∑

K∈R.B.Z.

(
iωn − t(K)− Σlatt(K)

)−1



Many other possible schemes !

• For a review of some methods : T. Maier et al, Rev. Mod. Phys. 77,1027 (2005) 

• Chain DMFT : a chain in a self-consistent bath (see below)
(S. Biermann et al)

• Extended DMFT and Extended cluster DMFT. (Q. Si et al., see e.g. K. Haule)

• Cluster perturbation theory. Not self-consistent clusters
A.M. Tremblay, D. Sénéchal et al., T. Maier et al, Rev. Mod. Phys. 77,1027 (2005)

• Self-energy functional (M. Potthof et al.)

• PCDMFT : use Σ(k,ω) in the self-consistency
(G. Biroli, O. Parcollet, G. Kotliar, PRB, 69,205108 (2004))

• ...

25
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So what is the best cluster method ?



Classical limit

• A large body of work in classical statistical mechanics 
(Bethe, Kikuchi, Cf Domb-Green series)

• How do our cluster methods connect to this ?
For example large U limit of Falikov-Kimball model = Ising model
(G. Biroli, O. Parcollet, G. Kotliar, PRB, 69,205108 (2004))

27

H = −
∑

ijσ

tijσc†iσcjσ + Uni↑ni↓ ,with t↓ = 0

• CDMFT reduces to Ising cluster with a bath at the boundary. 

H = HIsing + Jσ1〈σ3〉
313’

J

Example of 2x2 cluster

• Exercise : show that at large U, 
one finds the Ising Weiss theory.



Classical limit (2)

• DCA : 
Cluster is cyclic, no boundary.  An effective J on ALL links.
(G. Biroli, O. Parcollet, G. Kotliar, PRB, 69,205108 (2004))

• Nested scheme (2 sites) leads to Bethe-Kikuchi method. 
Solve 1 site and 2 sites problems and fix the field h so that local 
magnetization is the same in the 2 problems :

28

H(1) = zhS(1)

H(2) = (z − 1)h(S(2)
1 − S(2)

2 ) + JS(2)
1 S(2)

2

< S(1) > =< S(2)
1 >= − < S(2)

2 >

• Convergence of Tc vs size much faster than CDMFT or DCA.

BUT ....



Causality issue 

• Causality  =  Im Σ <0 (definite negative matrix)

• Strong Causality property :  guarantee that Im Σ <0 for any bath G0
Hence there will not be any causality violation at any step in the 
DMFT iterative loop.

• Quantum impurity problem is causal by construction : 
the problem lies in the self-consistency.

• It is not obvious to have a causal scheme : 

Nested schemes show causality violations

• CDMFT, DCA are proven to be causal (See original papers)

29

What is the origin of this problem ?



• Using Cutkovsky-t’Hooft-Veltmann cutting technique.
(G. Biroli, O. Parcollet, G. Kotliar, PRB, 69,205108 (2004))

• Diagrammatic expansion of 

• Use Keldysh technique

•                is a quadratic form in “half-diagrams” R and L
Can we form a square ?

• Nested scheme is not causal (was known empirically before).

• Roughly speaking, problem arises when self-energy not local enough 

Origin of the causality problem 30
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See also A. Fuhrmann, S. Okamoto, H. Monien, and A. J. Millis PRB 75, 205118 (2007) 



Convergence properties

• Debate in the literature about CDMFT and DCA convergence
(See controversy by Biroli et al. vs Jarrell et al., 2002)

• DCA (cluster of linear size L) : 

• CDMFT  :  

• A priori : 

• But  : 

• Cavity construction is not exact : error of order 1 at the 
boundary.

• Spurious transition in one dimension.

• Large sizes :  Clusters DMFT are not better than finite systems !

31

δm ≡ m−mL=∞ ∼ 1/L2

δm ∼ 1/L

δmcenter ∼ e−L/ξ



Convergence properties (2)

• For large clusters, one has to improve CDMFT by using more the 
result at the center : See G. Kotliar, S. Y. Savrasov, K. Haule, V. S. Oudovenko, O. 
Parcollet, C.A. Marianetti, Rev. Mod. Phys. 78, 865 (2006)

• Reweigh the self-energy in the self-consistency condition. 

32

ΣCluster
αβ → Σw-CDMFT

α′β′ =
∑

α′β′

wα′β′

αβ ΣCluster
αβ

wαβ
γδ = δα−β,γ−δfc(α)fc(β)

∑

α

fc(α)2 = 1

• Remove spurious transition in 1d. Tc convergence close to DCA. 

• This debate is interesting only if one can solve large clusters at large U !



Test the cluster method in one dimension

• A priori the worst case for a mean field methods

• Computation of short range physics, thermodynamics.

• DMFT can NOT capture Luttinger liquid large distance physics.

• e.g. :  occupation vs chemical potential 
(M. Capone, M. Civelli, S.S. Kancharla, C. Castellani, G. Kotliar, PRB 69 195105 2004)
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Test the cluster method in one dimension (2)

• What about dynamical quantities ?

• Comparison to DMRG (in Matsubara, with Hallberg’s algorithm)
(M. Capone, M. Civelli, S.S. Kancharla, C. Castellani, G. Kotliar, PRB 69 195105 2004)
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Test in one dimension

Solve the 1D Hubbard model with 2 sites clusters and E.D. solver

Compare with Bethe Ansatz solution and DMRG.

(M. Capone et al. cond-mat/0401060)
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1. Cluster methods.

2. Application to high-Tc superconductors.
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Is the DMFT scenario for Mott transition 
confirmed by clusters ?



U-driven Mott transition

• Frustrated model: signature of Mott transition 
in double occupancy, as in 1 site DMFT.

• Frustration is essential ! (hard for QMC)
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Cluster corrections close to Mott transition

• Fixed T/D = 45>Tc, various U.
Anisotropic Hubbard model

38
. . . with k-dependent self-energy

Fixed T/D = 45 > Tc, various U : 3 regions in U .

U/D
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CROSSOVER

Uc1 Uc2

T/D
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DMFT metal Metal. Hot-Cold spots Finite T insulator

U/D ≤ 2.2 2.25 ≤ U/D ≤ 2.3 2.35 ≤ U/D

Σ′′
11 ∼ c1 +

(

1 − 1
Z

)

iωn Σ′′
11 ∼ c2 +

(

1 − 1
Z

)

iωn Σ′′
11 ∼ c3

Σ′′
12, Σ

′′
14 ≈ 0 Σ′′

14 %= 0

∂kΣlattice ≈ 0 Modulation of the

finite T lifetime

March Meeting 2005 – p.15/26

?

T/D

U/D A(k, ω = 0+)

DMFT metal : a generic feature at small U, large doping.



Hot Cold regions due to local Mott physics 39

Hole doped

Electron 
doped

n=1 : MottMetal

Highly 
frustrated

DMFT metal Anisotropic metal

M. Civelli, M. Capone, S. S. Kancharla, O.P and G. Kotliar  Phys. Rev. Lett. 95, 106402 (2005)
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Figure 5.1: Left side: the CDMFT plaquette. Right side: staggered magnetization as
a function of the next-nearest hopping t′ at half-filling. The parameter t′ controls the
magnetic frustration in the system.

2 × 2 plaquette (see Fig. 5.1), embedded in an effective medium described by a self-

consistently determined Weiss function. We consider here a metallic phase which does

not break any symmetry and follow its evolution as a function of doping. The choice

of a plaquette-cluster is minimal in order to respect the lattice square-symmetry and

it allows describing various broken symmetries, such as antiferromagnetism (AF) or

d-wave superconductivity. With CDMFT on a plaquette we can describe the evolution

of the electronic structure of the model in terms of just a few (three is the present case)

functions of frequency which have a simple physical interpretation as parameterizing the

lattice self energy, and which show a systematic evolution towards the Mott insulator

(see Fig. 5.2 and discussion below). It can be considered as a dynamical generalization

of the early slave boson mean field theory [36][43] which is able to treat both the

coherent and the incoherent excitations (quasiparticle peak and Hubbard bands) on

the same footing, capturing the short-range physics of singlet formation on bonds.

In order to perform an ED solution, the quantum impurity model is truncated

to a finite number (in this case 8) bath levels, whose energies and hybridizations are

self-consistently determined through the minimization procedure. As we explained in

chapter 3, to implement the self-consistency condition, we need to introduce Matsubara

frequencies and hence an effective inverse temperature β which we set to β = 128 in units

of the half bandwidth 4t. At low β and relatively small U our results are qualitatively

similar to those obtained solving the impurity by QMC (chapter 4.2). Details on the

implementation of ED within CDMFT and a benchmark against the exact solution

127

Π
"""""
2

Π

Π
"""""
2

Π

Π
"""""
2

Π

Π
"""""
2

Π

Π
"""""
2

Π

Π
"""""
2

Π

Π
"""""
2

Π

Π
"""""
2

Π

Π
"""""
2

Π

Π
"""""
2

Π

Π
"""""
2

Π

Π
"""""
2

Π

Π
"""""
2

Π

Π
"""""
2

Π

Π
"""""
2

Π

Π
"""""
2

Π

Π
"""""
2

Π

Π
"""""
2

Π
t’=!0.3t t’=!0.3t t’=!0.3t

t’=+0.3tt’=+0.3tt’=+0.3t

t’=+0.9tt’=+0.9t

n=0.89 n=0.96

n=0.90 n=0.95

n=0.69 n=0.92 n=0.96

0.0 x

n=0.70

n=0.73

t’=+0.9t

Figure 5.7: A(k,ω = 0+) in the first quadrant of the Brillouin zone. In the first row
from the top t′ = −0.3t, densities n = 0.73, 0.89, 0.96, color scale x = 0.28, 0.22, 0.12;
in the second row t′ = +0.3t, n = 0.70, 0.90, 0.95, color scale x = 0.82, 0.34, 0.27; in the
lowest row t′ = +0.9t, n = 0.69, 0.92, 0.96, color scale x = 0.90, 0.32, 0.22. The white
dashed line is the FS given by teff(k) = µ.

lifetime, or inverse scattering rate τ−1
k = −ImΣ(k,ω = 0+) (again extrapolating to

zero the Matsubara values). Let us emphasize that our calculation is performed at a

finite effective temperature. In a Fermi liquid this quantity would be small and vanish

as T 2 as the temperature goes to zero. Here we find a strong modulation of τ−1
k in

the Brillouin zone that develops when the Mott point is approached. Our results, as

well as the QMC-CDMFT of Ref. [55], may be interpreted in terms of a strongly

anisotropic coherence scale, which decreases at low doping. When the scale becomes

smaller than the energy resolution of our calculation we can not follow the decrease of

ImΣ with decreasing frequency (as evidenced by the line for n = 0.98 for t′/t = −0.3

of Fig. 5.2). Therefore it not possible to decide between a scenario where the Fermi

liquid picture breaks down or where the Fermi liquid coherence scale is smaller than

our energy resolution.

A(k, ω = 0+)

Teff= D/128, U=16t

AF order vs t’/t

t,t’ isotropic 
Hubbard model
2x2 CDMFT,ED



Renormalization of the Fermi surface

• Fermi Surface can be strongly 
renormalized by interactions 
close to the Mott transition.

•  Model dependent effect !

• Position of cold regions for 
hole/electrons doped similar to 
ARPES
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Phase diagram of the Hubbard model ?



• Previous works with clusters  :

• A. Lichtenstein et al. PRB 62, R9283 (2000)
• DCA : M. Jarrell et al,  PRL 85,1524 (2001)

• Large Clusters at U/D=1 (DCA), up to 26 sites : Tc ≈ 0.02t
T. Maier et al., PRL 95, 237001 (2005)

• 2x2 CDMFT also has d-SC phase, but at lower T (M. Civelli, K. Haule).

Does the Hubbard model have d-SC ? 42
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AF, d-SC : coexistence or competition ?

• Qualitative difference between large and small U.

• Small U : coexistence between AF + d-SC

• Higher U,  first order transition.
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FIG. 2: (Color online) AFM and dSC order parameters as a
function of doping for four U/t = 4. We compare the values of
the order parameters in the pure solutions (full line and filled
circles) with the values in the mixed solution (dashed line and
open squares). The dSC order parameter was multiplied by
a factor 10 for graphical purposes.

tions and a mixed-phase with both order parameters fi-
nite is stabilized. In Fig. 2, we show the value of the two
order parameters in the mixed state for U/t = 4, com-
pared with their values in the starting pure phases. The
superconducting component develops for small doping,
and grows quite rapidly, while the staggered magnetiza-
tion is only slightly smaller than the value of the pure
AFM solution. For larger doping the dSC order parame-
ter in the mixed state collapses on the pure solution, and
the AFM order parameter becomes slightly smaller. We
will see in the following that the mixed state is not only a
solution spontaneously developed by the iterations, but
it also has a lower energy than the pure ones. A similar
behavior has been found in static mean-field [17].

For large U/t = 12, 16, the two solutions (pure dSC and
pure AFM) are found to be stable against the perturba-
tions described above: a small dSC(AFM) perturbation
of the AFM(dSC) state disappears as the iterative pro-
cedure goes on, signaling that the two states are in direct
competition which each other and cannot be connected.
For U/t = 8 the situation is intermediate: A small mix-
ture between the two solutions takes place, but the mag-
nitude of the “minority” order parameter is found to be
really small, basically of the same order of the truncation
error of the ED calculation. For this reason we can not
judge whether this value of U lies in the weak-coupling
or in the strong-coupling regime, but we can surmise it
is close to the boundary between the two regimes.

The third step of our approach perturbs the previously
obtained solutions with Weiss fields with other symme-
tries (e.g., a d + is superconductivity) or with perturba-
tions with no definite symmetries. Regardless the value of
U/t, we find that these perturbations all vanish through
the iterative procedure. Thus we conclude that we only
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FIG. 3: (Color online) Chemical Potential as a function of
doping for U = 16t [panel (a)] and U = 4t [panel (b)]. In
the former case the red curve with dots is the AFM solution,
the blue one with squares the dSC, and the black line is the
actual solution as a function of doping. In panel (b) only the
stable mixed solution is shown. Panel (c) shows the difference
between the grandcanonical energies of the AFM and dSC,
and Panel (c) compares the energy of the AFM (red), of the
dSC (blue) and of the mixed solution (violet).

have pure AFM, pure dSC and mixed AFM+dSC as
locally stable solutions of the CDMFT equations on a
two by two plaquette. To establish which solution is
the globally stable one we compute their grandcanon-
ical potential at zero temperature Ω = 〈H − µN〉 =
〈Hkin〉 + 〈Hint〉 − µ〈N〉. The interaction term is given
by the expectation value of the double occupancy on
the cluster sites, while the kinetic energy requires the
knowledge of the lattice Green’s function G(k, ω), as
Ekin =

∑
k εkG(k, ω), where εk is the non-interacting

dispersion. Different schemes have been proposed to ex-
tract lattice properties from cluster ones. Here we use the
approach of Ref. 18, where the lattice self-energy is ob-
tained by periodizing the cluster self-energy, but we have
also checked that alternative methods [7, 14, 19] do not
qualitatively affect the qualitative phase boundaries and
the nature of the transitions, and that the quantitative
differences are not large.

For U/t = 4 the mixed phase has lower Ω than the two
pure phases, and it is thermodynamically stable since the
chemical potential is a monotonic function of the doping
(panels (b-d) of Fig. 3). For U/t = 12 and 16, the
comparison of the energy determines the range of ab-
solute stability of the two mutually exclusive solutions,
as shown in panel (c) of Fig. 3, where the difference
∆Ω = ΩdSC − ΩAFM is plotted for U/t = 16. ∆Ω be-
comes zero at µ = µ∗, where the system jumps from one
phase to the other through a first-order transition. the
curve of Ω(µ) has the wrong curvature (corresponding
to negative compressibility) in an interval. The system
is therefore no longer stable in a uniform phase, and it
phase separates. This is clearly seen in the plot of the
chemical potential as a function of doping, where at µ∗
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M. Capone, G. Kotliar Phys. Rev. B 74, 054513 (2006)

ED solution, 8 sites in bath
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Bi-2212 max from other techniques
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Figure 2 Universal doping dependence of the ratios ωAN/ T max
c and ωN/ T max

c of
the antinodal (B1g) and nodal (B2g) superconducting peaks (obtained from
Hg-1201 (this work), Bi-2212 in refs 3,4, Y-123 in refs 4,5 and LSCO in ref. 4).
The error bars on the B1g and B2g Raman peak locations have also been reported and
show unambiguously that there are two energy scales in the underdoped side of
hole-doped cuprates. The ratios 2∆/T max

c deduced from ARPES coherent peak in
the antinodal region23,24,28 and from tunnelling spectroscopy32–34 are plotted.

γAN(φ) = γB1g cos(2φ) whereas γN(φ) = γB2g sin(2φ), and 〈···〉FS

denotes a Fermi-surface average. This predicts a sharp pair-
breaking peak (corresponding to a divergence of this expression)
in the ANR (B1g geometry) at ω = 2∆m, and a weaker singularity
in the NR (B2g) at the same frequency scale. Furthermore, within
the BCS formula above, the NR response has a maximum at a
somewhat lower energy than the peak in the ANR, but both are
governed by one energy scale, that of the maximal gap ∆m.

Inclusion of damping parameters2 in equation (1) and a more
realistic description of the doping dependence of the Fermi surface
introduces minor changes and fails to reproduce the opposite
doping dependence of the antinodal and nodal peaks.

This clearly demonstrates that one or both of the following
assumptions become invalid in the underdoped regime: (1) non-
interacting BCS quasiparticles (2) a gap function with the simple
form ∆k = ∆m cos(2φ) characterized by a single energy scale.
Moving away from assumption (1) requires taking into account, in
the framework of the Landau theory of interacting quasiparticles,
the spectral weight Zk of these quasiparticles, smaller than one and
k-dependent, as well as the Fermi-liquid vertex Λk describing the
interaction of the quasiparticles with external perturbations. This
leads to (see the Methods section):

χ′′
AN,N(ω) = 2πNF
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in which a general gap function has also been taken into account.
This expression contains two unknown functions of momentum
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Figure 3 Normalized Raman response functions with respect to the sum rule.
A weak linear background coming from spurious luminescence for intermediate
doping, independent of the scattering geometry and excitation lines, has been
subtracted from raw data before carrying out the normalization (note that without
this subtraction the final result is qualitatively similar, that is, the low-energy slope α

of the normalized nodal Raman response is found to be doping independent).

on the Fermi surface: (ZΛ)k and ∆k, the determination of which
requires further considerations.

LOW-ENERGY NODAL EXCITATIONS

To gain such insight, we focus on the low-energy part of
the Raman spectra, which is controlled by the properties
of nodal quasiparticles. The B2g geometry is particularly
significant in this respect, because it directly probes the NR
(see the Methods section). Figure 1 demonstrates that a linear
dependence on frequency is found in this geometry, for all
doping levels. This is expected from equation (2), which yields:
χ′′

N(ω → 0) = γ2
B2g

(π2NF/2v∆)(ZΛ)2
Nω + ···. In this expression,

v∆ = (d∆/dφ)|N is the slope of the gap function at the nodes,
and (ZΛ)N is the value of (ZΛ)k at the node. Hence, in
principle, a study of the doping dependence of the term linear
in frequency in the (B2g) response enables the determination of the
important parameter:

α ≡ NF

v∆

(ZΛ)2
N (3)

associated with nodal low-energy physics. To compare this
parameter for different samples, the Raman spectra must be
properly normalized. In this paper, we do not present absolute
Raman cross-sections because (1) the Raman intensity is sensitive
to the surface topology and we measured a different crystal for
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Two energy scales in SC phase

• Raman experiments. 

• Mesure the gap around the node 
and at the antinode.
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2 gaps in high-Tc superconductors

• Solution of Hubbard model, 2x2 cluster, ED solver, SC phase

• Cluster quantities : 
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2 gaps in high-Tc superconductors

• Analyze one particle spectrum, with/without anomalous Σ
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Anomalous velocity // to FS 
Slope of the gap to the node

QP velocity ⊥ to FS 

2 gaps in high-Tc superconductors

• Low frequency analysis close to the node : 
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2 gaps in high-Tc superconductors

• Decompose the gap in the 1 particle spectrum.
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FIG. 4: (Color online) Antinodal energy gap ∆tot (circles),
obtained from the spectra of panel D in Fig. 2, as a func-
tion of doping δ, and decomposed in a normal contribution
∆nor (squares), obtained from panel B in Fig. 2, and in a
superconducting contribution ∆sc (diamonds).

uated the antinodal gap in the superconducting state
∆tot by measuring the distance from the Fermi level
(ω = 0) at which spectral peaks are located (panel D
of Fig. 2). ∆tot monotonically increases by reducing
doping, as observed in experiments on HTCS. At small
doping, a PG opens at a critical doping δc ≈ 0.08. In
order to disentangle the contribution of the normal com-
ponent from the superconducting gap, we look at panel
B of Fig.2, where we have set Σano = 0. While we are
able to identify (at a finite frequency ωpg < 0) a peak in
the spectrum, this may not correspond strictly speaking
to a Landau quasi-particle, since it can decay into the
lower-energy nodal quasi-particles. The weight of such
a peak, Zanod, displayed in panel C of Fig.2 does not
necessarily correspond to a Fermi-liquid quasi-particle
renormalization. As with ∆tot, we define the normal
contribution to the antinodal energy-gap ∆nor = |ωpg|
from panel B of Fig. 4. We also isolate and display
the anomalous contribution to the total antinodal gap
∆sc =

√

∆2
tot − ∆2

nor and find that, within our numer-
ical accuracy ∆sc(k) ∼ Zanod|Σano(k, 0)|. The appear-
ance of a finite ∆nor coincides with a downturn in ∆sc.
We interpret ∆tot as the monotonically increasing antin-
odal gap observed in cuprates superconductors, while the
superconducting gap ∆sc, detectable as the nodal-slope
v∆ (Fig. 3), is decreasing in approaching the Mott tran-
sition.

The concept of two energy gaps with distinct dop-
ing dependence in the high temperature superconduc-
tors has recently been brought into focus from an
analysis of Raman spectroscopy[12], and photoemission
experiments[13] [14]. Here we show that this observation
follows naturally from the simplest (dynamical) mean
field treatment of correlated superconductivity near a
Mott transition with strong antiferromagnetic correla-

tions. Notice that the one particle gap in the CDMFT
picture is unusual. It is the result of both the anomalous
self-energy and the normal self-energy. This is reminis-
cent of the earlier slave boson mean field treatment of
the t-J model[21, 22], which uses order parameters de-
fined within a plaquette and includes the possibility of
pairing in both the particle-particle and the particle-hole
channels. Compared to the self-energy of the slave boson
treatment, as in the Resonating Valence Bond (RVB)
treatment[22], the CDMFT lattice-self-energy has rele-
vant normal and anomalous components at small dop-
ing, it has considerably stronger variations on the Fermi
surface[10] and additional frequency dependence, which
makes the one electron states near the antinodal point
very incoherent even in the superconducting state. Fur-
thermore, in the RVB slave boson mean field theory the
anomalous self-energy of the electron increases with de-
creasing doping, in contrast to our findings in CDMFT.

Finally, we note that, as we have not been able to
converge a normal state CDMFT solution at very low
effective temperatures, we cannot address the seemingly
contradictory results on a non-superconductive ground-
state of Ref.[23], as discussed in Ref.[24]. It is possible
that, just like in cuprates, additional fields or pertur-
bations need to be applied to the mean field theory in
order to be able to stabilize a ”normal” state down to
zero temperature.
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Fermi surface in normal phase ?



1d-2d transition

• Chain of spinless fermions with next-neighbor repulsion V, t=1 
coupled by inter-chain hopping t⊥. 

• 1d + RPA approach : F.H.L. Essler,  A.M. Tsvelik, PRB 65, 115117, (2002)

• Chain-DMFT : a periodic chain (32 sites)  + DMFT in the transverse 
direction. Keep k resolution within the chain. Well controlled at 
small t⊥.

• Solve with Hirsch-Fye QMC.
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mapped onto an effective 1D problem described by the
action Seff ! S0

eff "
R!
0 d"H int with

 S 0
eff ! #

X

rr0

Z !

0
d"d"0cyr $"%G#1

0 $r# r0; "# "0%cr0$"0%:

(1)

The inverse propagator G#1
0 in Eq. (1) plays the role of a

long-range, time-dependent hopping amplitude. It must be
determined from the requirement that the in-chain Green’s
function G calculated from Seff coincides with the
k?-summed Green’s function of the original 2D model,
G$k; !% ! &!# #k # "? # !$k;!%'#1 [5,15]. This re-
quirement implies

 G #1
0 $k;!% ! !# #k " G#1$k;!% # R&G$k;!%'; (2)

with k the in-chain momentum, #k ! #2t cosk#$ the
bare dispersion, and R$z% ! sign&Re$z%'

!!!!!!!!!!!!!!!!!!!!!!!!!!!!!
1=z2 " $2t?%2

p
re-

sulting from the integration over the transverse energy
"? ! #2t? cos$k?%. Equations (1) and (2) can be readily
derived from the assumption that the lattice self-energy
does not depend on transverse momentum k?, and is given
by the effective in-chain self-energy:

 !$k;!% ! G#1
0 $k;!% # G#1$k;!%: (3)

!$k;!% will be our main concern here. In order to evaluate
the self-energy we compute the space-time Green’s func-
tion G$r; "% ! #hcr$"%cy0 $0%i by quantum Monte Carlo
(QMC) calculations on a discrete imaginary-time mesh
"‘ ! ‘!=L, using the Hirsch-Fye algorithm [20]. From
the Fourier transform G$k; i!n% we construct a new propa-
gator G0 according to Eq. (2), which is fed back into
Eq. (1) until self-consistency is achieved.

We consider a half-filled 32-site chain closed with anti-
periodic boundary conditions (BC). These BC were
adopted for two reasons: (i) in short 1D chains we observed
that the convergence of the QMC calculations toward
exact-diagonalization results is much faster with antiperi-
odic than with periodic BC; (ii) for a given system size, the
antiperiodic BC improve the resolution near k ! %=2,
which is an advantage for the investigation of the FS
properties. The shape of the FS is indeed controlled by
the real part of the self-energy through the equation

 #k # 2t? cos$k?% ! #Re!$k; i0"%; (4)

which must be solved at zero temperature near k ! %=2.
At finite temperature the FS looses its identity, although
sharp signatures may subsist in the zero-energy spectral
function A$k; ! ! 0%, which is accessible through photo-
emission experiments. We will first discuss the FS topol-
ogy and properties implied by Eq. (4) and our ch-DMFT
results for !$k;!%, before addressing some issues related
to the experimental measurement of the FS.

For evaluating Eq. (4) one needs a procedure to continue
the ch-DMFT self-energy from the lowest Matsubara fre-
quency i!0 ! i%T down to ! ! i0" along the imaginary-

frequency axis. This is a delicate endeavor, which in gen-
eral requires some assumption about the analytical behav-
ior of !$k;!% near ! ! 0. We performed the continuation
by fitting the self-energy to an analytical function. The
prominent feature in the Mott phase is the spectral gap
which can be crudely represented by a self-energy
!"$k;!% ! $&# 1%#k " $"=2%2=$!" &#k%, where " is
the gap and & accounts for the dispersion renormalization
due to exchange. A similar Ansatz was recently proposed
to describe high-Tc superconductors [21]. This simple
form is not sufficient to reproduce our QMC results, how-
ever, even in the pure Mott phase at t? ! 0. We obtained a
much better agreement with our data by taking into ac-
count residual interactions. Specifically, the self-energy to
which we fit the QMC results is !$k;!% ! !"$k;!% "
!int$k;!%, where !int contains all diagrams—evaluated
using the gapped propagator G0$k;!% ! &!# #k #
!"$k;!%'#1 and an effective interaction V(—up to second
order in perturbation theory. A comparison of the QMC
data and model self-energies is displayed in Fig. 1. One can
see that the model has enough freedom to fit the QMC
results in great detail, especially in the low-frequency
region we are mostly interested in. It turns out that the
model fits the QMC data in the whole range of temperature
and t? values which we have investigated. We can there-
fore use this fit to track the closing of the Mott gap and the
formation of the Fermi surface as t? is increased. A few
additional illustrations of the fit performance can be seen in
Fig. 2.

In Fig. 2 we display our results for #Re!$k; i!0% at V !
2:5t and different values of t?, together with the fit results
evaluated at i!0 and i0". The main trend with increasing
t? can be seen on the raw numerical data. For small t? the
self-energy has a tendency to diverge near kF ! %=2
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FIG. 1 (color online). Left panels: Self-energy on the
imaginary-frequency axis for k between 0 and %=2 at V ! 4,
t? ! 0:5, and T ! 0:04. The dots show the numerical data and
the lines are guides to the eye. The number of imaginary-time
slices was L ! 60. Right panels: Fit of the numerical data to a
trial self-energy (see text). All energies are in units of t.
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the Fourier transform G$k; i!n% we construct a new propa-
gator G0 according to Eq. (2), which is fed back into
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We consider a half-filled 32-site chain closed with anti-
periodic boundary conditions (BC). These BC were
adopted for two reasons: (i) in short 1D chains we observed
that the convergence of the QMC calculations toward
exact-diagonalization results is much faster with antiperi-
odic than with periodic BC; (ii) for a given system size, the
antiperiodic BC improve the resolution near k ! %=2,
which is an advantage for the investigation of the FS
properties. The shape of the FS is indeed controlled by
the real part of the self-energy through the equation
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which must be solved at zero temperature near k ! %=2.
At finite temperature the FS looses its identity, although
sharp signatures may subsist in the zero-energy spectral
function A$k; ! ! 0%, which is accessible through photo-
emission experiments. We will first discuss the FS topol-
ogy and properties implied by Eq. (4) and our ch-DMFT
results for !$k;!%, before addressing some issues related
to the experimental measurement of the FS.
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prominent feature in the Mott phase is the spectral gap
which can be crudely represented by a self-energy
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the gap and & accounts for the dispersion renormalization
due to exchange. A similar Ansatz was recently proposed
to describe high-Tc superconductors [21]. This simple
form is not sufficient to reproduce our QMC results, how-
ever, even in the pure Mott phase at t? ! 0. We obtained a
much better agreement with our data by taking into ac-
count residual interactions. Specifically, the self-energy to
which we fit the QMC results is !$k;!% ! !"$k;!% "
!int$k;!%, where !int contains all diagrams—evaluated
using the gapped propagator G0$k;!% ! &!# #k #
!"$k;!%'#1 and an effective interaction V(—up to second
order in perturbation theory. A comparison of the QMC
data and model self-energies is displayed in Fig. 1. One can
see that the model has enough freedom to fit the QMC
results in great detail, especially in the low-frequency
region we are mostly interested in. It turns out that the
model fits the QMC data in the whole range of temperature
and t? values which we have investigated. We can there-
fore use this fit to track the closing of the Mott gap and the
formation of the Fermi surface as t? is increased. A few
additional illustrations of the fit performance can be seen in
Fig. 2.

In Fig. 2 we display our results for #Re!$k; i!0% at V !
2:5t and different values of t?, together with the fit results
evaluated at i!0 and i0". The main trend with increasing
t? can be seen on the raw numerical data. For small t? the
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We consider a half-filled 32-site chain closed with anti-
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adopted for two reasons: (i) in short 1D chains we observed
that the convergence of the QMC calculations toward
exact-diagonalization results is much faster with antiperi-
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antiperiodic BC improve the resolution near k ! %=2,
which is an advantage for the investigation of the FS
properties. The shape of the FS is indeed controlled by
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sharp signatures may subsist in the zero-energy spectral
function A$k; ! ! 0%, which is accessible through photo-
emission experiments. We will first discuss the FS topol-
ogy and properties implied by Eq. (4) and our ch-DMFT
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to the experimental measurement of the FS.

For evaluating Eq. (4) one needs a procedure to continue
the ch-DMFT self-energy from the lowest Matsubara fre-
quency i!0 ! i%T down to ! ! i0" along the imaginary-

frequency axis. This is a delicate endeavor, which in gen-
eral requires some assumption about the analytical behav-
ior of !$k;!% near ! ! 0. We performed the continuation
by fitting the self-energy to an analytical function. The
prominent feature in the Mott phase is the spectral gap
which can be crudely represented by a self-energy
!"$k;!% ! $&# 1%#k " $"=2%2=$!" &#k%, where " is
the gap and & accounts for the dispersion renormalization
due to exchange. A similar Ansatz was recently proposed
to describe high-Tc superconductors [21]. This simple
form is not sufficient to reproduce our QMC results, how-
ever, even in the pure Mott phase at t? ! 0. We obtained a
much better agreement with our data by taking into ac-
count residual interactions. Specifically, the self-energy to
which we fit the QMC results is !$k;!% ! !"$k;!% "
!int$k;!%, where !int contains all diagrams—evaluated
using the gapped propagator G0$k;!% ! &!# #k #
!"$k;!%'#1 and an effective interaction V(—up to second
order in perturbation theory. A comparison of the QMC
data and model self-energies is displayed in Fig. 1. One can
see that the model has enough freedom to fit the QMC
results in great detail, especially in the low-frequency
region we are mostly interested in. It turns out that the
model fits the QMC data in the whole range of temperature
and t? values which we have investigated. We can there-
fore use this fit to track the closing of the Mott gap and the
formation of the Fermi surface as t? is increased. A few
additional illustrations of the fit performance can be seen in
Fig. 2.

In Fig. 2 we display our results for #Re!$k; i!0% at V !
2:5t and different values of t?, together with the fit results
evaluated at i!0 and i0". The main trend with increasing
t? can be seen on the raw numerical data. For small t? the
self-energy has a tendency to diverge near kF ! %=2
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FIG. 1 (color online). Left panels: Self-energy on the
imaginary-frequency axis for k between 0 and %=2 at V ! 4,
t? ! 0:5, and T ! 0:04. The dots show the numerical data and
the lines are guides to the eye. The number of imaginary-time
slices was L ! 60. Right panels: Fit of the numerical data to a
trial self-energy (see text). All energies are in units of t.
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[Fig. 2(a)]. This behavior is most clearly seen at large V
and low T (see Fig. 1). The singularity of Re!!k; 0" results
from the presence of a gap in the zero-temperature spectral
function at kF [22], and is well captured by the model self-
energy evaluated at T # 0 (blue line) [23]. At finite fre-
quency and/or temperature the singularity is regularized as
shown by the red line. With increasing t? the drop of the
QMC self-energy across kF diminishes [Fig. 2(b)].
Correspondingly, the fitted spectral gap " decreases and
eventually vanishes at tc2? $ 0:5t, together with the disap-
pearance of the singularity in the self-energy [Fig. 2(c)].

Figure 2 provides the graphical solution of Eq. (4), and
illustrates the formation of the Fermi-surface pockets in
this model. When t? is small, the transverse dispersion is
not sufficient to overcome the gap in the self-energy, and
the system remains insulating. At high t?, on the contrary,
there is no gap in the self-energy and Eq. (4) has a solution
for all k?, leading to a continuous Fermi surface. The latter
has practically the same shape as the noninteracting FS, but
is strongly renormalized to an effective interchain hopping
t%? & 0:41t?. In the intermediate regime tc1? < t? < tc2? ,
there is a finite range of k? values where Eq. (4) admits
two solutions, leading to the breakup of the FS into pockets
[Fig. 2(b) and 2(b0)].

According to Luttinger’s theorem, the area of the
Brillouin zone where ReG!k; 0"> 0 equals the electron

density and is thus conserved [12,24]. In the Mott phase
ReG!k; 0" changes sign at k # '!=2 due to the divergence
of !!k; 0" [Fig. 2(a)], and is positive in the domain jkj<
!=2, leading to a density n # 1=2 as expected. Because
the singularity of !!'!=2; 0" subsists as long as "> 0,
the line of zeros of ReG!k; 0" at k # '!=2 is still present
when FS pockets develop, as indicated in Fig. 2(b0). On the
other hand, owing to particle-hole symmetry the electron
and hole pockets have identical volumes, so that Luttinger
theorem is obeyed in our results.

The mechanisms of FS pockets formation in the present
study and in the RPA approach of Ref. [12] are similar,
although there is one important difference. In RPA the
spectral gap keeps its 1D value at all t?: pockets form
when t? > tc1? $"1D, and they never merge into a con-
nected Fermi surface as t? continues increasing. Within
ch-DMFT, in contrast, the closing of the Mott gap with
increasing t? is correctly captured; as a result the pockets
form at lower t? values—thus they are very thin—and
eventually they disappear at tc2? where " # 0.

The quasiparticle properties are strongly anisotropic
along the FS pockets. It is already clear from Fig. 2(b)
that the spectral weight is much smaller on the vertical
parts of the pockets closest to k # !=2, due to the diverg-
ing self-energy in this region; as a result the pockets would
most likely look like ‘‘arcs’’ in photoemission experiments
(see below). Figure 3(a) shows the evolution of the quasi-
particle residue along the Fermi surface. The residue was
evaluated as Z # (1) dRe!!k;!"=d!j!#0*)1, using the
model self-energy and an interpolation of the parameters
fitted to the ch-DMFT data in the whole range of t? values
[Fig. 3(b)]. In the intermediate phase the residue on the
vertical segments of the pockets decreases from Z$ 0:15
to Z$ 0 with increasing t?. On the ‘‘cold’’ side of the
pockets the behavior is inverted, and the residue increases
from Z$ 0:35 to Z$ 0:5. Strikingly, a hot spot around
k # !!=2;!=2" subsists at t? > tc2? . Here again the evo-
lution of Z with t? is different at the cold and hot spots:
while Z steadily approaches 1 in the cold region, it remains
close to Z$ 0:4 at the hot spots.
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FIG. 3 (color online). (a) Evolution of the quasiparticle residue
Z along the Fermi surface for different interchain couplings t?.
When FS pockets are present there are two values of Z for each
k?, the lowest value corresponding to the region of the pocket
closest to k # !=2. (b) Parameters of the model self-energy
determined from fits to the ch-DMFT numerical data.
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FIG. 2 (color online). (a)–(c) Real part of the ch-DMFT self-
energy as a function of k at the lowest Matsubara frequency for
V # 2:5, T # 0:1, and increasing t? (red points). The red and
blue lines show the fit of the data to the function !" +!int at
! # i!0, T # 0:1, and at ! # i0+, T # 0, respectively. The
shaded areas show the domain covered by the free dispersion
"k ) 2t? cos!k?" in Eq. (4). The Fermi surfaces corresponding
to (b) and (c) are shown in (b0) and (c0). The dotted lines indicate
the noninteracting Fermi surfaces, and the + and ) show the
sign of ReG!k; 0".
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[Fig. 2(a)]. This behavior is most clearly seen at large V
and low T (see Fig. 1). The singularity of Re!!k; 0" results
from the presence of a gap in the zero-temperature spectral
function at kF [22], and is well captured by the model self-
energy evaluated at T # 0 (blue line) [23]. At finite fre-
quency and/or temperature the singularity is regularized as
shown by the red line. With increasing t? the drop of the
QMC self-energy across kF diminishes [Fig. 2(b)].
Correspondingly, the fitted spectral gap " decreases and
eventually vanishes at tc2? $ 0:5t, together with the disap-
pearance of the singularity in the self-energy [Fig. 2(c)].

Figure 2 provides the graphical solution of Eq. (4), and
illustrates the formation of the Fermi-surface pockets in
this model. When t? is small, the transverse dispersion is
not sufficient to overcome the gap in the self-energy, and
the system remains insulating. At high t?, on the contrary,
there is no gap in the self-energy and Eq. (4) has a solution
for all k?, leading to a continuous Fermi surface. The latter
has practically the same shape as the noninteracting FS, but
is strongly renormalized to an effective interchain hopping
t%? & 0:41t?. In the intermediate regime tc1? < t? < tc2? ,
there is a finite range of k? values where Eq. (4) admits
two solutions, leading to the breakup of the FS into pockets
[Fig. 2(b) and 2(b0)].

According to Luttinger’s theorem, the area of the
Brillouin zone where ReG!k; 0"> 0 equals the electron

density and is thus conserved [12,24]. In the Mott phase
ReG!k; 0" changes sign at k # '!=2 due to the divergence
of !!k; 0" [Fig. 2(a)], and is positive in the domain jkj<
!=2, leading to a density n # 1=2 as expected. Because
the singularity of !!'!=2; 0" subsists as long as "> 0,
the line of zeros of ReG!k; 0" at k # '!=2 is still present
when FS pockets develop, as indicated in Fig. 2(b0). On the
other hand, owing to particle-hole symmetry the electron
and hole pockets have identical volumes, so that Luttinger
theorem is obeyed in our results.

The mechanisms of FS pockets formation in the present
study and in the RPA approach of Ref. [12] are similar,
although there is one important difference. In RPA the
spectral gap keeps its 1D value at all t?: pockets form
when t? > tc1? $"1D, and they never merge into a con-
nected Fermi surface as t? continues increasing. Within
ch-DMFT, in contrast, the closing of the Mott gap with
increasing t? is correctly captured; as a result the pockets
form at lower t? values—thus they are very thin—and
eventually they disappear at tc2? where " # 0.

The quasiparticle properties are strongly anisotropic
along the FS pockets. It is already clear from Fig. 2(b)
that the spectral weight is much smaller on the vertical
parts of the pockets closest to k # !=2, due to the diverg-
ing self-energy in this region; as a result the pockets would
most likely look like ‘‘arcs’’ in photoemission experiments
(see below). Figure 3(a) shows the evolution of the quasi-
particle residue along the Fermi surface. The residue was
evaluated as Z # (1) dRe!!k;!"=d!j!#0*)1, using the
model self-energy and an interpolation of the parameters
fitted to the ch-DMFT data in the whole range of t? values
[Fig. 3(b)]. In the intermediate phase the residue on the
vertical segments of the pockets decreases from Z$ 0:15
to Z$ 0 with increasing t?. On the ‘‘cold’’ side of the
pockets the behavior is inverted, and the residue increases
from Z$ 0:35 to Z$ 0:5. Strikingly, a hot spot around
k # !!=2;!=2" subsists at t? > tc2? . Here again the evo-
lution of Z with t? is different at the cold and hot spots:
while Z steadily approaches 1 in the cold region, it remains
close to Z$ 0:4 at the hot spots.
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FIG. 3 (color online). (a) Evolution of the quasiparticle residue
Z along the Fermi surface for different interchain couplings t?.
When FS pockets are present there are two values of Z for each
k?, the lowest value corresponding to the region of the pocket
closest to k # !=2. (b) Parameters of the model self-energy
determined from fits to the ch-DMFT numerical data.
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FIG. 2 (color online). (a)–(c) Real part of the ch-DMFT self-
energy as a function of k at the lowest Matsubara frequency for
V # 2:5, T # 0:1, and increasing t? (red points). The red and
blue lines show the fit of the data to the function !" +!int at
! # i!0, T # 0:1, and at ! # i0+, T # 0, respectively. The
shaded areas show the domain covered by the free dispersion
"k ) 2t? cos!k?" in Eq. (4). The Fermi surfaces corresponding
to (b) and (c) are shown in (b0) and (c0). The dotted lines indicate
the noninteracting Fermi surfaces, and the + and ) show the
sign of ReG!k; 0".
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the results of Figs. 2 and 3(a). At the qualitative level, the
self-energy !"!k;!" (with ! # 1) is sufficient to under-
stand the formation of FS pockets with anisotropic resi-
dues. Using ! # !" in Eq. (4) one indeed finds that
pockets form for 0< "< 2t?, and that the residue varies
on such pockets. However the pockets obtained in this way
are considerably wider than in Fig. 2, and the residue in the
cold regions is Z$ 1 when " approaches zero instead of
Z$ 0:5 as in Fig. 3. Thus the residual interactions are
important for the quantitative understanding of the FS
properties. Meanwhile, the fact that our model self-energy
fits the ch-DMFT data at t? > tc2? with V% $ V [Fig. 3(b)]
indicates that second-order perturbation theory is a good
approximation in this region, as expected in a Fermi liquid.

We now turn to the question of the experimental obser-
vation of FS pockets. There are several limitations which
could make the observation of such pockets by angle-
resolved photoemission spectroscopy (ARPES) challeng-
ing, such as the finite energy and momentum resolutions,
the finite temperature at which experiments are performed,
as well as the need to integrate the ARPES intensity on
some energy window in order to improve the signal to
noise ratio. Ideally, ARPES would measure the occupied
spectrum A!k; !"f!!". In practice, however, due to the
above limitations, the measured intensity at the Fermi
energy would be I!k" / R1

&"E d!
R
d"dqA!q; ""f!""g!k&

q; !& "", where "E defines the energy integration win-
dow and g is some function describing the instrument
resolution. We have calculated I!k" using a Gaussian for
g. The comparison depicted in Fig. 4 of the T # 0 Fermi
surface with the expected ARPES intensity clearly shows
that the closing segments of the pockets near k # #=2
would very likely be hidden in the ARPES signal. The
broad aspect of I!k" as compared to A!k; 0" is not a con-
sequence of finite temperature, but of (i) the finite k-space
resolution combined with the fact that the pockets are very
thin and (ii) the large difference in quasiparticle weight on
the two sides of the pockets, which is obvious in A!k; 0"

and consistent with the residues shown in Fig. 3. Similar FS
anisotropies were recently found in cluster-DMFT studies
of the 2D Hubbard model [18], suggesting that such effects
are generic to systems close to a Mott transition, and could
possibly explain the ARPES observation of FS arcs in
high-Tc cuprate superconductors.
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FIG. 4 (color online). Comparison of the zero-energy spectral
function A!k; 0" at T # 0 with the expected ARPES intensity
I!k" calculated assuming a k-space resolution of 0:04#, an
energy resolution 0:004t, and an energy integration window
"E # 0:01t. The self-energy parameters are taken from
Fig. 3(b) for t? # 0:42 (a) and t? # 0:46 (b).

PRL 97, 136401 (2006) P H Y S I C A L R E V I E W L E T T E R S week ending
29 SEPTEMBER 2006

136401-4

Z along the Fermi surface ARPES curves

• I(k) : with some k resolution.
•   The “rear” part of the FS can  
not be seen in experiments.

• Large variation of Z along FS
•   Hot spot remains in the metal
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• CDMFT, Hubbard model, U/D = 2, vs δ, 
ED solver. 

• At low δ, a line of zeros of G appears 
and the topology of the FS changes.

• At finite temperature/resolution,  ARPES 
does not see the second part of the FS.

• ≠ 1d : Luttinger surface appears at low δ
and evolve with δ

• Cumulant periodization is necessary here.

• Discussion : resolution ?

• Experiments on YBCO in high field : 
pocket Fermi surface.
N. Doiron-Leyraud at al, Nature, 2007

(T. Stanescu, G. Kotliar PRB 74, 125110, 2006)

function A!k ,!=0"=−1/" ImG!k ,0" for a 2D Hubbard
model with U=8t at zero temperature for two values of dop-
ing. For n=0.78 !left panels" we have a large electron-type
Fermi surface #blue/dark gray line in the r!k" panel$ separat-
ing the occupied region of the Brillouin zone !green/gray",
defined by r!k"#0 from the unoccupied region !yellow/light
gray" defined by r!k"$0. The Fermi surface can be also
traced in the A!k" panel as the maximum of the spectral
function. On the other hand, for n=0.92 a qualitatively dif-
ferent picture emerges. The Fermi surface !blue/dark gray
line" is now represented by a hole pocket and, in addition, we
have a line of zeros of the Green function !red dashed line"
close to the !" ,"" region of the Brillouin zone. Furthermore,
there is no one-to-one correspondence between the Fermi
surface and the maximum of the spectral function. This be-
havior has two origins, !1" the proximity of a zero line sup-
presses the weight of the quasiparticle on the far side of the
pocket, and !2" for k points corresponding to r!k"!0 the
quasiparticles are pushed away from !=0 and a pseudogap
opens at the Fermi level. We show this explicitly in Fig. 5 by
comparing the low frequency dependence of the spectral
function in three different points of the Brillouin zone,
marked by A, B and C in Fig. 4. Notice the suppression of
the zero-frequency peak at point B and the frequency shift
%=−0.05t of the peak at point C. The cumulant approach
provides a simple interpretation of this effect, observed in
photoemission experiments,12 in terms of the emergence of
infinite self-energy lines or equivalently Luttinger lines !lines
of zeros of the Green function".

IV. CONCLUSIONS

In conclusion, our strong coupling CDMFT study of the
Hubbard model shows that the lightly doped system is char-
acterized by a small, closed Fermi line that appears in the
zero-frequency spectral function as an arc due to the pres-
ence of a line of zeros of the Green function near the “dark
side” of the Fermi surface. These lines of poles of the self-
energy appear near the Mott insulator and have the important
consequence of violating the Luttinger relation between the
number of particles and the volume of the Fermi surface as
determined by the poles of the Green function.13 The vanish-
ing of both the real and imaginary parts of the Green func-
tion at specific locations in the Brillouin zone is an appealing
scenario that is consistent with the growth of the real and
imaginary parts of the self-energy as the temperature is re-
duced. This is the hallmark of the Mott transition in
CDMFT,11 and should be contrasted with the weak coupling
scenario where the real part of the self-energy is regular, and
only the imaginary part exhibits singularities. The divergence
of the self-energy in certain points of the Brillouin zone is
observed in cluster DMFT calculation, using both real
space14 !CDMFT" and momentum space15 cluster schemes.
This behavior seems at odds with the very spirit of DMFT
and shows that the self-energy is not the appropriate quantity
to describe Mott physics governed by short-range correla-
tions. We argue that the irreducible quantity that should be
used to describe this physics is the two-point cumulant. In
particular for the Hubbard model, a precursor of the self-
energy divergence can be observed even for values of the
on-site interaction smaller than the bandwidth.15 A critical
reevaluation of the data for this regime from the cumulant
perspective would be extremely useful.
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FIG. 4. !Color online" Renormalized energy r!k" !upper panels"
and spectral function A!k" !lower panels" for the 2D Hubbard
model with U=8t and T=0. The color code for the upper panels is
green/gray !r#0", blue/dark gray line !r=0", yellow/light gray !r
$0", red dashed line !r→ & ". The frequency dependence of the
spectral function for the points marked by A, B, and C is shown in
Fig. 5.
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FIG. 5. !Color online" Frequency dependence of the spectral
function for three points in the Brillouin zone marked by A, B, and
C in Fig. 4. Point A !blue line with triangles" is on the Fermi
surface, close to !" /2 ," /2"; point B !green squares" is on the “dark
side” of the Fermi surface, in the vicinity of the zero line; and point
C !red circles" is in the pseudogap region on the line and corre-
sponding to the maxima of the spectral function !see Fig. 4". Notice
that the leading edge gap is quantitatively much smaller than the
distance between the peaks at positive and negative energy.
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r(k,ω) = t(k)− µ− Σ(k,ω)

Self-energy plot/ ARPES



Hidden quantum critical point ?

• Signatures of a critical point in the normal phase at δ≈0.1
 (t-J model, NCA solver)

54

K. Haule, G. Kotliar, condmat/0605149

• NCA solution : hint towards a RKKY/Kondo QCP.
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FIG. 1: The cluster (π, 0) self-energy at zero frequency as
a function of temperature for few doping levels. The inset
shows the estimation of the coherent scale in the normal state
of the t-J model (black dots) and transition temperature to
superconducting state (red dots).

spectra and the spin response in terms of pseudoparticles

GK(iω) = −
∑

nmn′m′

(FK)m′n′Cm′n′nm(iω)(FK†)nm (2)

χαβ
Q (iω) =

∑

nmn′m′

(Sα
Q)m′n′Cm′n′nm(iω)(Sβ

−Q)nm (3)

with

Cm′n′nm(iω) = T
∑

iε

Gn′n(iε)Gmm′(iε − iω) (4)

Here GK, Gnn′ and χQ are electron Green’s function,
pseudoparticle Green’s function and spin susceptibility,
respectively. This is the central equation of the approach,
relating observables to the pseudoparticle spectral func-
tions plotted in Fig. 4. More details of the method can be
found in [5]. It has been shown that the cluster approach
successfully describes many properties of the high tem-
perature superconductors [3, 5, 6]. In this letter we show
that it also unravels the origin of the apparent criticality
observed near critical doping, and its elimination below
the superconducting state.

Physically pseudoparticles represent coarsed grained
versions of the important many body excitations includ-
ing fermionic quasiparticles and bosonic collective modes.
They have quantum numbers describing their spin, num-
ber of particles, (which divided by the cluster size, give
the density), and a coarsed grained momentum. In mo-
mentum space, the course graining for the smallest clus-
ter divides the Brillouin zone into four different regions,
namely an inert patch around (0, 0) point, the second
patch centered around (π, π) being highly non-Fermi liq-
uid like at small doping and finally (π, 0) and (0, π) re-
gions which contain the Fermi surface of the model in
the underdoped and slightly overdoped regime and are
therefore most relevant for thermodynamical and trans-
port properties.
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FIG. 2: a) The absolute value of complex optical conduc-
tivity σ(ω) is proportional to ω−2/3 in the intermediate fre-
quency region for optimally doped system. b) The absolute
value of the (π, π) spin sussceptibility is proportional to ω−2.
c) The angle, calculated as arctan(Im(σ)/Re(σ)) is approxi-
mately π/3 since σ(ω) ∼ (−iω)−2/3. In the legend, N stand
for normal state and S for superconducting state.

The first indication for an underlying criticality near
optimal doping comes from the evaluation of the electron
scattering rate obtained from the imaginary part of the
electron self-energy as a function of temperature for few
different doping levels. As described in Fig. 1 both at
large and small doping the scattering rate is small as ex-
pected for a Fermi liquid. Remarkably it becomes very
large in the region near optimal doping when the critical
temperature is maximal. The transition to the supercon-
ducting state severely reduces the scattering rate elim-
inating the traces of the underlying critical behaviour,
hence the name avoided quantum criticality. A coher-
ence scale, estimated from the scattering rate, is plotted
in the inset of Fig. 1 and shows it tends to vanish close
to the point of maximal superconducting transition tem-
perature.

Additional evidence for the quantum criticality is the
emergence of power-law behaviours of the response func-
tions. As shown in Fig. 2, the optical conductivity has an
approximate power law with an exponent 2/3. The same
powerlaw is realized in the one-electron self-energy while
the spin susceptibility is proportional to χπ,π ∝ ω−2

in the same frequency range. Experimentally, it was
found that the optical conductivity is proportional to the
(−iω)−0.65 in the intermediate frequency regime [7].

Quantum criticality is avoided when the electrons con-
dense forming d-wave pairs. The electron scattering rate
is dramatically reduced (see Fig. 1) and a V-shaped gap
opens in the local one-electron density of states. The
particle-hole response at (π, π) is severely reduced for
frequencies below the superconducting gap and a sharp
resonance appears in the gap. A sharp resonance peak in
the spin susceptibility was observed in bilayer cuprates

Large scattering rate in the (0,π) 
component of the cluster Σ.
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FIG. 30: effective mass and plasma frequency as a function
of doping. Obtained from optical conductivity of Fig. 28.

functions, 1
τ(ω)ω2

p
and m∗(ω)

mω2
p

via

1

τ(ω)ω2
p

=
1

4π

σ′

σ′2 + σ′′2
(49)

m∗(ω)

mω2
p

=
1

4π

1

ω

σ′′

σ′2 + σ′′2
(50)

(51)

The quantity ω2
p is determined from a requirement in-

volving the energy range in which the parameterization
is used, namely

ω2
p

8
=

∫ Λ

0
σ′(ω)dω (52)

where Λ is the high energy cutoff.
Figure 30 describes the evolution of the plasma fre-

quency and effective mass versus doping in the t-J model.
The plasma frequency vanishes at half-filling and lin-
early increases at low doping. The optical mass is weakly
doping dependent, and changes from approximately 3 in
overdoped regime to 5 in underdoped regime with largest
slope at optimal doping. Weak doping dependence of the
effective mass of the same magnitude was pointed out in
Ref. 102.

Given a parametrization of the optical conductivity as
a sum of a few poles, the optical mass measures the ratio
of the total spectral weight and the spectral weight in
the zero energy pole, representing the Drude peak. If the
transitions between the upper and lower Hubbard band
of the Hubbard model are included in ωp, i.e., Λ > U ,
than ωp is finite approaching the Mott transition and con-
sequently the optical mass diverges. On the other hand,
excluding transitions between the Hubbard bands, results
in ωp vanishing as the Mott transition is approached. In
the t-J model, the upper Hubbard band is projected out,
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FIG. 31: The optical conductivity σ(ω) of the t-J model is
proportional to ω−2/3 in the intermediate frequency region
for optimally doped system.

therefore the optical mass is always finite. As long as the
transitions into the upper Hubbard band are excuded,
the plasma frequency ωp of cluster DMFT and single
site DMFT are not too different. Notice, however, that
m∗/m is enhanced in cluster DMFT relative to single
site DMFT (not shown) because superexchange transfers
optical weight from the low energy to the intermeditate
energy range ∼ J .

The optical spectral weight ω2
p is in general function of

temperature and cutoff Λ, i.e.,

ω2
p

8
= W (Λ, T ) (53)

In experiment, the cutoff is usually chosen such that the
interband transitions are absent (Λ ∼ 1eV). The inter-
band transitions or transitions into the upper Hubbard
band are absent in the t-J model therefore this require-
ment is taken into account automatically.

The optical pseudogap which separates the two com-
ponents of spectra and is seen as a dip at the scale of J in
Fig. 28 is quite large in the underdoped system δ ∼ 0.05.
One could expect that the integral spectral weight W (Λ)
for small enough Λ ∼ J might start to decrease below a
certain characteristic temperature of a pseudogap. How-
ever, as shown in Fig. 29 there is no sign of such a de-
crease for any cutoff frequency Λ or any temperature.
Although the pseudogap gap clearly increases with tem-
perature, the Drude peak more than compensates for this
spectral weigh loss and W incresases as T decresases.

Near optimal doping, the optical conductivity displays
remarkable power laws in an intermediate asymptotic
regime. These power laws were first pointed out by N.
Bontemps group in Ref. 103. The power laws, and the
possibility to a connection to an underlying quantum crit-
icality, has been a subject of several recent experimental
papers104. CDMFT provides a natural explanation for
these anomalies46. These powerlaws were seen in ex-
act diagonalization of much larger systems106, indicat-
ing again the power of the cluster DMFT when it can
be compared with available exact results. The power of
the optical conductivity is very close to 2/3 as seen in
figure 31, but an analytic derivation of this result is not
available.

A surprising aspect of the physics of strongly correlated
materials, is that low energy phenomena affects the spec-
tra of the material over a very large energy scale. This

Power law in optics at optimal doping

QCP ?



Doped Mott insulator 

Will CDMFT unify high-Tc theory ?? 55
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Prediction of d-SC !
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Low energy theory ?



RVB in slave bosons picture

• t-J model in slave boson, no AF order, d-wave superconductivity

57

 G. Kotliar, J. Liu Phys. Rev. B 38, 5142 (1988)
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Low energy solution of Cluster DMFT ?

• Slave boson = 1 low energy theory of 1 site DMFT. 

• Σ is independant of k

• Generalization : rotationally-invariant slave-boson 
F. Lechermann, A. Georges, G. Kotliar, O.Parcollet, arXiv:0704.1434

• Describe multiplets (for realistic systems)

• Describe Z(k) (variation along the Fermi surface)

• Tested against CDMFT at low energy (Hot/cold region e.g.)

58

Σ(k,ω) = const + ω

(
1− 1

Z

)
, Z = δ

http://www.arxiv.org/find/cond-mat/1/au:+Lechermann_F/0/1/0/all/0/1
http://www.arxiv.org/find/cond-mat/1/au:+Lechermann_F/0/1/0/all/0/1
http://www.arxiv.org/find/cond-mat/1/au:+Georges_A/0/1/0/all/0/1
http://www.arxiv.org/find/cond-mat/1/au:+Georges_A/0/1/0/all/0/1
http://www.arxiv.org/find/cond-mat/1/au:+Kotliar_G/0/1/0/all/0/1
http://www.arxiv.org/find/cond-mat/1/au:+Kotliar_G/0/1/0/all/0/1
http://www.arxiv.org/find/cond-mat/1/au:+Parcollet_O/0/1/0/all/0/1
http://www.arxiv.org/find/cond-mat/1/au:+Parcollet_O/0/1/0/all/0/1
http://www.arxiv.org/abs/0704.1434
http://www.arxiv.org/abs/0704.1434


• Another class of strongly correlated materials

• Quantum critical points : scenario under debate...

• Theoretical model : Periodic Anderson Model.

De-confinement and quasi-locality at the magnetic QCP

!"#$%&'()*#+,-./%0'/ et al"1#2)34/'#56667

8"#,91#2)34/'#+56657

:%*0%#';;'-3#0'<3/%='0#>=#?@A;&4-34)39%*<"

B)C*'39<(#)*0#:%*0%#';;'-3#>/')D#0%E*

)3#3.'#<)('#F%9*3 9*#3.'#F.)<'#09)C/)(

?@#<9*C&'3< :%*0%#<-/''*9*C

Heavy fermions 59

2

scribe the magnetic state as a result of an additional instability

of the PM state.

The three-dimensional periodic Anderson model Hamilto-

nian is

H = −t
∑

〈ij〉

c†iσcjσ − µ
∑

i

c†iσciσ + V
∑

i

(

f †
iσciσ + h.c.

)

+(Ef − µ)
∑

i

f †
iσfiσ + U

∑

i

nf
i↑n

f
i↓ (1)

where c†iσ creates a conduction band electron at site iwith spin

σ and f †
iσ does the same for the localized orbitals. The con-

duction electron bandwidth W = 12|t| = 2 sets the energy
unit.

It is possible to define two energy scales in the problem.

The first is the single-impurity Kondo temperature T0 =
exp(−1/2ρJK), where JK = ( 1

|Ef−µ| + 1
|U+Ef−µ| )V

2 is

the effective Kondo coupling in the large U/V limit. It is

not known a priori how the “lattice” Kondo energy is related

to T0. The second scale is set by the magnetic interactions.

These are not contained explicitly in this Hamiltonian, but

an effective RKKY coupling is generated in fourth order per-

turbation theory in V (second order in the Kondo coupling,

JRKKY ∼ J2
K/W ). A comparison of these two energy scales

allows to understand the qualitative features of the phase dia-

gram of the model[10]. The ratio between Kondo temperature

and RKKY interaction is an increasing function of V , hence
for small V we will find a phase in which the magnetic fluc-

tuations dominate giving rise to an ordered state, while for

large V the Kondo effect dominates and the f moments are
screened by the conduction electrons.

In the path integral formalism the conduction band can be

integrated out in the action and replaced by an effective long-

range retarded hopping for f electrons. After these manipula-
tions the Lagrangian of the system is

L =
∑

i

f †
iσ(τ) (∂τ − µ + Ef ) fiσ(τ) (2)

−
∑

ij

f †
iσ(τ)∆c

ij(τ − τ ′)fjσ(τ ′) + U
∑

i

nf
i↑n

f
i↓

where the effect of the conduction band is absorbed in the

Weiss field

∆c(iω,q) =
V 2

iω + µ − εq

(3)

and εq = −2t
∑

α=x,y,z cos(qα).
In CDMFT the original three-dimensional lattice is now

tiled with a superlattice of clusters and an effective Ander-

son impurity action is derived for a single cluster. Finally a

self-consistency condition relates the cluster Green’s function

to the local Green’s function of the superlattice. It is very im-

portant to notice that in the large U/V limit the impurity ac-

tion becomes equivalent to the action of a two impurity Kondo

model (2IKM) away from particle-hole (p-h) symmetry. At p-

h symmetry this model is known to have a QCP separating

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
V

0

0.2

0.4

0.6

0.8

1

Magnetization

Z (AF maj. spin)

Z (AF min. spin)

Z (PM)

0.6 0.8
0

0.5

1

T
K
/T

0
 (CDMFT)

T
K
/T

0
 (DMFT)

FIG. 1: (Color online) MagnetizationM and quasiparticle residue Z
for the AF (both for majority and minority spin) and PM solutions as

a function of V . The curves for Z coincide in the PM phase. Inset:

Comparison between lattice and single-impurity Kondo energies in

DMFT and CDMFT.

a Kondo phase from a phase in which the impurities are de-

coupled from the conduction band[25, 26]. Away from p-h

symmetry the QCP is not accessible but still influences the

physics in an intermediate energy range[27, 28].

In order to solve the cluster-impurity problem we employ

ED. In this method the cluster action is recast in the form of

an Anderson impurity Hamiltonian where the continuous de-

grees of freedom of the free electron bath are parametrized

by a finite number (up to 10) of sites. The ground state and

Green’s functions of this Hamiltonian are determined via the

Lanczos procedure and the self-consistency equation in turn

allows to derive a new set of bath parameters. The process is

iterated until convergence is reached. To study the interplay of

antiferromagnetism and Kondo screening we restrict the study

to the metallic regime close to half-filling where the RKKY

interaction is predominantly AF. Being a mean field theory,

DMFT gives the possibility to selectively allow some instabil-

ities and forbid others. Thus we will allow the development of

AF order and study the realistic material phase diagram, and

successively force the system in a PM state to study the un-

derlying “normal state”. This will prove extremely important

to understand the origin of the transitions in the system.

Fixing the values U = 10, Ef = −5.5 and µ = 0.2, we

compute the staggered magnetizationM = 〈nf
1↑〉 − 〈nf

1↓〉 =

−(〈nf
2↑〉 − 〈nf

2↓〉) as a function of V (Fig.1). For small V the

RKKY interaction is dominating and the solution describes

an AF state with a magnetization close to one. In the opposite

limit of large V , where the Kondo screening is more effec-
tive, the system is a PM metal. Increasing V in the AF phase,

the magnetization decreases smoothly and approaches zero at

a value V ∗ ∼ 0.585 where a phase transition occurs. Above
this critical value the system becomes paramagnetic. The non-

local correlations, represented by the off-diagonal self-energy



• Cluster DMFT solution of the Anderson lattice model (2 sites, ED 
solvers)
 L. De Leo, M. Civelli, G. Kotliar, condmat/0702559; 
see also work by Q. Si (extended DMFT), P. Sun et al...

• Work in progress : test various scenarios...
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scribe the magnetic state as a result of an additional instability

of the PM state.

The three-dimensional periodic Anderson model Hamilto-
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∑
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f †
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∑
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where c†iσ creates a conduction band electron at site iwith spin

σ and f †
iσ does the same for the localized orbitals. The con-

duction electron bandwidth W = 12|t| = 2 sets the energy
unit.

It is possible to define two energy scales in the problem.

The first is the single-impurity Kondo temperature T0 =
exp(−1/2ρJK), where JK = ( 1

|Ef−µ| + 1
|U+Ef−µ| )V

2 is

the effective Kondo coupling in the large U/V limit. It is

not known a priori how the “lattice” Kondo energy is related

to T0. The second scale is set by the magnetic interactions.

These are not contained explicitly in this Hamiltonian, but

an effective RKKY coupling is generated in fourth order per-

turbation theory in V (second order in the Kondo coupling,

JRKKY ∼ J2
K/W ). A comparison of these two energy scales

allows to understand the qualitative features of the phase dia-

gram of the model[10]. The ratio between Kondo temperature

and RKKY interaction is an increasing function of V , hence
for small V we will find a phase in which the magnetic fluc-

tuations dominate giving rise to an ordered state, while for

large V the Kondo effect dominates and the f moments are
screened by the conduction electrons.

In the path integral formalism the conduction band can be

integrated out in the action and replaced by an effective long-

range retarded hopping for f electrons. After these manipula-
tions the Lagrangian of the system is

L =
∑
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f †
iσ(τ) (∂τ − µ + Ef ) fiσ(τ) (2)

−
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f †
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ij(τ − τ ′)fjσ(τ ′) + U
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where the effect of the conduction band is absorbed in the

Weiss field

∆c(iω,q) =
V 2

iω + µ − εq

(3)

and εq = −2t
∑

α=x,y,z cos(qα).
In CDMFT the original three-dimensional lattice is now

tiled with a superlattice of clusters and an effective Ander-

son impurity action is derived for a single cluster. Finally a

self-consistency condition relates the cluster Green’s function

to the local Green’s function of the superlattice. It is very im-

portant to notice that in the large U/V limit the impurity ac-

tion becomes equivalent to the action of a two impurity Kondo

model (2IKM) away from particle-hole (p-h) symmetry. At p-

h symmetry this model is known to have a QCP separating
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for the AF (both for majority and minority spin) and PM solutions as

a function of V . The curves for Z coincide in the PM phase. Inset:

Comparison between lattice and single-impurity Kondo energies in

DMFT and CDMFT.

a Kondo phase from a phase in which the impurities are de-

coupled from the conduction band[25, 26]. Away from p-h

symmetry the QCP is not accessible but still influences the

physics in an intermediate energy range[27, 28].

In order to solve the cluster-impurity problem we employ

ED. In this method the cluster action is recast in the form of

an Anderson impurity Hamiltonian where the continuous de-

grees of freedom of the free electron bath are parametrized

by a finite number (up to 10) of sites. The ground state and

Green’s functions of this Hamiltonian are determined via the

Lanczos procedure and the self-consistency equation in turn

allows to derive a new set of bath parameters. The process is

iterated until convergence is reached. To study the interplay of

antiferromagnetism and Kondo screening we restrict the study

to the metallic regime close to half-filling where the RKKY

interaction is predominantly AF. Being a mean field theory,

DMFT gives the possibility to selectively allow some instabil-

ities and forbid others. Thus we will allow the development of

AF order and study the realistic material phase diagram, and

successively force the system in a PM state to study the un-

derlying “normal state”. This will prove extremely important

to understand the origin of the transitions in the system.

Fixing the values U = 10, Ef = −5.5 and µ = 0.2, we

compute the staggered magnetizationM = 〈nf
1↑〉 − 〈nf

1↓〉 =

−(〈nf
2↑〉 − 〈nf

2↓〉) as a function of V (Fig.1). For small V the

RKKY interaction is dominating and the solution describes

an AF state with a magnetization close to one. In the opposite

limit of large V , where the Kondo screening is more effec-
tive, the system is a PM metal. Increasing V in the AF phase,

the magnetization decreases smoothly and approaches zero at

a value V ∗ ∼ 0.585 where a phase transition occurs. Above
this critical value the system becomes paramagnetic. The non-

local correlations, represented by the off-diagonal self-energy



• CDMFT : a “dynamical” RVB ? Not only !

• Various phases (AF, PG, d-SC)

• SC phase : 2 gaps

• Normal phase : strong dichotomy 
node/antinodes. Pocket FS.

• Hidden quantum critical point ?
Towards a unified theory with RVB and QCP ?

• Work still in progress : 

• Low energy solution : build a simple picture out of DMFT results.

• Vertex calculation/ Real ω exact solution ?

• Improve k resolution (patch basis)

!"#$%

$%

&'

()

*$

!"

!#

$%&'(%&% )*+,-.+/0,+ /1,-.+/0,+

!

Summary 61



62

Tomorrow 

S. Biermann :  DMFT and realistic calculations !


