Introduction to DMFT Lecture 3 : Introduction to cluster methods

Toulouse, June 13th 2007

O. Parcollet

SPhT, CEA-Saclay

- I. Cluster DMFT methods.
- 2. Application to high-Tc superconductors.

General references for Cluster DMFTs

- G. Kotliar, S.Y. Savrasov, K. Haule, V. S. Oudovenko, O. Parcollet, C.A. Marianetti, Rev. Mod. Phys. 78, 865 (2006)
- A. Georges, G. Kotliar, W. Krauth and M. Rozenberg, Rev. Mod. Phys. 68, 13, (1996).
- G. Biroli, O. Parcollet, G. Kotliar, PRB, 69,205108 (2004)
- T. Maier et al, Rev. Mod. Phys. 77,1027 (2005)

DMFT is a good starting point to study Mott physics.

But it has many limitations ...

Is the Mean Field picture correct ?

- Favorable comparisons (See lecture 1), but :
 - Stability with I/d corrections.
 - Shape of the transition line. Description of the insulator.
 - Ucl,Uc2,Tc beyond mean field.

Clusters : an interpolation between mean field and d=2,3

The self-energy in not local !

- In DMFT, no k-dependence of the self-energy.
- Consequences :
 - Effective mass and Z are linked

$$Z = \frac{m}{m^*}$$

• Finite temperature lifetime, Z are constant along the FS. Not sufficient for high-Tc.

$$G_{\text{latt}}(k,\omega) = \frac{1}{\omega + \mu - \epsilon_k - \Sigma_{\text{latt}}(k,\omega)}$$

$$\Sigma_{\text{latt}}(k,\omega) = \Sigma_{\text{impurity}}(\omega) \equiv G_0^{-1} - G_c^{-1}$$

$$A(k, \omega = 0^{+})$$

a (\pi,\pi) b (\pi,\pi) b (\pi,\pi) (0,0) (x = 0.05) (x = 0.10)

Shen et al. Science 307, 901 (2005)

Clusters reintroduce some k-dependence in Σ

DMFT is only I site in a bath....

- d-wave superconductivity ? or DDW ? (need at least a link)
- Competition AF-SC ?
- Non trivial insulator a la RVB ? (need at least a singlet ?)
- Effect of J in the paramagnet not in DMFT e.g. cut divergence of the effective mass (See slave-bosons or large N, e.g. G. Kotliar, Les Houches 1988).

Clusters fix these problems (to some extent)

Cluster extensions of DMFT

• *Principle* : a finite number of sites in a self consistent bath.

- Interpolate between DMFT and finite dimensions
- Finite size systems BUT with "boundary conditions" G0.
- Many choices :
 - Type of clusters (e.g. shape, size)
 - Self-consistency condition : $G_0(i\omega_n) = \mathcal{F}_{\text{lattice}}[G_c](i\omega_n)$
 - How to approximate lattice quantities from cluster quantities ?

Cluster DMFT is not unique

How to build cluster methods ?

- 3 points of view on DMFT :
 - DMFT is I site in a self-consistent bath.
 - Real space cluster : CDMFT (G. Kotliar et al. PRL 87 186401 2001)
 - DMFT is about neglecting the k-dependence of Σ
 - Σ piecewise constant in the Brillouin zone: DCA M.H. Hettler, A.N. Tahvildar-Zadeh, M. Jarrell, T. Pruschke, H.R. Krishnamurthy PRB 98
 - DMFT is an approximation of the Luttinger-Ward functional $\overline{\Phi}$

$$\Phi \approx \phi_{AIM}(G_{ii})$$

- Higher approximation on phi. (A. Georges, G. Kotliar, W. Krauth and M. Rozenberg, Rev. Mod. Phys. 68, 13, (1996))
- There are other methods (more later) !

Equivalent for 1 site but lead to different cluster methods.

<u>Reminder</u> : DMFT equations (I site, I orbital)

$$\begin{split} H &= -J\sum_{ij}\sigma_{i}\sigma_{j} \\ m &= \langle \sigma \rangle \\ H_{\text{eff}} &= -Jh_{\text{eff}}\sigma \\ m &= \tanh(\beta h_{\text{eff}}) \\ h_{\text{eff}} &= zJm \end{split} \begin{array}{l} H &= -\sum_{ij\sigma}t_{ij}c_{i\sigma}^{\dagger}c_{j\sigma} + Un_{i\uparrow}n_{i\downarrow} \\ G_{c}(\tau) &= -\langle Tc(\tau)c^{\dagger}(0) \rangle_{S_{\text{eff}}} \\ S_{\text{eff}} &= -\int_{0}^{\beta}c_{\sigma}^{\dagger}(\tau)G_{0}^{-1}(\tau - \tau')c_{\sigma}(\tau') + \int_{0}^{\beta}d\tau Un_{\uparrow}(\tau)n_{\downarrow}(\tau) \\ \Sigma &= G_{0}^{-1} - G_{c}^{-1} \\ G_{0}^{-1}(i\omega_{n}) &= \left(\sum_{k}\frac{1}{i\omega_{n} + \mu - t(k) - \Sigma(i\omega_{n})}\right)^{-1} + \Sigma(i\omega_{n}) \end{split}$$

• Evaluation of lattice quantities.

$$G_{\text{latt}}(k,\omega) = \frac{1}{\omega + \mu - \epsilon_k - \Sigma_{\text{latt}}(k,\omega)}$$

$$\Sigma_{\text{latt}}(k,\omega) = \Sigma_{\text{impurity}}(\omega) \equiv G_0^{-1} - G_c^{-1}$$

C-DMFT

• 4 Anderson impurities coupled to an effective bath

CDMFT equations

- Which quantity should we periodize ?
 - Most irreducible (Σ rather than G !)
 - Σ-periodisation versus M-periodization (cumulant)
 - That choice is part of the cluster method.

$C\text{-}DMFT: \Sigma\text{-}Periodization$

- The original proposal (G. Kotliar et al. PRL 87 186401 2001)
- Example : $2x^2$ cluster on a square lattice, w= const

$$\Sigma^{Lattice}(k) = \frac{1}{4} \sum_{i=1}^{4} \Sigma^{Cluster}_{ii} + \frac{1}{2} \left[\left(\Sigma^{Cluster}_{12} + \Sigma^{Cluster}_{34} \right) \cos(k_x) + \Sigma^{Cluster}_{24} + \Sigma^{Cluster}_{13} \right) \cos(k_y) + \Sigma^{Cluster}_{14} \cos(k_x + k_y) + \Sigma^{Cluster}_{23} \cos(k_x - k_y) \right]$$

Cluster quantities \Leftrightarrow harmonics on the lattice Size of cluster = resolution in k space

Cluster site labeling

C-DMFT : M-Periodization (I)

- Σ- periodization generates spurious mid-gap states in Mott insulator (B. Kyung, A.M. Tremblay et al)
- Definition of the irreducible cumulant : Sum of all diagrams 1-particle irreducible in an expansion around the atomic limit (i.e. in t, not in U).
- For a presentation of this diagrammatics : (W. Metzner, PRB 43, 8549 1991)
- Relation with the self-energy :

$$M^{-1}(k,\omega) = \omega + \mu - \Sigma(k,\omega)$$

• The Green function is :

$$G(k,\omega) = \left(t(k) - M^{-1}(k,\omega)\right)^{-1}$$

C-DMFT : M-Periodization (2)

(T. Stanescu, G. Kotliar PRB 74, 125110, 2006)

- In DMFT, Σ and M are local.
- Hubbard, I/2 filled,2x2 CDMFT, U/D = 2, ED solver, cluster quantities

() **⊸** M₁₁ M₁₃ -0.05 $\begin{aligned} \boldsymbol{\Sigma}_{11} \\ \boldsymbol{\Sigma}_{13} \\ \boldsymbol{\Sigma}_{11} + \boldsymbol{\Sigma}_{13} \end{aligned}$ $Im[M_{ij}]$ 2 $\mathrm{Im}[\Sigma_{ij}]$ -0.1 0 -2 -4 -0.15 5 10 15 20 0 ω 10 20 30 40 50 60 0 ω_n

M is more localized than Σ .

C-DMFT : M-Periodization (3)

(T. Stanescu, G. Kotliar PRB 74, 125110, 2006)

- Periodize the irreducible cumulant
- Same formula as for the self-energy :

$$M^{Lattice}(k) = \frac{1}{4} \sum_{i=1}^{4} M^{Cluster}_{ii} + \frac{1}{2} \left[\left(M^{Cluster}_{12} + M^{Cluster}_{34} \right) \cos(k_x) + M^{Cluster}_{24} + M^{Cluster}_{13} \right) \cos(k_y) + M^{Cluster}_{14} \cos(k_x + k_y) + M^{Cluster}_{23} \cos(k_x - k_y) \right]$$

• A non-linear relation $\Rightarrow \Sigma_{\text{lattice}}(k,0)$ can have singularity !

Some results (pockets) will rely on this periodization

C-DMFT : test of periodization procedure

• Consistency check :

$$G_{\text{Cluster}}(\omega) = \sum_{k} G_{\text{Lattice}}(k, \omega)$$

• Example of 1/2 filled Hubbard :

DCA

- Cluster method in k-space : Σ piecewise constant on B.Z.
 M.H. Hettler, A.N. Tahvildar-Zadeh, M. Jarrell, T. Pruschke, H.R. Krishnamurthy PRB (1998)
- Example for 2x2 cluster on square lattice.

$$G(k_c, i\omega_n) = \sum_{\tilde{k}} \frac{1}{i\omega_n + \mu - t(\tilde{k}) - \Sigma(k_c, i\omega_n)}$$
$$\Sigma(k, i\omega_n) \approx \Sigma_c(k_c(k), i\omega_n)$$
$$G_0^{-1}(k_c, i\omega_n) = G^{-1}(k_c, i\omega_n) + \Sigma_c(k_c, i\omega_n)$$

- Impurity model : same as for CDMFT.
- G, Σ cyclic on the cluster Cluster momenta k_c

 $(0,\pi)$

DCA (2)

 A real space formulation : CDMFT self-consistency condition with a modified hopping Also valid in the AF phase. (G. Biroli, O. Parcollet, G. Kotliar, PRB, 69,205108 (2004))

$$S_{\text{eff}} = -\iint_{0}^{\beta} d\tau d\tau' c_{\mu}^{\dagger}(\tau) G_{0,\mu\nu}^{-1}(\tau,\tau') c_{\nu}(\tau') + \int_{0}^{\beta} d\tau U n_{\mu\downarrow} n_{\mu\uparrow}(\tau)$$

$$G_{c\mu\nu}(\tau) = -\left\langle T c_{\mu}(\tau) c_{\nu}^{\dagger}(0) \right\rangle_{S_{\text{eff}}}$$

$$\Sigma_{c} = G_{0}^{-1} - G_{c}^{-1}$$

$$G_{0}^{-1}(i\omega_{n}) = \left[\sum_{K \in R.B.Z.}^{\prime} \left(i\omega_{n} + \mu - \hat{t}_{\text{DCA}}(K) - \Sigma_{c}(i\omega_{n})\right)^{-1}\right]^{-1} + \Sigma_{c}(i\omega_{n})$$

$$t_{\alpha\beta}^{DCA}(K) = \sum_{k_{c}} e^{ik_{c}(\alpha-\beta)}t(K+k_{c})$$

DCA (3)

- Lattice quantities :
 - In DCA, translation invariance is preserved by construction
 - But there is still a need for cluster to lattice conversion
 - Use spline interpolation to get a smooth $\Sigma(k,\omega)$ on the lattice (M. Jarrell et al.).

Functional point of view

Functional formulation of DMFT

$$\Gamma_{BK}[G_{ij}] = \operatorname{Tr} \ln G_{ij} - \operatorname{Tr}(g_{0ij}^{-1}G_{ij}) + \Phi_{BKLW}[G_{ij}]$$
$$G_{ij}(t) \equiv -\left\langle Tc_i(t)c_j^{\dagger}(0) \right\rangle \qquad \Sigma_{ij} = \frac{\delta \Phi_{BKLW}}{\delta G_{ij}}$$

• DMFT as an approximation of the Baym-Kadanoff functional.

$$\Phi \approx \phi_{AIM}(G_{ii})$$

- Exact in large dimension (Metzner-Vollhardt, 1989)
- Anderson impurity model = machinery to solve this approximation (Kotliar-Georges 1992)

Φ-derivability

• CDMFT : the impurity problem is Φ-derivable :

$$\Phi_{CDMFT}(G) = \sum_{R} \Phi(G_{\mu,R;\nu,R} | G_{\rho,R;\lambda R'} = 0)$$
 but the lattice conversion breaks the Φ -derivability.

• DCA is also Φ-derivable (but not the lattice conversion !).

$$\Phi_{DCA}(G) = N_{sites} \Phi(G(k))|_{U(k_1,k_2,k_3,k_4)=U_{DCA}(k_1,k_2,k_3,k_4)}$$
$$U_{DCA}(k_1,k_2,k_3,k_4) = \delta_{K_c(k_1)+K_c(k_2),K_c(k_3)+K_c(k_4)}/N_{sites}$$

Coarse-graining of the momentum conservation at the vertex. T. Maier et al, Rev. Mod. Phys. 77, 1027 (2005)

Φ-derivability ⇒ conservative approximation (Baym-Kadanoff)
 In particular, Luttinger Theorem

Luttinger Theorem

- In Fermi liquid, volume of the Fermi surface is conserved.
- Derivation is based on the existence of the Φ functional (See e.g. Abrikosov-Gorkov-Dzyaloshinky, sect 19.4)
- When Σ becomes singular : problem !
- Fermi surface : location of poles of G(k,0) Luttinger surface : location of zeros of G(k,0)
- BUT when Σ has a singularity, volume enclosed by both surfaces not necessarily conserved ! (A. Georges, O. Parcollet and S.Sachdev, PRB 63 134406, (2001))

 $\int G \partial_{\omega} \Sigma \neq 0$

Nested Schemes

• Take a higher approximation of the Luttinger Ward functional.

$$\Phi = \sum_{i} \tilde{\phi}_1(G_{ii}) + \sum_{\langle ij \rangle} \tilde{\phi}_2(G_{ii}, G_{jj}, G_{ij}) + \cdots$$

• Apply it to a 1 site and a 2 site problem :

$$\phi_{1\text{site}}(G_{ii}) = \tilde{\phi}_1(G_{ii})$$

$$\phi_{2\text{sites}}(G_{ii}, G_{jj}, G_{ij}) = \tilde{\phi}_2(G_{ii}, G_{jj}, G_{ij}) + \tilde{\phi}_1(G_{ii}) + \tilde{\phi}_1(G_{jj})$$

• Introducing z, the connectivity of the lattice :

$$\Phi_{\text{Nested}} \approx (1-z) \sum_{i} \phi_{1\text{site}}(G_{ii}) + \sum_{\langle ij \rangle} \phi_{2\text{sites}}(G_{ii}, G_{jj}, G_{ij})$$

Nested Schemes (2)

• Complete equations :

(A. Georges, G. Kotliar, W. Krauth and M. Rozenberg, Rev. Mod. Phys. 68, 13, (1996))

$$\Sigma_{loc} = \frac{\delta\Phi}{\delta G_{ii}} = \frac{\delta\Phi_{1\text{site}}}{\delta G_{ii}} + z \left(\frac{\delta\Phi_{2\text{sites}}}{\delta G_{ii}} - \frac{\delta\Phi_{1\text{site}}}{\delta G_{ii}}\right)$$
$$\Sigma_{nn} = \frac{\delta\Phi_{2\text{sites}}}{\delta G_{ij}}$$
$$\Sigma^{latt} = \Sigma_{loc}(i\omega_n) + t(k)\Sigma_{nn}(i\omega_n)$$

$$G_{loc} = \sum_{k} \frac{1}{i\omega_n - t(k) - \Sigma_{loc}(i\omega_n) - t(k)\Sigma_{nn}(i\omega_n)}$$
$$G_{nn} = \sum_{k} \frac{e^{ik.\vec{\delta}}}{i\omega_n - t(k) - \Sigma_{loc}(i\omega_n) - t(k)\Sigma_{nn}(i\omega_n)}$$
$$G = \sum_{K \in R.B.Z.} \left(i\omega_n - t(K) - \Sigma^{\text{latt}}(K)\right)^{-1}$$

Many other possible schemes !

- For a review of some methods : T. Maier et al, Rev. Mod. Phys. 77, 1027 (2005)
- Chain DMFT : a chain in a self-consistent bath (see below) (S. Biermann et al)
- Extended DMFT and Extended cluster DMFT. (Q. Si et al., see e.g. K. Haule)
- Cluster perturbation theory. Not self-consistent clusters A.M. Tremblay, D. Sénéchal et al., T. Maier et al, Rev. Mod. Phys. 77, 1027 (2005)
- Self-energy functional (M. Potthof et al.)
- PCDMFT : use Σ(k,ω) in the self-consistency (G. Biroli, O. Parcollet, G. Kotliar, PRB, 69,205108 (2004))

So what is the best cluster method ?

Classical limit

- A large body of work in classical statistical mechanics (Bethe, Kikuchi, Cf Domb-Green series)
- How do our cluster methods connect to this ?
 For example large U limit of Falikov-Kimball model = Ising model (G. Biroli, O. Parcollet, G. Kotliar, PRB, 69,205108 (2004))

$$H = -\sum_{ij\sigma} t_{ij\sigma} c_{i\sigma}^{\dagger} c_{j\sigma} + U n_{i\uparrow} n_{i\downarrow} \text{, with } t_{\downarrow} = 0$$

• CDMFT reduces to Ising cluster with a bath at the boundary.

$$H = H_{\rm Ising} + J\sigma_1 \langle \sigma_3 \rangle$$

• Exercise : show that at large U, one finds the Ising Weiss theory.

	J		
3'	1	3	

Example of 2x2 cluster

Classical limit (2)

• **DCA** :

Cluster is cyclic, no boundary. An effective J on ALL links. (G. Biroli, O. Parcollet, G. Kotliar, PRB, 69,205108 (2004))

Nested scheme (2 sites) leads to Bethe-Kikuchi method.
 Solve I site and 2 sites problems and fix the field h so that local magnetization is the same in the 2 problems :

$$\begin{split} H^{(1)} &= zhS^{(1)} \\ H^{(2)} &= (z-1)h(S_1^{(2)} - S_2^{(2)}) + JS_1^{(2)}S_2^{(2)} \\ &< S^{(1)} > = < S_1^{(2)} > = - < S_2^{(2)} > \end{split}$$

• Convergence of Tc vs size much faster than CDMFT or DCA.

BUT

Causality issue

- Causality = Im Σ <0 (definite negative matrix)
- Strong Causality property : guarantee that Im Σ <0 for any bath G0 Hence there will not be any causality violation at any step in the DMFT iterative loop.
- Quantum impurity problem is causal by construction : the problem lies in the self-consistency.
- It is not obvious to have a causal scheme :

Nested schemes show causality violations

• CDMFT, DCA are proven to be causal (See original papers)

What is the origin of this problem ?

Origin of the causality problem

- Using Cutkovsky-t'Hooft-Veltmann cutting technique. (G. Biroli, O. Parcollet, G. Kotliar, PRB, 69,205108 (2004))
- Diagrammatic expansion of $Im\Sigma_R(\omega)$
- Use Keldysh technique

- $Im\Sigma_R(\omega)$ is a quadratic form in "half-diagrams" R and L Can we form a square ?
- Nested scheme is not causal (was known empirically before).
- Roughly speaking, problem arises when self-energy not local enough See also A. Fuhrmann, S. Okamoto, H. Monien, and A. J. Millis PRB 75, 205118 (2007)

Convergence properties

- Debate in the literature about CDMFT and DCA convergence (See controversy by Biroli et al. vs Jarrell et al., 2002)
- DCA (cluster of linear size L) : $\delta m \equiv m m_{L=\infty} \sim 1/L^2$
- CDMFT :
 - A priori : $\delta m \sim 1/L$
 - But : $\delta m_{\rm center} \sim e^{-L/\xi}$
 - Cavity construction is not exact : error of order 1 at the boundary.
 - Spurious transition in one dimension.
- Large sizes : Clusters DMFT are not better than finite systems !

Convergence properties (2)

- For large clusters, one has to improve CDMFT by using more the result at the center : See G. Kotliar, S.Y. Savrasov, K. Haule, V. S. Oudovenko, O. Parcollet, C.A. Marianetti, Rev. Mod. Phys. 78, 865 (2006)
- Reweigh the self-energy in the self-consistency condition.

$$\begin{split} \Sigma_{\alpha\beta}^{\text{Cluster}} &\to \Sigma_{\alpha'\beta'}^{\text{w-CDMFT}} = \sum_{\alpha'\beta'} w_{\alpha\beta}^{\alpha'\beta'} \Sigma_{\alpha\beta}^{\text{Cluster}} \\ w_{\gamma\delta}^{\alpha\beta} &= \delta_{\alpha-\beta,\gamma-\delta} f_c(\alpha) f_c(\beta) \\ &\sum_{\alpha} f_c(\alpha)^2 = 1 \end{split}$$

- Remove spurious transition in Id.Tc convergence close to DCA.
- This debate is interesting only if one can solve large clusters at large U !

Test the cluster method in one dimension

- A priori the worst case for a mean field methods
- Computation of short range physics, thermodynamics.
- DMFT can NOT capture Luttinger liquid large distance physics.
- e.g.: occupation vs chemical potential (M. Capone, M. Civelli, S.S. Kancharla, C. Castellani, G. Kotliar, PRB 69 195105 2004)

Test the cluster method in one dimension (2)

- What about dynamical quantities ?
- Comparison to DMRG (in Matsubara, with Hallberg's algorithm) (M. Capone, M. Civelli, S.S. Kancharla, C. Castellani, G. Kotliar, PRB 69 195105 2004)

- I. Cluster methods.
- 2. Application to high-Tc superconductors.

Is the DMFT scenario for Mott transition confirmed by clusters ?

U-driven Mott transition

- Frustrated model: signature of Mott transition in double occupancy, as in 1 site DMFT.
- Frustration is essential ! (hard for QMC)

C-DMFT (2x2)

Cluster corrections close to Mott transition

DMFT metal : a generic feature at small U, large doping.

Hot Cold regions due to local Mott physics

39

M. Civelli, M. Capone, S. S. Kancharla, O.P and G. Kotliar Phys. Rev. Lett. 95, 106402 (2005)

Renormalization of the Fermi surface

$$t_{\rm eff}(k) = t(k) - {\rm Re}\Sigma_{\rm lattice}(k,0)$$

- Fermi Surface can be strongly renormalized by interactions close to the Mott transition.
- Model dependent effect !
- Position of cold regions for hole/electrons doped similar to ARPES

M. Civelli, M. Capone, S. S. Kancharla, O.P and G. Kotliar Phys. Rev. Lett. 95, 106402 (2005)

Phase diagram of the Hubbard model ?

Does the Hubbard model have d-SC ?

- Large Clusters at U/D=I (DCA), up to 26 sites : Tc ≈ 0.02t T. Maier et al., PRL 95, 237001 (2005)
- 2x2 CDMFT also has d-SC phase, but at lower T (M. Civelli, K. Haule).

 $T_c \approx t/100 \ll T_c^{\rm DCA~2x2}$

All cluster methods consistently predicts d-SC, AF, with different Tc

AF, d-SC : coexistence or competition ?

43

M. Capone, G. Kotliar Phys. Rev. B 74, 054513 (2006)

- Qualitative difference between large and small U.
 - Small U : coexistence between AF + d-SC
 - Higher U, first order transition.

Two energy scales in SC phase

44

 B_{1g} Raman B_{2g} $T \ll T_{\rm c}$ Hg-1201 (This work) Bi-2212 (ref. 4) ∇ Bi-2212 (ref. 3) ∇ ▼ Y-123 (ref. 5) \diamond ٠ Y-123 (ref. 4) \diamond LSCO (ref. 4) Raman experiments. Antinodal B_{1a} Bi-2212 Δ_{max} from other techniques Tunnelling (refs 32,33,34) Mesure the gap around the node ARPES (refs 23,24,28) $\mathbf{\nabla}$ and at the antinode. Nodal B₂₀ $4T_{\rm c}/T_{\rm c}^{\rm max} = 4 \times (1 - 82.6 \ (0.16 - p)^2)$ 0.05 0.15 0.10 0.20 0.25 0 Doping *p* M. LeTacon et al., Nature Physics, 2, 537,2006

M. Civelli, M.Capone, A. Georges, K. Haule, O. Parcollet, T Stanescu, G. Kotliar, arXiv:0704.1486

- Solution of Hubbard model, 2x2 cluster, ED solver, SC phase
- Cluster quantities :

- Anomalous part non-monotonic in δ
- No FL at $\delta \approx 0.1 : Im \Sigma_{13}(0)$ not zero, does not scale like T²

M. Civelli, M.Capone, A. Georges, K. Haule, O. Parcollet, T Stanescu, G. Kotliar, arXiv:0704.1486

- Analyze one particle spectrum, with/without anomalous Σ
- FL in the nodes
- Pseudo-gap at antinodes (seen previously in normal phase, see below)
- Asymmetric spectra close to δ=0 in SC

M. Civelli, M.Capone, A. Georges, K. Haule, O. Parcollet, T Stanescu, G. Kotliar, arXiv:0704.1486

47

• Low frequency analysis close to the node :

M. Civelli, M.Capone, A. Georges, K. Haule, O. Parcollet, T Stanescu, G. Kotliar, arXiv:0704.1486

• Decompose the gap in the I particle spectrum.

Two gaps picture similar to experiments

Fermi surface in normal phase ?

Id-2d transition

C. Berthod, T. Giamarchi, S. Biermann, A. Georges, PRL 97, 136401 (2006)

- Chain of spinless fermions with next-neighbor repulsion V, t=1 coupled by inter-chain hopping t₁.
- Id + RPA approach : F.H.L. Essler, A.M. Tsvelik, PRB 65, 115117, (2002)
- Chain-DMFT : a periodic chain (32 sites) + DMFT in the transverse direction. Keep k resolution within the chain. Well controlled at small t₁.
- Solve with Hirsch-Fye QMC.

$$\mathcal{S}_{\text{eff}}^{0} = -\sum_{rr'} \int_{0}^{\beta} d\tau d\tau' c_{r}^{\dagger}(\tau) \mathcal{G}_{0}^{-1}(r-r',\tau-\tau') c_{r'}(\tau').$$
$$\mathcal{G}_{0}^{-1}(k,\omega) = \omega - \xi_{k} + \mathcal{G}^{-1}(k,\omega) - R[\mathcal{G}(k,\omega)],$$
$$\Sigma(k,\omega) = \mathcal{G}_{0}^{-1}(k,\omega) - \mathcal{G}^{-1}(k,\omega).$$

Id-2d transition

C. Berthod, T. Giamarchi, S. Biermann, A. Georges, PRL 97, 136401 (2006)

• 3 regimes in t_{\perp} : insulator, metal with pocket FS, metal with simple FS.

Id-2d transition

C. Berthod, T. Giamarchi, S. Biermann, A. Georges, PRL 97, 136401 (2006)

Z along the Fermi surface

- Large variation of Z along FS
- Hot spot remains in the metal

ARPES curves

I(k) : with some k resolution.
The "rear" part of the FS can not be seen in experiments.

Pocket Fermi surface in 2d ?

(T. Stanescu, G. Kotliar PRB 74, 125110, 2006)

- CDMFT, Hubbard model, U/D = 2, vs δ, ED solver.
- At low δ, a line of zeros of G appears and the topology of the FS changes.
- At finite temperature/resolution, ARPES does not see the second part of the FS.
- \neq Id : Luttinger surface appears at low δ and evolve with δ
- Cumulant periodization is necessary here.
- Discussion : resolution ?
- Experiments on YBCO in high field : pocket Fermi surface.
 N. Doiron-Leyraud at al, Nature, 2007

Self-energy plot/ ARPES

 $r(k,\omega) = t(k) - \mu - \Sigma(k,\omega)$

Hidden quantum critical point ?

K. Haule, G. Kotliar, condmat/0605149

- Signatures of a critical point in the normal phase at δ≈0.1 (t-J model, NCA solver)
- Large scattering rate in the $(0,\pi)$ component of the cluster Σ .

Power law in optics at optimal doping

• NCA solution : hint towards a RKKY/Kondo QCP.

Singlet (RKKY) QCP ? Kondo

Will CDMFT unify high-Tc theory ??

Low energy theory ?

RVB in slave bosons picture

G. Kotliar, J. Liu Phys. Rev. B 38, 5142 (1988)

• t-J model in slave boson, no AF order, d-wave superconductivity

$$H = -t \sum_{\langle ij \rangle,\sigma} (f_{i,\sigma}^{\dagger} b_i b_j^{\dagger} f_{j,\sigma} + f_{j,\sigma}^{\dagger} b_j b_i^{\dagger} f_{i,\sigma}) - \mu_0 \sum_{i,\sigma} f_{i,\sigma}^{\dagger} f_{i,\sigma}^{\dagger} f_{i,\sigma}$$
$$+ J \sum_{\langle ij \rangle} (\sigma_i \cdot \sigma_j) - (1 - b_i^{\dagger} b_i) (1 - b_j^{\dagger} b_j) + \sum_i \lambda_i \left(\sum_{\sigma} f_{i,\sigma}^{\dagger} f_{i,\sigma} + b_i^{\dagger} b_i - 1 \right)$$

Low energy solution of Cluster DMFT ?

- Slave boson = I low energy theory of I site DMFT.
 - Σ is independent of k

$$\Sigma(k,\omega) = const + \omega \left(1 - \frac{1}{Z}\right), \quad Z = \delta$$

- Generalization : rotationally-invariant slave-boson
 F. Lechermann, A. Georges, G. Kotliar, O.Parcollet, arXiv:0704.1434
 - Describe multiplets (for realistic systems)
 - Describe Z(k) (variation along the Fermi surface)
 - Tested against CDMFT at low energy (Hot/cold region e.g.)

Heavy fermions

- Another class of strongly correlated materials
- Quantum critical points : scenario under debate...

• Theoretical model : Periodic Anderson Model.

$$H = -t \sum_{\langle ij \rangle} c^{\dagger}_{i\sigma} c_{j\sigma} - \mu \sum_{i} c^{\dagger}_{i\sigma} c_{i\sigma} + V \sum_{i} \left(f^{\dagger}_{i\sigma} c_{i\sigma} + h.c. \right) + (E_f - \mu) \sum_{i} f^{\dagger}_{i\sigma} f_{i\sigma} + U \sum_{i} n^{f}_{i\uparrow} n^{f}_{i\downarrow}$$
(1)

Cluster for Anderson lattice

Cluster DMFT solution of the Anderson lattice model (2 sites, ED solvers)

L. De Leo, M. Civelli, G. Kotliar, condmat/0702559; see also work by Q. Si (extended DMFT), P. Sun et al...

• Work in progress : test various scenarios...

Summary

- CDMFT : a "dynamical" RVB ? Not only !
- Various phases (AF, PG, d-SC)
- SC phase : 2 gaps
- Normal phase : strong dichotomy node/antinodes. Pocket FS.
- Hidden quantum critical point ? Towards a unified theory with RVB and QCP ?
- Work still in progress :
 - Low energy solution : build a simple picture out of DMFT results.
 - Vertex calculation/ Real ω exact solution ?
 - Improve k resolution (patch basis)

Tomorrow

S. Biermann : DMFT and realistic calculations !