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Derivation of DMFT equations

• Cavity method. Large dimension limit.

• Approximation of the Luttinger-Ward Functionnal.
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[Derivation done on the board : no slide for this part ]
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DMFT equations (general lattice) 3

H = −J
∑

ij

σiσj H = −
∑

ijσ

tijc
†
iσcjσ + Uni↑ni↓

m = 〈σ〉 Gc(τ) = −〈Tc(τ)c†(0)〉Seff

Heff = −Jheffσ Seff = −
∫ β

0
c†σ(τ)G−1

0 (τ − τ ′)cσ(τ ′) +
∫ β

0
dτUn↑(τ)n↓(τ)

m = tanh(βheff)
Σ = G−1

0 − G−1
c

heff = zJm G−1
0 (iωn) =

(
∑

k

1
iωn + µ − t(k) − Σ(iωn)

)−1

+ Σ(iωn)
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Thermodynamics 

• On the lattice :

4

perform a summation over successive shells of neighbors
in real space, rather than momentum summations.

Besides this practical use, these properties of pertur-
bation theory in d=! can also be used to formally derive
the dynamical mean-field equations. Consider the real-
space self-energy " ij(i#n). It is clear that not all dia-
grams of a standard weak-coupling expansion for this
quantity can be fully collapsed to a local form. An ex-
ample of a diagram which cannot be collapsed is pro-
vided by Fig. 3. We can consider making, however, a
‘‘skeleton’’ expansion of " rather than a direct expan-
sion: this amounts to grouping together all corrections to
internal propagators, so that all lines of a skeleton dia-
gram stand for the full interacting fermion propagator
Gij . The diagrams in Fig. 2 are skeleton diagrams, but
the one in Fig. 3 is not. In this way, the self-energy can
be viewed as a functional of the interacting Green’s
functions:

" ij!" ij
skel$%Gkl&' . (39)

It is easily seen that two internal vertices of a skeleton
diagram can always be connected by more than two
paths, so that all diagrams contributing to " in a skel-
eton perturbation expansion can be fully collapsed to a
single-site. More generally, this is true of the Luttinger-
Ward free-energy functional ([%Gij&], which is the sum
of all vacuum-to-vacuum skeleton graphs (Fig. 4). This
functional is such that (see, e.g., Abrikosov et al., 1965):

" ij) i#n*!
+(

+Gij) i#n*
. (40)

Hence, as d→!, ( and " ij
skel depend only on the local

(site-diagonal) Green’s functions Gii :

(!,
i

-$Gii' , d→! , (41)

in which - is a functional of the local Green’s function at
site i only. An obvious consequence is that the self-
energy is site diagonal:

" ij) i#n*!+ ij") i#n*. (42)

Furthermore, it must be possible to generate the func-
tionals -[G] and "skel[G] from a purely local theory. A
simple inspection of Feynman rules shows that the effec-
tive action Seff in Eq. (6) precisely achieves this goal.
From this point of view, the Weiss function G 0 just plays
the role of a dummy variable which never enters the
final forms of -, "skel. Once these functionals are known,
the actual value of " is found by writing that the local
lattice Green’s function is given by "kG(k,i#n), namely:

G) i#n*!!
"!

#!

d.
D).*

i#n".""skel$G) i#n*'
. (43)

This should be viewed as a functional equation for
G(i#n), which is of course equivalent to the self-
consistency condition (7). This point of view is formally
useful to prove reduction to a single-site problem, but is
not practical because of the difficulty in handling skel-
eton functionals. In fact, it has been so far impossible to
obtain exact or even approximate expressions of "skel for
the Hubbard model, which would give reasonable re-
sults when inserted in (43), except for very small U . A
remarkable case for which "skel[G] can be obtained in
closed form is the Falicov-Kimball model (Sec. VIII.B),
which is exactly solvable as d→! (Brandt and Mielsch,
1989–1991). For most models, it is much more useful in
practice to think of all quantities as functionals of G 0
and to promote the latter to the rank of a fundamental
quantity which has a clear physical interpretation as a
‘‘Weiss function’’ (Georges and Kotliar, 1992).

This formalism is also useful for establishing the rela-
tion between the lattice and the impurity model free-
energies, / and /imp (Brandt and Mielsch, 1991). In-
deed, / is related to the Luttinger-Ward functional ( by
(see, e.g., Abrikosov et al., 1965):

/!(#T ,
n ,k,0

$ lnG0)k,i#n*""0) i#n*G0)k,i#n*' ,

(44)

while, for the impurity model (6),

/ imp!-$G'#T,
n0

$ lnG0) i#n*""0) i#n*G0) i#n*' .

(45)

Eliminating the functional ( between these two equa-
tions [using Eq. (41)], and taking into account transla-
tion invariance, one obtains the following expression for
the free-energy:

/

N
!/ imp"T,

n0
" !

"!

#!

d. D).*

$ln$ i#n#1""0) i#n*".'#ln G0) i#n* # , (46)

Note also that the internal energy can be expressed in
terms of local quantities only (see, e.g., Fetter and Wa-
lecka, 1971):

FIG. 3. Example of a diagram that cannot be ‘‘collapsed’’ to a
single-site, because only two independent paths connect site i
to site k (or j to l). Note that this is not a skeleton diagram,
since it contains a correction to the ij propagator.

FIG. 4. First two contributions to the Luttinger-Ward func-
tional.

24 A. Georges et al.: Dynamical mean-field theory of . . .
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• For the impurity : 

perform a summation over successive shells of neighbors
in real space, rather than momentum summations.

Besides this practical use, these properties of pertur-
bation theory in d=! can also be used to formally derive
the dynamical mean-field equations. Consider the real-
space self-energy " ij(i#n). It is clear that not all dia-
grams of a standard weak-coupling expansion for this
quantity can be fully collapsed to a local form. An ex-
ample of a diagram which cannot be collapsed is pro-
vided by Fig. 3. We can consider making, however, a
‘‘skeleton’’ expansion of " rather than a direct expan-
sion: this amounts to grouping together all corrections to
internal propagators, so that all lines of a skeleton dia-
gram stand for the full interacting fermion propagator
Gij . The diagrams in Fig. 2 are skeleton diagrams, but
the one in Fig. 3 is not. In this way, the self-energy can
be viewed as a functional of the interacting Green’s
functions:

" ij!" ij
skel$%Gkl&' . (39)

It is easily seen that two internal vertices of a skeleton
diagram can always be connected by more than two
paths, so that all diagrams contributing to " in a skel-
eton perturbation expansion can be fully collapsed to a
single-site. More generally, this is true of the Luttinger-
Ward free-energy functional ([%Gij&], which is the sum
of all vacuum-to-vacuum skeleton graphs (Fig. 4). This
functional is such that (see, e.g., Abrikosov et al., 1965):

" ij) i#n*!
+(

+Gij) i#n*
. (40)

Hence, as d→!, ( and " ij
skel depend only on the local

(site-diagonal) Green’s functions Gii :

(!,
i

-$Gii' , d→! , (41)

in which - is a functional of the local Green’s function at
site i only. An obvious consequence is that the self-
energy is site diagonal:

" ij) i#n*!+ ij") i#n*. (42)

Furthermore, it must be possible to generate the func-
tionals -[G] and "skel[G] from a purely local theory. A
simple inspection of Feynman rules shows that the effec-
tive action Seff in Eq. (6) precisely achieves this goal.
From this point of view, the Weiss function G 0 just plays
the role of a dummy variable which never enters the
final forms of -, "skel. Once these functionals are known,
the actual value of " is found by writing that the local
lattice Green’s function is given by "kG(k,i#n), namely:

G) i#n*!!
"!

#!

d.
D).*

i#n".""skel$G) i#n*'
. (43)

This should be viewed as a functional equation for
G(i#n), which is of course equivalent to the self-
consistency condition (7). This point of view is formally
useful to prove reduction to a single-site problem, but is
not practical because of the difficulty in handling skel-
eton functionals. In fact, it has been so far impossible to
obtain exact or even approximate expressions of "skel for
the Hubbard model, which would give reasonable re-
sults when inserted in (43), except for very small U . A
remarkable case for which "skel[G] can be obtained in
closed form is the Falicov-Kimball model (Sec. VIII.B),
which is exactly solvable as d→! (Brandt and Mielsch,
1989–1991). For most models, it is much more useful in
practice to think of all quantities as functionals of G 0
and to promote the latter to the rank of a fundamental
quantity which has a clear physical interpretation as a
‘‘Weiss function’’ (Georges and Kotliar, 1992).

This formalism is also useful for establishing the rela-
tion between the lattice and the impurity model free-
energies, / and /imp (Brandt and Mielsch, 1991). In-
deed, / is related to the Luttinger-Ward functional ( by
(see, e.g., Abrikosov et al., 1965):

/!(#T ,
n ,k,0

$ lnG0)k,i#n*""0) i#n*G0)k,i#n*' ,

(44)

while, for the impurity model (6),
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(45)

Eliminating the functional ( between these two equa-
tions [using Eq. (41)], and taking into account transla-
tion invariance, one obtains the following expression for
the free-energy:

/

N
!/ imp"T,

n0
" !

"!

#!

d. D).*

$ln$ i#n#1""0) i#n*".'#ln G0) i#n* # , (46)

Note also that the internal energy can be expressed in
terms of local quantities only (see, e.g., Fetter and Wa-
lecka, 1971):

FIG. 3. Example of a diagram that cannot be ‘‘collapsed’’ to a
single-site, because only two independent paths connect site i
to site k (or j to l). Note that this is not a skeleton diagram,
since it contains a correction to the ij propagator.

FIG. 4. First two contributions to the Luttinger-Ward func-
tional.
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perform a summation over successive shells of neighbors
in real space, rather than momentum summations.

Besides this practical use, these properties of pertur-
bation theory in d=! can also be used to formally derive
the dynamical mean-field equations. Consider the real-
space self-energy " ij(i#n). It is clear that not all dia-
grams of a standard weak-coupling expansion for this
quantity can be fully collapsed to a local form. An ex-
ample of a diagram which cannot be collapsed is pro-
vided by Fig. 3. We can consider making, however, a
‘‘skeleton’’ expansion of " rather than a direct expan-
sion: this amounts to grouping together all corrections to
internal propagators, so that all lines of a skeleton dia-
gram stand for the full interacting fermion propagator
Gij . The diagrams in Fig. 2 are skeleton diagrams, but
the one in Fig. 3 is not. In this way, the self-energy can
be viewed as a functional of the interacting Green’s
functions:

" ij!" ij
skel$%Gkl&' . (39)

It is easily seen that two internal vertices of a skeleton
diagram can always be connected by more than two
paths, so that all diagrams contributing to " in a skel-
eton perturbation expansion can be fully collapsed to a
single-site. More generally, this is true of the Luttinger-
Ward free-energy functional ([%Gij&], which is the sum
of all vacuum-to-vacuum skeleton graphs (Fig. 4). This
functional is such that (see, e.g., Abrikosov et al., 1965):

" ij) i#n*!
+(

+Gij) i#n*
. (40)

Hence, as d→!, ( and " ij
skel depend only on the local

(site-diagonal) Green’s functions Gii :

(!,
i

-$Gii' , d→! , (41)

in which - is a functional of the local Green’s function at
site i only. An obvious consequence is that the self-
energy is site diagonal:

" ij) i#n*!+ ij") i#n*. (42)

Furthermore, it must be possible to generate the func-
tionals -[G] and "skel[G] from a purely local theory. A
simple inspection of Feynman rules shows that the effec-
tive action Seff in Eq. (6) precisely achieves this goal.
From this point of view, the Weiss function G 0 just plays
the role of a dummy variable which never enters the
final forms of -, "skel. Once these functionals are known,
the actual value of " is found by writing that the local
lattice Green’s function is given by "kG(k,i#n), namely:

G) i#n*!!
"!

#!

d.
D).*

i#n".""skel$G) i#n*'
. (43)

This should be viewed as a functional equation for
G(i#n), which is of course equivalent to the self-
consistency condition (7). This point of view is formally
useful to prove reduction to a single-site problem, but is
not practical because of the difficulty in handling skel-
eton functionals. In fact, it has been so far impossible to
obtain exact or even approximate expressions of "skel for
the Hubbard model, which would give reasonable re-
sults when inserted in (43), except for very small U . A
remarkable case for which "skel[G] can be obtained in
closed form is the Falicov-Kimball model (Sec. VIII.B),
which is exactly solvable as d→! (Brandt and Mielsch,
1989–1991). For most models, it is much more useful in
practice to think of all quantities as functionals of G 0
and to promote the latter to the rank of a fundamental
quantity which has a clear physical interpretation as a
‘‘Weiss function’’ (Georges and Kotliar, 1992).

This formalism is also useful for establishing the rela-
tion between the lattice and the impurity model free-
energies, / and /imp (Brandt and Mielsch, 1991). In-
deed, / is related to the Luttinger-Ward functional ( by
(see, e.g., Abrikosov et al., 1965):

/!(#T ,
n ,k,0

$ lnG0)k,i#n*""0) i#n*G0)k,i#n*' ,

(44)

while, for the impurity model (6),

/ imp!-$G'#T,
n0

$ lnG0) i#n*""0) i#n*G0) i#n*' .

(45)

Eliminating the functional ( between these two equa-
tions [using Eq. (41)], and taking into account transla-
tion invariance, one obtains the following expression for
the free-energy:

/

N
!/ imp"T,

n0
" !

"!

#!

d. D).*

$ln$ i#n#1""0) i#n*".'#ln G0) i#n* # , (46)

Note also that the internal energy can be expressed in
terms of local quantities only (see, e.g., Fetter and Wa-
lecka, 1971):

FIG. 3. Example of a diagram that cannot be ‘‘collapsed’’ to a
single-site, because only two independent paths connect site i
to site k (or j to l). Note that this is not a skeleton diagram,
since it contains a correction to the ij propagator.

FIG. 4. First two contributions to the Luttinger-Ward func-
tional.
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• Therefore : 
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Thermodynamics (2)

• Internal energy : 

5

E
N

!T!
n ,"

!
"#

##

d$
$D%$&

i'n#(")"% i'n&"$

#
1
2

T!
n ,"

)"% i'n&G"% i'n&. (47)

C. Derivation based on an expansion
around the atomic limit

In this section we derive the LISA equations on the
basis of an expansion around the atomic limit. This is
more than an academic exercise since a successful re-
summation of the atomic expansion has long been
sought, starting with the pioneering work of Hubbard
(1964). It is reassuring to see that a systematic analysis
of this expansion leads one back to the LISA equations.

This section builds upon early work of Metzner (1991;
see also, Hülsenbeck and Stephan, 1994). For any spatial
dimension, one can write a general expansion of the free
energy and the correlation functions in terms of hopping
matrix elements t ij and bare cumulants c r

0 which are lo-
cal in space but nonlocal in time. The bare cumulants
are defined by

cr
0%*1•••*r *1!•••*r!&!

+ lnZat

+,̄%*1&•••+,̄%*r&+,%*1!&•••+,%*r!&
,

in which Zat is the partition function in the atomic limit,

Zat-, ,,̄.!! dc#dc e"/0
0Lat#/0

0,̄c#c#,,

where Lat=)"c "
#(1*"()c"#Un↑n↓ is the Lagrangian

in the atomic limit. The rules for the calculation of a
Green’s function are given by Wortis (1974) and by
Metzner (1991). The basic idea is to carry out an expan-
sion of physical quantities in powers of the hopping ma-
trix element, and eliminate all disconnected graphs using
linked-cluster type arguments. The diagrammatic rules
for the one-particle Green’s function Gij ,"(*−*!) follow.

(i) Draw all topologically distinct connected diagrams
composed of point vertices, directed ‘‘internal’’ lines
connecting two vertices (corresponding to hopping ma-
trix elements), and two ‘‘external’’ lines (one entering
and one leaving a vertex) such that at each vertex (bare
cumulant) the number of entering lines equals the num-
ber of exiting lines.

(ii) Label each line with a time and a spin variable.
The entering external line is labeled by *!,", the exiting
one by *,". Label each vertex with a lattice site index;
the vertex with the entering external line is labeled by j!,
the one with the exiting line by j (the external vertices
may coincide: in this case j!j!).

(iii) Each line running from a vertex j to a vertex i
yields a factor t ij ; each vertex j with m entering lines
(labeled by s1! , . . . ,sm! ) and m exiting lines (labeled by
s1 ,. . . ,sm) yields a factor cm

0 (s1 ,. . . ,sm"s1! , . . . ,sm! ).
(iv) Determine the sign of each diagram (plus/minus

for an even/odd number of loops).
(v) Determine the symmetry factor g(D) for each dia-

gram D , i.e., the number of distinct permutations of (la-

beled) vertices and lines which do not alter the topologi-
cal structure of the diagram.

(vi) For each diagram D , multiply the associated hop-
ping matrix elements and cumulants, integrate each time
variable from 0 to 0, sum each spin variable and lattice
vector on internal lines over the whole lattice, and mul-
tiply by the sign; the labels of external lines and vertices
are kept fixed.

Collecting all these factors, one obtains the weight
w(D) of a given diagram D . The one-particle Green’s
function is finally given by the sum of the weights w(D)
of all connected diagrams. The lowest-order diagrams
are shown in Fig. 5 from Metzner (1991).

The expansion around the atomic limit is quite com-
plex, and different truncations lead to the Hubbard I
and Hubbard III (Hubbard, 1964) approximations
(Metzner, 1991). It is natural to define the notion of ir-
reducibility with respect to one line (representing t ij).
This leads to the definition of an irreducible cumulant
M1 as the sum of all graphs with two external legs, which
cannot be divided into two parts by cutting a single line.
Fourier transforming the spatial dependence, one ob-
tains the exact relation between the one-particle irreduc-
ible cumulant and the one-particle Green’s function,

G%k,i'n&!
1

-M1
"1%k,i'n&"$k.

(48)

in which $k is the Fourier transform of the hopping ma-
trix element. An exact relation between the irreducible
one-particle cumulant and the self-energy is thus ob-
tained:

M1
"1%k,i'n&!i'n#(")%k,i'n&. (49)

FIG. 5. First few diagrams for the expansion around the
atomic limit for the Hubbard model [from Metzner (1991)].
The dots represent bare cumulants.

25A. Georges et al.: Dynamical mean-field theory of . . .
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DMFT : Spectral Density Functional Theory 6
DMFT : a Spectral Density Functional Theory (2)

Strongly correlated electronic systems (SCES) :

ΓBK [Gij ] = Tr lnGij − Tr(g
−1
0ijGij) + ΦBKLW [Gij ]

Gij(t) ≡ −
〈

Tci(t)c
†
j(0)

〉

Σij =
δΦBKLW

δGij

Local Green Function G(t) ≡ Gii(t)

Dynamical Mean Field Theory (DMFT) : ΦBKLW [Gij ] ≈ φ[Gii]

A. Georges, G. Kotliar, W. Krauth, M. Rozenberg RMP (1996)

Realistic calculations in SCES

Mix DFT (LDA) and DMFT

G. Kotliar, S. Savrasov,K. Haule, V. Oudovenko, OP, C. Marianetti, Rev. Mod. Phys. To appear

Various codes at http://dmft.rutgers.edu

Cologne 18-01-2006 – p.8/42

DMFT : a Spectral Density Functional Theory (2)

Strongly correlated electronic systems (SCES) :

ΓBK [Gij ] = Tr lnGij − Tr(g
−1
0ijGij) + ΦBKLW [Gij ]

Gij(t) ≡ −
〈

Tci(t)c
†
j(0)

〉

Σij =
δΦBKLW

δGij

Local Green Function G(t) ≡ Gii(t)

Dynamical Mean Field Theory (DMFT) : ΦBKLW [Gij ] ≈ φ[Gii]

A. Georges, G. Kotliar, W. Krauth, M. Rozenberg RMP (1996)

Realistic calculations in SCES

Mix DFT (LDA) and DMFT

G. Kotliar, S. Savrasov,K. Haule, V. Oudovenko, OP, C. Marianetti, Rev. Mod. Phys. To appear

Various codes at http://dmft.rutgers.edu

Cologne 18-01-2006 – p.8/42

• Functional formulation of DMFT 

• Density Functional Theory : 
 Approximation for electronic density n(x)

DMFT : a Spectral Density Functional Theory (1)

Approximations on effective action for a local physical quantity

Example 1: Ising model

HIsing ≡ −J
∑

〈i,j〉

SiSj

Local Magnetisation: mi = 〈Si〉, Γ[mi] ≈ ΓMean Field[mi]

Γ[mi] =
1

β

∑

i,ε=±1

(

1 + εmi

2
ln

1 + εmi

2

)

− J
∑

ij

mimj + Γcorr[mi]

Example 2: DFT for Weakly correlated electronic systems

Local density n(x). Density Functional Theory, LDA.

ΓDFT [n(x)] = ΓDFT [n(x), e2 = 0] + ∆ΓDFT [n(x)]

Cologne 18-01-2006 – p.7/42

Realistic calculations for Strongly correlated materials. 
Rev. Mod. Phys. 2006 and Lecture 4.
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1. Derivation of the DMFT equations

2. Impurity solvers.
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What do we need to solve ? e.g. CDMFT

• 4 Anderson impurities coupled to an effective bath 

8

Cluster DMFT (1)

Missing in DMFT . . .

Various orders : e.g. d-SC,DDW, (AF).

k dependence of Σ(k, ω) =⇒ Z ∼ m
m∗

Variations of Z, m∗, τ on the Fermi surface.

Non trivial insulators (frustrated magnets ?)

Non-local interactions (e.g. nearest neighbours).

. . . but present in cluster methods

spatially short range quantum fluctuations

DMFT Cluster DMFT

G0

=⇒

G0

Cologne 18-01-2006 – p.12/42 Superlattice

CDMFT equations

CDMFT

H = −
∑

RmµRnν

t̂µν(Rm−Rn)c+
RmµcRnν+

∑

R1µR2ν

R3ρR4ς

Uµνρς({Ri})c
+
R1µ

c+
R2ν

cR4ςcR3ρ

Seff = −

∫∫ β

0
dτdτ ′c†µ(τ)G−1

0,µν(τ, τ
′)cν(τ

′) +

∫ β

0
dτUαβγδ(0)(c†αcβc†γcδ)(τ)

Gcµν(τ) = −
〈

Tcµ(τ)c†ν(0)
〉

Seff

Σc = G−1
0 − G−1

c

G−1
0 (iωn) =

[

′
∑

K∈R.B.Z.

(

iωn + µ − t̂(K) − Σc(iωn)

)−1
]−1

+ Σc(iωn)

Cologne 18-01-2006 – p.15/42

1 ≤ µ, ν ≤ 4

Seff = −
∫∫ β

0
dτdτ ′c†µ(τ)G−1

0,µν(τ, τ ′)cν(τ ′) +
∫ β

0
dτU(ni↑ni↓)(τ)

Gcµν(τ) = −〈Tcµ(τ)c†ν(0)〉Seff

Σc = G−1
0 − G−1

c

G−1
0 (iωn) =

[ ′∑

K∈R.B.Z.

(
iωn + µ − t̂(K) − Σc(iωn)

)−1
]−1

+ Σc(iωn)

8



How to solve a quantum impurity model ?

• Numerical methods :

• Quantum Monte-Carlo (Hirsch-Fye, CTQMC).

• Exact diagonalisation (ED).

• Renormalization group methods : NRG, DMRG.

• Analytic methods : 

• Low energy theories : bosonisation, boundary CFT.

• Integrability by Bethe Ansatz.

• Projective method.

• Approximate methods (fast) : 

• Iterated Perturbation Theory (IPT)

• NCA familly (NCA, large-N, SUNCA).

9
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Impurity solvers : requirements

• Compute G at all frequencies.

• Quick, reliable ....

• Gapped case : perturbation in Δ 
is regular

• Ungapped case : Kondo problem
with Δ(0)≠0.

• Bath has a structure at low energy !

10

Seff = −
∫∫ β

0
dτdτ ′c†µ(τ)G−1

0,µν(τ, τ ′)cν(τ ′) +
∫ β

0
dτU(ni↑ni↓)(τ)

Gcµν(τ) = −〈Tcµ(τ)c†ν(0)〉Seff

disappears continuously (at T=0) at a critical value
Uc2/D!2.92, as explained in more detail in Sec. VII.E.

2. Insulating phase

When U/t is large, we begin with a different ansatz
based on the observation that in the ‘‘atomic limit’’ t=0
(U/t=!), the spectral function has a gap equal to U . In
this limit the exact expression of the Green’s function
reads

G" i#n$at!
1/2

i#n"U/2
"

1/2
i#n#U/2

. (232)

Since ImG(#"i0") also plays the role of the density of
states of the effective conduction electron bath entering
the impurity model, we have to deal with an impurity
embedded in an insulator [%(#=0)=0]. It is clear that an
expansion in powers of the hybridization t does not lead
to singularities at low frequency in this case. This is very
different from the usual expansion in the hybridization
V with a given (flat) density of states that is usually con-
sidered for an Anderson impurity in a metal. Here, t
also enters the conduction bath density of states (via the
self-consistency condition) and the gap survives an ex-
pansion in t/U . An explicit realization of this idea is to
make the following approximation for the local Green’s
function (Rozenberg, Zhang, and Kotliar, 1992):

G" i#n$!
1/2

G 0
#1" i#n$#U/2

"
1/2

G 0
#1" i#n$"U/2

, (233)

which can be motivated as the superposition of two mag-
netic Hartree-Fock solutions or as a resummation of an
expansion in %/U . This implies that G(i#)&i# for small

#, and the substitution into the self-consistency condi-
tion implies that G 0

−1&i# , which is another way of say-
ing that the effective bath in the Anderson model pic-
ture has a gap. We know from the theory of an
Anderson impurity embedded in an insulating medium
that the Kondo effect does not take place. The impurity
model ground state is a doubly degenerate local mo-
ment. Thus, the superposition of two magnetic Hartree-
Fock solutions is qualitatively a self-consistent ansatz. If
this ansatz is placed into Eq. (221), we are led to a
closed (approximate) equation for G(i#n):

D4G3#8D2#G2"4"4#2"D2#U2$G#16#!0.
(234)

This approximation corresponds to the first-order ap-
proximation in the equation of motion decoupling
schemes reviewed in Sec. VI.B.4. It is similar in spirit to
the Hubbard III approximation Eq. (173) (Hubbard,
1964), which would correspond to pushing this scheme
one step further. These approximations are valid for
very large U but become quantitatively worse as U is
reduced. They would predict a closure of the gap at
Uc!D for (234) (Uc!)D for Hubbard III). The fail-
ure of these approximations, when continued into the
metallic phase, is due to their inability to capture the
Kondo effect which builds up the Fermi-liquid quasipar-
ticles. They are qualitatively valid in the Mott insulating
phase however.

The spectral density of insulating solutions vanish
within a gap #%g/2$#$"%g/2. Inserting the spectral
representation of the local Green’s function into the self-
consistency relation, Eq. (221) implies that '(#+i0+)
must be purely real inside the gap, except for a
(-function piece in Im' at #=0, with

Im'"#"i0"$!#)*2("#$ for #!+#%g/2,%g/2,
(235)

and that Re' has the following low-frequency behavior:

Re'"#"i0"$#U/2!
*2

#
"O"#$. (236)

In these expressions, *2 is given by

1
*2

!"
#!

"!

d-
*"-$

-2 . (237)

*2 can be considered as an order parameter for the insu-
lating phase [the integral in Eq. (237) diverges in the
metallic phase]. A plot of the spectral function and self-
energy in the insulating phase, obtained within the iter-
ated perturbation theory approximation, is also dis-
played in Figs. 30 and 31. The accuracy of these results is
more difficult to assess than for the metal, since exact
diagonalization methods are less efficient in this phase.
A plot of the gap %g vs U estimated by the iterated
perturbation theory and exact diagonalization is given in
Fig. 32. Within both methods, the insulating solution is
found to disappear for U$Uc1(T!0), with Uc1

ED

! 2.15D (while the iterated perturbation theory method
yields Uc1

IPT ! 2.6D). As discussed below in more detail
(Sec. VII.F), the precise mechanism for the disappear-

FIG. 30. Local spectral density )D*(#) at T=0, for several
values of U , obtained by the iterated perturbation theory ap-
proximation. The first four curves (from top to bottom, U/D
=1,2,2.5,3) correspond to an increasingly correlated metal,
while the bottom one (U/D=4) is an insulator.
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Evolution of the spectral function 
close to Mott transition (cf lecture 1)
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Bethe Ansatz and CFT are useless for DMFT !

• Integrability in the universal regime (A. Tsvelik, P. Wiegmann/ N. Andrei,1980)
N. Andrei, K. Furuya, JH Lowentein, Rev. Mod. Phys. 55, 331 (1983);  N. Andrei, Trieste lecture 
1994 condmat/9408101.

• Thermodynamics but Green function very hard to compute. 

•  Boundary Conformal Field Theory (Cardy; Affleck, Ludwig, 1991; I. Affleck, Acta 
Phys.Polon. B26 (1995) 1869; condmat/9512099)

• Description of the low-energy fixed point. Computation of the 
low frequency correlations (hence e.g. ρ(T)).

• BUT both methods starts from a flat band and linearize the energy 
close to the Fermi level (universal regime).

11

ω

Δ(ω)

D-D

T,ω, TK << D

ε(k) ∝ (k − kF )

Not sufficient to solve DMFT
11



Continuous time QMCs

• Principle : Perform an expansion in a coupling constant and sum this 
expansion with Monte-Carlo technique.

• Expansion in U  : U-CTQMC 
A.N. Rubtsov et al., Phys. Rev. B 72, 035122 (2005) 

• Expansion in Δ(ω), around the atomic limit : Δ-CTQMC 
P.  Werner, A. Comanac, L. de’ Medici, M. Troyer, A. J. Millis, PRL 97, 
076405 (2006); P . Werner, A.J. Millis, Phys. Rev. B 74, 155107 (2006)

12
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Advantages of Δ-CTQMC

• Time is continuous !

• For frustrated clusters, sign problem does not seems important. 
The algorithm is a mixture of diagonalization and QMC

• Use the symmetry : diagonalize Δ !

• Size of the matrix does not increase much

<matrix size> ~ Kinetic energy (Haule, 2006)

13

13



Comparison of various QMCs

• In practice, first computation of SC phase in CDMFT with Werner’s 
algorithm since Tc is low : K. Haule, condmat/0612172

• Systematic comparison of Hirsch-Fye, U-CTQMC, Δ-CTQMC
E. Gull et al condmat/0609438
Size of the matrix versus 1/T (Bethe lattice, 1 site, U/t = 4).
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FIG. 2: Scaling of the matrix size with inverse temperature
and interaction strength. Upper panel: temperature depen-
dence for U/t = 4. In the case of Hirsch-Fye, the resolution
N = βU has been chosen as a compromise between reasonable
accuracy and acceptable speed, while the average matrix size
is plotted for the continuous-time solvers. Lower panel: de-
pendence on U/t for fixed βt = 30. The solutions for U ≤ 4.5
are metallic, while those for U ≥ 5.0 are insulating. The much
smaller matrix size in the relevant region of strong interactions
is the reason for the higher efficiency of the hybridization ex-
pansion method.

It is obvious from the upper panel of Fig. 2 that the
matrix size in all three algorithms scales linearly with β.
The Hirsch-Fye data are for N = βU , which is apparently
a common choice, although Figs. 3 and 5 show that it
leads to considerable systematic errors. Thus, the grid
size should in fact be chosen much larger (N ! 5βU).

While the matrix size in the weak coupling approach
is approximately proportional to U/t, as in Hirsch-Fye,
the U -dependence of the hybridization expansion algo-
rithm is very different: a decrease in average matrix size
with increasing U/t leads to much smaller matrices in
the physically interesting region 4 " U/t " 6, where the
Mott transition occurs. The results in Fig. 2 and the
cubic dependence of the computational effort on matrix
size essentially explain why the continuous-time solvers
are much more powerful than Hirsch-Fye and why the

hybridization expansion is best suited to study strongly
correlated systems.

There is of course a prefactor to the cubic scaling,
which depends on the computational overhead of the dif-
ferent algorithms and on the details of the implementa-
tion. Only the weak coupling code has been optimized.
We estimate that similar modifications in the code for
the hybridization expansion algorithm would provide a
speed-up of at least a factor of 10. However, the results
presented in the following sections are obvious enough
that these details can be safely ignored.

B. Accuracy for constant CPU time

The three quantum Monte Carlo algorithms consid-
ered in this study work in very different ways. Not only
are the configuration spaces and hence the update proce-
dures entirely different, but also the measurements of the
Green functions and other observables. While the strat-
egy for measuring G is (as mentioned in section III) to a
certain extent independent of the algorithm, we compare
the weak coupling and hybridization expansion methods
as they have been proposed in Refs. [9] and [10].

In order to study the performance of the different im-
purity solvers, we therefore decided to measure the accu-
racy to which physical quantities can be determined for
fixed CPU time. This is the question which is relevant to
people interested in implementing either of the methods
and avoids the tricky (if not impossible) task of separat-
ing the different factors which contribute to the uncer-
tainty in the measured results. Because the variance of
the observables measured in successive iterations of the
self-consistency loop turned out to be considerably larger
than the error bars in each step, we determined the mean
values and error bars using 20 DMFT iterations starting
from a converged solution.

The Hirsch-Fye solver suffers in addition to these sta-
tistical errors from systematic errors due to time dis-
cretization. These systematic errors are typically quite
substantial and much larger than the statistical errors. In
order to extract meaningful results from Hirsch-Fye simu-
lations it is essential to do a careful (and time-consuming)
∆τ → 0 analysis. The continuous-time methods are ob-
viously free from such systematic errors if a sufficient
number of time- or frequency points is used in the mea-
surement of the Green function.

1. Kinetic and potential energy

The kinetic energy,

Ekin = 2t2
∫ β

0
dτG(τ)G(−τ), (23)

shown in Fig. 3, was obtained from the imaginary time
Green function by numerical integration. We com-
puted results for fixed U/t = 4 and temperatures βt =

Δ-CTQMC seems to be the most efficient

14



Exact diagonalisation : principle

• Use the Hamiltonian form of the Anderson model (see lecture 1).

15

• The energy and hoppings of the bath are effective

• Principle : use Lanczos to compute the GS of H 

• How to find the V’s and ε’s from Δ(ω) ?

• How to compute G ?

H =
∑

kσ

εkσc†kσckσ +
∑

σ

εdd
†
σdσ + Und↑nd↓ +

∑

kσ

Vkσ

(
c†kσdσ + h.c.

)

S = −
∫ β

0
d†σ(τ)G−1

0σ (τ − τ ′)dσ(τ ′) +
∫ β

0
dτUnd↑(τ)nd↓(τ)

G−1
0σ (iωn) ≡ iωn + εd −∆σ(iωn) ∆σ(iωn) ≡

∑

k

|Vkσ|2

iω − εkσ

15



ED : discretisation of the bath

• Approximation of Im Δ(ω) by a finite set of Dirac peaks.

• The bath can take different shapes.

16

This distance is an estimate of the distance between the
actual solution of the LISA equations (which is generi-
cally not part of the restricted subspace for a finite ns)
and the converged discretized G 0

ns that has been found
within the restricted subspace. This state of affairs is no
different in principle from the QMC method (in which a
converged solution is found for a given discretization
!"). An illustration of this comparison will be given in
Appendix C.

A key to the success of this approximation lies in that
both the positions of the orbitals #̃p and the hybridiza-
tions Vp are free to adjust themselves. The exact diago-
nalization method is thus formulated on an adaptive
‘‘grid’’ in $, and shows the excellent convergence and
economy common to variable-grid methods. The power
of such methods is lost when d=% models are studied by
exact diagonalization of subclusters of the original lat-
tice itself (cf. Gros et al., 1994).

A second reason behind the fast convergence of this
algorithm is related to the fact that the poles of the func-
tion G 0 all lie on the real axis, i.e., far away from the
region in which we search to fit the functions. Neverthe-
less, we will show in Sec. VI.A.4 that the real-frequency
properties are very well represented.

(ii) An alternative projection method (Si et al., 1994),
which avoids the need for a minimization procedure in
several variables, is based on the continued-fraction rep-
resentation of a rational function (cf. Haydock, 1985).
The basic idea is to write the hybridization function of
the Anderson model as a sum of two continuous fraction
expansions (describing the positive and negative parts of
the spectral function) !> and !< and define the projec-
tion as the truncation of the continued fraction down to
a given level. Because of the well-known connection be-
tween the moments and the coefficients of the continued
fraction expansion this can be thought of as a ‘‘moment
by moment’’ systematic fitting on the real axis of the
one-particle spectral density:

!!&$'"
b0

!2

$#a0
!#

b1
!2

$#a1
!#

b2
!2

$#a2
!#•••

,

!$&$'"
b0

$2

$#a0
$#

b1
$2

$#a1
$#

b2
$2

$#a2
$#•••

. (148)

The Hamiltonian that needs to be diagonalized now has
a natural representation in the form of two one-
dimensional chains, with parameters as shown in Fig. 10
(the b i

!/$ are hopping elements between sites of the
chains, and the a i

!/$ are atomic energies of the sites). It
is easy to see that the two chains generate the Weiss field
precisely in the truncated continued-fraction form (with
nc the length of the chain, 2nc%1"ns):

H"(
)

(
*"! ,$

! (
+"0

nc#1

a+
* c+)

*%c+)
* %b0

*&c0)
*%d)%H.c.'

% (
+"1

nc#2

&b+
* c+)

*%c+%1)
* %H.c.'"

%U&nd↑# 1
2 '&nd↓# 1

2 '. (149)

This algorithm can be most easily programmed in the
case of the z=% Bethe lattice at zero temperature, be-
cause in this case the self-consistency condition reads
!>=t2G! and !<=t2G$. Since the Green’s function is
obtained in a continued-fraction representation [cf. Eq.
(146)] the variables a and b are obtained without further
work. The self-consistency is thus translated into the
self-consistent determination of the parameters of a con-
tinued fraction representation of G 0

−1, or equivalently,
G .

In this case, the approximation consists in the trunca-
tion of the length of the continued fractions due to the
finite size of the effective electron bath that can be dealt
with. This approximation relies on the fact that the
continued-fraction representation captures exactly the
moments of the Hamiltonian, up to the order retained in
the continued fraction.

This method avoids the multidimensional fit of the
Green function but has the disadvantage of giving a high
weight to the high-frequency features. This is because
the low-energy features of the spectral function have a
very small contribution to the moments. For this reason,
this method is best adapted to the calculation of the
total energy (for which it gives very accurate results),
and particularly well suited for the study of insulating
phases.

(iii) A third implementation of the projection in the
LISA exact diagonalization procedure (which is a mix-
ture of the two previous ones) was introduced to de-
scribe a strongly correlated metal (Rozenberg, Moeller,
and Kotliar, 1994). An extra site at the Fermi energy is
added to the scheme (ii) in order to better represent the

FIG. 13. Schematic representation of the fitting procedure
used by Caffarel and Krauth (1994). The spectral density asso-
ciated with G 0

−1 is represented by a finite set of poles ( #̃p) and
weights (V p

2) on the real frequency axis, but the fitting proce-
dure involves a minimization of the distance between G 0(i$n)
and G 0

ns(i$n) on the imaginary frequency axis.
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(i) The basic principle of the method can be under-
stood as a discretization of the impurity model effective
action, Eq. (105):

Seff→!
""!#

c#
!$"%G 0

"1$" ,"!%c#$"!%!U!
"

n↑$"%n↓$"%,

(106)

where the imaginary time is discretized in L ‘‘slices’’
"=1,2, . . . , L of size &", and the timestep &" is defined by
'=L&".

(ii) The remaining quartic term can be decoupled us-
ing a discrete Hubbard-Stratonovich transformation
(Hirsch, 1983):

e"&"Un↑n↓!$&"U/2%$n↓!n↓%#
1
2 !

s#$1
e(s$n↑"n↓%, (107)

where (=arccosh (e&"U/2) and the discrete field s is an
Ising-like variable taking the values )1. Performing this
transformation at every time slice, we are led to a qua-
dratic action, and the partition function becomes

Z# !
s"#$1

! D*c ,c!+exp" "!
""!

c#
!$"%G 0

"1$" ,"!%c#$"!%

!(!
"

s"*n↑$"%"n↓$"%+# (108)

with

G#
"1$" l," l!%,G 0#

"1$" l," l!%!#(sl- l ,l!!1 (109)

the inverse propagator for a particular realization of the
Ising spins (s1 ,. . . ,sL). The antiperiodic delta function is
defined by -l ,l!!1=1 if l#l!!1,l#2,.. . ,L"1, - l ,l!!1
# " 1 if l=1, l!#L , and is zero otherwise. Its origin is in
the proper time ordering of the creation and destruction
operators (Blankenbecler, Scalapino, and Sugar, 1981).
In the actual implementation of the algorithm, Eq. (109)
is replaced by

G# ,$s1 ,.. . ,sL%
"1 $" ,"!%,G 0#

"1$" ,"!%eV!eV"1, (110)

where eV is the diagonal matrix with elements eV(" ,")
# e#(s". This choice of discretization results from the rig-
orous derivation in Sec. VI.A.1.b following the original
Hamiltonian formulation of Hirsch and Fye (1986).

(iii) The replacement of a quartic term for an extra
summation on the auxiliary Ising variables (s1 ,. . . ,sL)
renders the action quadratic and allows us to apply
Wick’s theorem at each time slice. We can now perform
the Gaussian integration of the Grassmann variables, to
obtain

Z# !
.s1 ,.. . ,sL/

det*G↑
"1$s1 ,. . . ,sL%+det*G↓

"1$s1 ,. . . ,sL%+ .

(111)

In principle, the trace over the auxiliary field gives the
full interacting Green’s function:

G##
1
Z !

.s1 ,.. . ,sL/
det*G↑

"1$s1 ,. . . ,sL%+

%det*G↓
"1$s1 ,. . . ,sL%+G#$s1 ,. . . ,sL%; (112)

this requires the sum over 2L configurations. Each term
in the sum (112) involves the inversion of an L%L ma-
trix as is clear from Eq. (110). In practice, the full trace
can only be performed for small values of L .

(iv) Usually, the interacting Green’s function is there-
fore calculated by stochastic Monte Carlo sampling: the
term det[G ↑

"1(s1,. . . ,sL)]det[G ↓
"1(s1 ,. . . ,sL)] in Eq.

(112) is interpreted as a stochastic weight, and configu-
rations (s1 ,. . . ,sL) are generated by a Markov process
with a probability corresponding to their statistical
weight.

(v) The Markov process visits configurations of Ising
variables (s1 ,. . . ,sL) with a single spin-flip dynamic,
in which a possible movement consists in
(s1 ,s2 ,. . . ,sk , . . . ,sL)→(s1 ,s2 ,. . . ,"sk , . . . ,sL). The for-
mulas given in Sec. VI.A.1.b will allow a rapid calcula-
tion of the change in statistical weight, and of the new
Green’s function for a single spin-flip change.

b. The Hirsch-Fye algorithm: Rigorous derivation

The above derivation leaves us with the impression
that there are two discretizations involved: the one of
the bath Green’s function, and the subsequent discreti-
zation of the functional integral. Using a Hamiltonian
description of the general Anderson impurity model one

FIG. 10. Various possible geometries used to represent the
effective conduction bath in the exact diagonalization algo-
rithm.
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(ii) The ns-orbital Hamiltonian (113) corresponding
to Eq. (142) is then diagonalized exactly, and the Green’s
function G(i!n) is computed.

(iii) The self-consistency condition Eq. (137) then
leads to a new function G 0 , which in turn is approxi-
mated by a function G 0

ns with a new set Vp , "̃p . The
process is iterated until a converged set of parameters is
reached. Notice that the bath Green’s function G 0 ob-
tained at the previous step of the iteration has no reason
to belong to this subspace in general, but that it can be
projected onto this subspace.

Let us discuss in more detail the various steps of this
algorithm, starting with the diagonalization of H. In
contrast to the Monte Carlo method, the exact diagonal-
ization algorithm provides a numerically exact relation-
ship between G 0

ns and G , since G is the true Green’s
function of H. (Note also that the QMC does not in fact
determine the Green’s function of a specific Hamil-
tonian, but a related object G#$, which approaches a
Green’s function in the limit #$→0). The states of the
finite-dimensional Hilbert space of H are given by

!n1
↑ ,n2

↑ , . . . ,nns

↑ %!n1
↓ ,n2

↓ , . . . ,nns

↓ % (143)

with n p
&=0,1 and 'pn p

&(n&. H does not mix the dif-
ferent sectors (n↑,n↓). In consequence, all sectors can be
diagonalized independently. The full diagonalization is
feasible for values of ns of the order of ns=6 [which
leads to the diagonalization of a 400)400 matrix in the
sector (n↑=3, n↓=3)] or ns=7 (1225)1225). At finite tem-
perature, the Green’s function is calculated from the full
set of states !i% (with eigenvalues Ei) according to

G* i!n+!
1
Z '

i ,j

*,i!d"!j%+2

Ei#Ej#i!n

$-exp*#.Ei+"exp*#.Ej+/ . (144)

Using the Lanczos algorithm (cf. Golub and Van Loan,
1983; Gagliano et al., 1986; Lin and Gubernatis, 1993),
the zero-temperature Green’s function of much larger
matrices can be computed (ns012). The algorithm is

used in a two-step procedure. In the first step, the
ground-state wave function !10%

n↑,n↓ is determined in
each of the sectors (n↑,n↓). This is done in the usual way
by picking an arbitrary vector !p0% [within the sector
(n↑,n↓)], and diagonalizing H in the linear hull of
!p0%,H !p0%,...H

n!p0%. In a subsequent application of the
Lanczos procedure, the initial vector is taken to be
!p0%!d"!g.s.% where !g.s.% is the overall ground state of
the Hamiltonian. This second Lanczos procedure allows
the computation of the ground-state Green’s function,
which is written in two continued-fraction expansions
that describe the ‘‘particle’’ (!>0) and ‘‘hole’’ (!<0) ex-
citations:

G*!+!G%*!+"G&*!+ (145)

with

G%*!+!
,g.s.!dd†!g.s.%

!#a0
%#

b1
%2

!#a1
%#

b2
%2

!#a2
%#•••

,

G&*!+!
,g.s.!d†d!g.s.%

!#a0
&#

b1
&2

!#a1
&#

b2
&2

!#a2
&#•••

. (146)

It is the parameters entering this parametrization that
are determined by the second Lanczos procedure, in a
way further detailed in Appendix C.

The most subtle aspect of these methods is in the
implementation of the projection of G 0 onto G 0

ns. The
following methods for carrying out this projection have
been proposed.

(i) A distance d between G 0 and the finite-orbital
function G 0

ns is chosen (Caffarel and Krauth, 1994), e.g.:

d!
1

nmax"1 '
n!0

nmax

!G 0* i!n+#1#G 0
ns* i!n+#1!2 (147)

(where nmax is a very large upper cutoff). For the runs at
finite temperatures, the !n are of course taken to be the
Matsubara frequencies. Even at zero temperature, they
are taken to be the Matsubara frequencies associated
with a ‘‘fictitious’’ temperature, which serves as a low-
energy cutoff. The precise functional form plays a minor
role in this formula, but the crucial aspect of the defini-
tion is that the Green’s functions are compared with
each other at imaginary frequencies, and not on the real
axis. This is illustrated pictorially on Fig. 13. As a prac-
tical matter, the ‘‘projection’’ is performed using a mini-
mization algorithm. A modern conjugate gradient algo-
rithm has of course no trouble in locating the minimum
of the (2ns)-dimensional function in Eq. (147) for
ns'12. Using repeated projection operations, converged
solutions G 0

ns within the subspace (142) can be found.
The quality of the solution can be assessed from the
‘‘distance’’ between G 0 and the corresponding G 0

ns, and
from the behavior of this distance as a function of ns .

FIG. 12. The exact diagonalization method involves a projec-
tion of the bath Green’s function G 0 onto the space of func-
tions 2G 0

ns3 built out of ns orbitals. At self-consistency G 0
ns

! G 0
!ns. The quality of the approximation can be inferred

from the distance that separates G 0
new and G 0

ns. This distance is
usually very small, and decreases approximately by a constant
factor as ns is incremented by one.
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• V and ε computed by minimizing a distance (Caffarel-Krauth, 1994)

• In Matsubara, with an effective temperature Teff

16



ED : Computation of the Green function 

• Start another Lanczos from 

• Gives G(ω) as a continuous fraction 
expansion.

• Finite-Bath ⇒ any structure is replaced 

by a set of finite δ peak (with some 
broadening).

17

method, which consists of a large number of discrete !
functions, directly obtained at T=0. The one-particle
spectral densities "(#)=−ImG(#!i$)/% as obtained
from the Lanczos calculation (ns=10) are displayed to-
gether with the iterated perturbation theory approxima-
tion solutions (cf. Sec. VI.B.2) in Fig. 18 for different
values of U . In the Fermi-liquid regime the spectrum of
the finite-size Anderson model consists of a large num-
ber of peaks, while in the insulating phase we systemati-
cally observe a simpler structure made of only a few
peaks. As U is increased we see that "(#) develops three
well-separated structures: a central quasiparticle feature
and two broad high-energy satellite features correspond-
ing to the formation of the upper Hubbard band. At
large U , a gap is observed in good agreement with the
approximate iterated perturbation theory solution. In
the insets of Fig. 18 we also present the integrated single
particle density of states corresponding to Lanczos and
iterated perturbation theory solutions. The agreement
between both curves is seen to be very good, provided
we average over a frequency interval of #&0.5. This in-
dicates that the calculated spectral density contains
coarse-grained information about the exact solution, as
it should be. Due to the discrete nature of the Anderson
model used, the fine details of the spectrum are poorly
reproduced, but the agreement of the coarse-grained re-
sults with those obtained by the other methods is re-
markable.

5. Numerical calculation of susceptibilities

and vertex functions

In this short section, we explain how susceptibilities
and vertex functions can be computed numerically

within the various methods described above. The theo-
retical formalism relevant to this section is that of Sec.
IV. There, it was shown that q-dependent response func-
tions for the lattice model can be related, in the LISA
framework, to local response functions of the impurity
model through the formula [Eq. (69)]

'̃q
"1#'̃ loc

"1!'̃q
0"1"'̃ loc

0"1, (152)

in which '̃ loc is a local response function depending on
three frequencies. In the case of the Sz-Sz response
function, it reads

FIG. 17. For the same temperature (D/&=10 as in Fig. 16,
and U#3D/&, this figure compares spectral densities ob-
tained by the iterated perturbation theory approximation (dot-
ted line), by the QMC method with L=64 supplemented by a
maximum entropy analytic continuation (full line), and by the
Padē interpolation of the exact enumeration data (Fig. 16)
with L=16 (dots).

FIG. 18. T=0 spectral density for the half-filled Hubbard
model at U&/D=2,3,4.8 (top to bottom), as calculated by the
exact diagonalization method (Lanczos at ns=10). Also shown
are the corresponding results from the iterated perturbation
theory approximation (on a different, arbitrary, scale). For a
comparison between the two results, the inset contains the in-
tegrated density of states )−*

# "(#!)d#! in each case.
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ED : Limitations of the method

• The bath is effective ⇒ H has less symmetry than a finite-size model

• Size of the bath (hence ω-resolution) is limited.

• Always pay attention to the effective temperature !

• If the bath is too small, spurious solutions of the DMFT loop appear.

• The result may depend on distance :  in clusters, more weight to 
small frequencies.

18
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Which impurity solver should I choose ?

There is no universal answer !

19



Monte-Carlo (i.e. Δ-CTQMC) 

• Compute G(iomega_n) by some Monte-Carlo sum.

20

• Numerically “exact”, reliable.

• Can compute vertex, response 
(e.g. Jarrell 1992, Hirsch-Fye).

• Finite temperature method

• Modern CTQMC very flexible 
(various interactions)

• Only imaginary time : need for 
hazardous analytic continuation 
methods (e.g. Maxent).

• Limited at low temperature (?) 

• Sign problem largely 
uncontrolled.  Was problematic 
in Hirsch-Fye for cluster in 
frustrated models.

• Speed ? Noise ?

Advantages Drawbacks

Principle
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Exact diagonalisation

• Use Hamiltonian form of the Anderson model, discretize the bath 
and use Lanczos to find the ground state and G

21

• Computes for real ω

• Insensitive to frustration.

• (Almost) limited to T=0.

• Size of bath is limited, hence ω 
resolution can be quite poor, 
specially for 4 orbital or 2x2 
cluster.

• Scaling with size of cluster or 
number of orbital is 
exponential !!

Advantages Drawbacks

Principle
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• Use Wilson algorithm. 

• Used e.g. in the resistivity calculation (see lecture 1).

22

Advantages Drawbacks

Principle

Numerical Renormalisation Group (NRG)

• Good description of the 
Kondo peak

• Fast

• Rough for the Hubbard bands.

22



• Computes for real ω, 
with good resolution

• Kondo peak like NRG, but good 
resolution for Hubbard bands.

• Satellite peaks in the Hubbard 
bands.

• Use the quasi-1d formulation of the bath (as a chain).

• Calculation of the Green function must be done by correction 
vector method. 

23

Principle

Density Matrix Renormalization Group (DMRG)

Advantages

Drawbacks

• Slow (?)

and upper Hubbard bands which merge for U→Uc1 when
the single-particle gap ! closes.14,19,21,22

Recent progress in the numerical calculation of dynamic
quantities for quantum impurity models25–28 by dynamic
density-matrix renormalization29–31 !D-DMRG" make calcu-
lations possible with well-controlled resolution at all ener-
gies. Thereby, spectral functions and ground-state energies
become accessible which have so far eluded a quantitative
determination. With the correction vector method we com-
pute "!#" broadened !convolved" by Lorentzians of width
$! #0.01,0.1$D. The unbroadened "!#" is retrieved by least-
bias deconvolution.28 It is used to determine the continued
fraction of the bath function in the next iteration of the
DMFT self-consistency cycle.10 For all U about 20 iterations
were performed until two subsequent "!#" differed less than
%10−3 /D everywhere and the ground-state energy and the
double occupancy differ less than 10−2%. For the insulator, it
is required in addition that the static gap, derived from en-
ergy differences of the finite bath representation, differs less
than 1%.

The D-DMRG is performed with 128 or 256 basis states.
We use 120, 160, or 240 fermionic sites including the impu-
rity in the metallic regime. For the insulating solutions we
used 121 or 161 fermions. An odd number of sites implies a
pole at #=0 in "0!#". This pole is split by the interaction.
The splitting results from a pole in %!#" at #=0. Such a
solution is insulating. Hence an odd number of sites is
slightly biased toward an insulator. Vice versa, an even num-
ber of sites leads to Im %!0"=0 implying a small bias toward
the metallic solution. The relative bias is estimated by the
inverse number of sites: !4–8"&10−3. In odd chains, we
observe two almost degenerate ground states !spin ↑ or ↓ at
the interacting site" which must both be considered. Other-
wise a spurious magnetic moment is generated.

In Figs. 1 and 2, our results for metallic and insulating
"!#" are shown. In the metallic solutions, the narrowing of
the quasiparticle band around #=0 is clearly visible. From
U%D on, the DOS displays side features which develop into
the lower and upper Hubbard bands. At U%2D the Hubbard
bands are well separated from the quasiparticle peak at #
=0 by a precursor of the gap ! in the insulator: a pseudogap.
The comparison with the NRG data from Ref. 16 shows

good agreement in the quasiparticle peak but deviations in
the Hubbard bands. There the DMRG data are much sharper
and do not have significant tails at higher energies. This dif-
ference stems from the broadening proportional to the fre-
quency which is inherent to the NRG algorithm.25,26

The insulating solutions display the lower and the upper
Hubbard bands clearly. They agree excellently with the per-
turbative result33 !not shown" for U!3D. At U=Uc1
= !2.38±0.02"D both bands touch each other. No upturn in
"!#" as in Ref. 22 is found when we consider the decon-
volved "!#" for all #. An upturn occurs only if the static gap
is used. But such a procedure did not lead to stable self-
consistent solutions.

In Fig. 3 the quasiparticle weight Z in the metal and the
single-particle gap ! in the insulator are shown. The weight
Z= #1−!# Re %!0"$−1 is found from fitting the derivative of
the Dyson equation G!#"=G0##−%!#"$ implying Z−1

=D2!#G!0" /2 where G0!#" is the bare local Green’s func-
tion of the lattice. The gap ! is found from a fit proportional

FIG. 1. !Color online" Spectral densities "!#" deep in the me-
tallic regime !upper row" and deep in the insulating regime !lower
row" in DMFT for the Bethe lattice at T=0; dashed lines: numerical
renormalization group !NRG" data !Ref. 32".

FIG. 2. !Color online" Spectral densities "!#" of the metallic
!solid" and the insulating !dashed" solutions between Uc1 and Uc2.

FIG. 3. !Color online" Dotted area: region of two solutions. Left
curves: metallic quasiparticle weight Z; line with circles, interpo-
lated DMRG; line with pluses, NRG !Ref. 16"; dashed line, pertur-
bation up to U4 !Ref. 25". Right curves: insulating gap ! or
pseudogap in the metal !line with diamonds"; line with squares,
DMRG; dashed line, perturbation up to 1/U2 !Ref. 33". Inset:
weight S of the peaks at the inner Hubbard band edges.

BRIEF REPORTS PHYSICAL REVIEW B 72, 113110 !2005"

113110-2

M. Karski et al PRB 72, 113110, 2005

23



Iterated Perturbation Theory (IPT)

• Anderson model : perturbation in U is regular (Yosida, Yamada, 70’s.).

• Use first non-trivial order (Kotliar-Georges, 1992).

24

• Quick and relatively simple.

• U=0 and U=∞ limit correct ! 

• Reproduce the main feature of 
the solution of the Mott 
transition (see lecture 1).

• Largely uncontrolled

• Extension beyond 1/2 filling or 
for clustrer do not interpolate 
well between U=0 and U=∞ 
(see however Kajueter-Kotliar, condmat/ 
9509152).

Advantages Drawbacks

Principle

impurity orbital Green’s function at all energies, and can
be used for an approximate quantitative solution of the
LISA equations.

2. The iterated perturbation theory approximation

The first approximation method that we describe has
turned out to be very useful in investigating the half-
filled Hubbard model and the physics of the Mott tran-
sition (Sec. VII). This method relies on early weak-
coupling studies of the half-filled single-impurity
Anderson model (Yosida and Yamada, 1970, 1975; Ya-
mada, 1975; Salomaa, 1981; Zlatić, Horvatić, and
Sokcević, 1985). In these works, it was shown that the
second-order perturbation theory in U is a very good
approximation up to values of U/!(0)!6. In particular,
it succeeds in capturing not only the quasiparticle
(Abrikosov-Suhl) resonance, but also the upper and
lower incoherent bands. Motivated by this observation,
Georges and Kotliar (1992) first studied the d=" Hub-
bard model by solving the effective impurity model us-
ing the second-order weak-coupling approximation to #
(for a given Weiss field G 0). Explicitly, one makes use of
the approximate form for the self-energy:

#$ i%n&!
U
2

!U2"
0

'
d( ei%n(Ĝ 0$(&3 (157)

in which the shift Ĝ 0
−1(i%n))G 0

−1−U/2 has been made to
enforce particle-hole symmetry. A self-consistent solu-
tion (G ,G 0) is then found by going through the usual
iteration. This is the iterated perturbation theory (IPT)
approximation. The method is easily implemented by
using fast Fourier transforms on the Matsubara axis. At
zero temperature, it is most conveniently implemented
by working with real-frequency Green’s functions. Pro-
grams for both the zero-temperature and the finite-
temperature iterated perturbation theory approximation
are provided with this article (cf. Appendix D).

It was later realized (Zhang, Rozenberg, and Kotliar,
1993) that this method is actually not limited to moder-
ate couplings (at half-filling), but it also correctly repro-
duces the exact strong-coupling limit. This is easily
shown by considering the atomic limit D/U→0,
for which Ĝ 0

−1*i%n , and the exact Green’s func-
tion and self-energy read G(i%n)* 1

2 [1/(i%n!U/2)
!1/(i%n"U/2)], #(i%n)*U/2!U2Ĝ 0(i%n)/4. Hence,
Eq. (157) correctly reproduces this limit. Thus, the iter-
ated perturbation theory approximation provides an ‘‘in-
terpolation’’ scheme between the weak-coupling and
strong-coupling limits that are both captured exactly.
The fact that a weak coupling expansion happens to
work in the strong coupling case is a ‘‘fortunate’’ coinci-
dence. It no longer holds in the particle-hole asymmetric
case. At half filling, the iterated perturbation theory ap-
proximation displays a Mott transition of the paramag-
netic solution, as will be reviewed in detail in Sec. VII.
The iterated perturbation theory approximation gives
results in very good agreement with the QMC and exact
diagonalization results (except very close to the Mott
transition point), as reviewed in Sec. VI.A.4 and de-

tailed in the studies of Zhang, Rozenberg, and Kotliar,
1993; Georges and Krauth, 1993; Rozenberg, Kotliar,
and Zhang, 1994. The rationale behind this success is
that the Anderson impurity model is analytic in U irre-
spectively of the nature of the bath, so that it can be
treated perturbatively. The nonanalyticities (such as the
opening of a gap) stem from the lattice aspects of the
problem and are brought in by the self-consistency con-
dition. The value of the iterated perturbation theory ap-
proximation relies largely on its simplicity: it is much
easier to implement than the full numerical solution of
the model, and allows a fast scan of parameter space.
The iterated perturbation theory approximation has
been successfully extended to various other models in
the LISA framework, such as the Holstein model (Fre-
ericks and Jarrell, 1994a, 1994b; cf. Sec. VIII.E).

Various other methods based on weak-coupling ap-
proximations have been used in the literature for d="
lattice models, namely (i) the direct weak-coupling per-
turbation theory to O(U2) in which the free local
Green’s function GU#0#D̃(i%n) is used in (157) in
place of Ĝ 0 (Schweitzer and Czycholl, 1991a); and (ii)
the ‘‘self-consistent’’ weak-coupling approaches, which
look for a solution with the interacting G replacing Ĝ 0 in
Eq. (152) (Müller-Hartmann, 1989b; Schweitzer and
Czycholl, 1991b), and has also been generalized to in-
clude bubble and ladder summations by Menge and
Müller-Hartmann (1991). [See Freericks (1994) for a
comparison of various methods.]

These approaches should not be confused with the
iterated perturbation theory approximation. All three
methods of course coincide for small values of U . How-
ever, only the iterated perturbation theory provides an
interpolation scheme between weak and strong coupling
at half-filling and therefore correctly captures the forma-
tion of the incoherent band and the physics of the Mott-
Hubbard transition. Specifically, it is found (Georges
and Kotliar, 1992) that already for intermediate values
of U , the metallic spectral density displays incoherent
features around energies +U/2, corresponding to the
upper and lower Hubbard bands. As will be shown in
Sec. VI.A.4, these features are indeed present in the
spectral density obtained numerically (with which the
iterated perturbation theory approximation is in good
agreement). In contrast, they are absent from the self-
consistent weak-coupling approximations. Note that, for
intermediate coupling, these features are indeed pre-
dicted by the direct weak-coupling expansion. This re-
mark has been known for a long time in the context of
the single impurity Anderson model (for recent work,
see, e.g., White, 1992).

It would be quite interesting and of great practical use
to develop a reliable extension of the iterated perturba-
tion theory approximation away from half-filling. How-
ever, this is not so easy to achieve because naive exten-
sions of the original iterated perturbation theory method
do not automatically fulfill the Luttinger theorem away
from half-filling. Specifically, if one computes the total
density at T=0 from n/2#, ""

0 d%-(%), the iterated per-
turbation theory approximation for # does not satisfy in
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NCA family

• Large-N methods or resummation of diagrams.

• Lowest order diagram in the Luttinger-Ward functional.
See G. Kotliar, S. Y. Savrasov, K. Haule, V. S. Oudovenko, O. Parcollet, C.A. 
Marianetti, Rev. Mod. Phys. 78, 865 (2006)
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• Controlled by large N limits.

• Simple NCA has trouble to 
capture local Fermi liquid (it 
corresponds to overscreened 
Kondo, see O.P. PhD 1998).

Advantages Drawbacks

Principle

• Well studied in impurity 
models.

• Simple enough to do complex 
materials.
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Conclusion of lecture 2

• Derived DMFT equations.

• Impurity solvers : work still in progress

• Next time : clusters !
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