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Introduction to DMFT
Lecture 2 : DMFT formalism
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Derivation of the DMFT equations

Impurity solvers.



Derivation of DMFT equations

® Cavity method. Large dimension limit.

® Approximation of the Luttinger-Ward Functionnal.

[Derivation done on the board : no slide for this part ]



DMFT equations (general lattice)
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Thermodynamics

® On the lattice :

Q=0+T D, [InG (kiw,)—3,(iv,)G (kio,)],

n,k,o
® For the impurity :

Qimp=¢[G1+ T2 [InG (iw,) =3 o(iw,) G (iw,)].

® Therefore:

() +oe
N:Qimp_ T% (foo dE D(G)
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Thermodynamics (2)

® |Internal energy :

E oo eD(e€)
N~ T;g . de lw,+u—2,(iw,)—€

1
+5 T2 3,(i0,)G,iw,).



DMFT : Spectral Density Functional Theory

¢ Functional formulation of DMFT

FBK[Gz'j] = Trln GZJ Tr(gOZ GZJ) + (I)BKLW[G ]

6P
Gii(t) = — <Tcz-(t)c;r- (O)> 2ijj = 5B§FW
1]

Dynamical Mean Field Theory (DMFT) Pprrw [ng] ~ gb[Gm]

* Density Functional Theory :
Approximation for electronic density n(x)

Cprr(n(z)] = Tprrin(z), e? = 0] + Al ppr[n(z))

== Realistic calculations for Strongly correlated materials.
Rev. Mod. Phys. 2006 and Lecture 4.
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|. Derivation of the DMFT equations

2. Impurity solvers.



What do we need to solve ? e.g. CDMFT 8

® 4 Anderson impurities coupled to an effective bath

DMFT Cluster DMFT

/ Iy
:
Superlattice

B B
So— / / drdr' el (1)G L, (1, 7')e, (') + / drU (nini, ) ()
0 0

Gyt (iwy) = Z (z’wn +pu—tK) — Ec(z’wn)> _ + Y. (iwy,)
| KeR.B.Z

CDMFT equations



How to solve a quantum impurity model ?

® Numerical methods :

® Quantum Monte-Carlo (Hirsch-Fye, CTQMC).

® Exact diagonalisation (ED).

® Renormalization group methods : NRG, DMRG.
® Analytic methods :

® Low energy theories : bosonisation, boundary CFT.

® Integrability by Bethe Ansatz.

® Projective method.
® Approximate methods (fast) :

® |terated Perturbation Theory (IPT)

® NCA familly (NCA, large-N, SUNCA).
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Impurity solvers : requirements
8

S — — / / drdr'cl(1)Gy L, (v, 7")e, (') + / drU (niniy ) (7)

cuv(T) <TC,LL( ) T(O)>Seff

® Compute G at all frequencies. ) /\ -
® Quick, reliable ... - /\/\_/\ _

® Gapped case : perturbation in A
is regular

-ImG
(=]

® Ungapped case : Kondo problem
with A(0)#0.

[
® Bath has a structure at low energy ! Evolution of the spectral function

close to Mott transition (cf lecture |)
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Bethe Ansatz and CFT are useless for DMFT ! "

® Integrability in the universal regime (A.Tsvelik, PWiegmann/ N.Andrei, | 980)
N.Andrei, K. Furuya, JH Lowentein, Rev. Mod. Phys. 55, 331 (1983); N.Andrei,Trieste lecture
1994 condmat/9408101.

® Thermodynamics but Green function very hard to compute.

® Boundary Conformal Field Theory (Cardy;Affleck, Ludwig, 1991; . Affleck,Acta
Phys.Polon. B26 (1995) 1869; condmat/9512099)

® Description of the low-energy fixed point. Computation of the
low frequency correlations (hence e.g. p(T)).

® BUT both methods starts from a flat band and linearize the energy
close to the Fermi level (universal regime).

A(W) o

T w, T << D
e(k) o (k — kp)

-D D

Not sufficient to solve DMFT
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Continuous time QMCs

® Principle : Perform an expansion in a coupling constant and sum this
expansion with Monte-Carlo technique.

® ExpansioninlU :U-CTQMC
A.N. Rubtsov et al., Phys. Rev.B 72,035122 (2005)

® Expansion in A(Ww), around the atomic limit : A-CTQMC
P. Werner,A. Comanac, L. de’ Medici, M. Troyer, A. J. Millis, PRL 97,
076405 (2006); P .Werner,A.J. Millis, Phys. Rev. B 74, 155107 (2006)
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Advantages of A-CTQMC

Time is continuous !

For frustrated clusters, sigh problem does not seems important.
The algorithm is a mixture of diagonalization and QMC

Use the symmetry : diagonalize A !
Size of the matrix does not increase much

<matrix size> ~ Kinetic energy (Haule, 2006)
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Comparison of various QMCs

In practice, first computation of SC phase in CDMFT with Werner’s
algorithm since Tc is low : K. Haule, condmat/06 12172

Systematic comparison of Hirsch-Fye, U-CTQMC, A-CTQMC
E. Gull et al condmat/0609438
Size of the matrix versus |/T (Bethe lattice, | site, U/t = 4).

150 —— . ——

. »—x Weak Coupling Algorithm
',Q 4 A Hybridization Expansion
©--© Hirsch Fye

100 |~

Matrix Size

W
(e
I

0

A-CTQMC seems to be the most efficient
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Exact diagonalisation : principle

® Use the Hamiltonian form of the Anderson model (see lecture ).
G 5
S = —/ A (T)Gy (= 7)do (1) —I—/ drUngi (T)nq) (1)
0 0

Vio|?
Gyt iwn) = iwn + €4 — Agliwn)  Agliwy) =3 Vel

W — €
l e ko

H = Zekack CkU—FZEdde +UndTndl+ZVka Ckad —|—hC)
ko ko

® The energy and hoppings of the bath are effective

® Principle : use Lanczos to compute the GS of H
® How to find theV’s and €’s from A(w) ?

® How to compute G?

15
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ED : discretisation of the bath

® Approximation of Im A(w) by a finite set of Dirac peaks.

® The bath can take different shapes.

Star

Chain o

® V and € computed by minimizing a distance (Caffarel-Krauth, 1994)

n max

1
— : —-1__ S( 1 —1|2
d=—7 2 [Zolion) = 2ptio,) ]

® In Matsubara, with an effective temperature 1.f

16
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ED : Computation of the Green function

Start another Lanczos from ¢! 0)

Gives G(W) as a continuous fraction
expansion.

Finite-Bath = any structure is replaced

by a set of finite O peak (with some
broadening).

|7

il S P T Y

!
'
.
|
-
/
PR ol 1At
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ED : Limitations of the method

The bath is effective = H has less symmetry than a finite-size model

Size of the bath (hence w-resolution) is limited.
Always pay attention to the effective temperature !
If the bath is too small, spurious solutions of the DMFT loop appear.

The result may depend on distance : in clusters, more weight to
small frequencies.
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Which impurity solver should | choose !

There is no universal answer !
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Monte-Carlo (i.e. A-CTQMCQC) ?

Principle

® Compute G(iomega_n) by some Monte-Carlo sum.

Advantages

Numerically “exact”, reliable.

Can compute vertex, response
(e.g.Jarrell 1992, Hirsch-Fye).

Finite temperature method

Modern CTQMC very flexible
(various interactions)

Drawbacks

Only imaginary time : need for
hazardous analytic continuation
methods (e.g. Maxent).

Limited at low temperature (?)

Sign problem largely
uncontrolled. Was problematic
in Hirsch-Fye for cluster in
frustrated models.

Speed ! Noise ?
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Exact diagonalisation

21

Principle

® Use Hamiltonian form of the Anderson model, discretize the bath
and use Lanczos to find the ground state and G

Advantages

Computes for real w

Insensitive to frustration.

Drawbacks

® (Almost) limited to T=0.

® Size of bath is limited, hence w
resolution can be quite poor,
specially for 4 orbital or 2x2
cluster.

® Scaling with size of cluster or
number of orbital is
exponential !!

21



Numerical Renormalisation Group (NRG)

Principle

® Use Wilson algorithm.

® Used e.g.in the resistivity calculation (see lecture ).

Advantages Drawbacks

® Good description of the

Kondo peak ® Rough for the Hubbard bands.

® Fast

22
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Density Matrix Renormalization Group (DMRG) =

Principle
® Use the quasi-1d formulation of the bath (as a chain).

® (Calculation of the Green function must be done by correction
vector method. '

Advantages

Computes for real w,

sl
with good resolution i
5 1
Kondo peak like NRG, but good  ofgfrgtymdpediontonsi b
. /D
resolution for Hubbard bands. M. Karski et al PRB 72, 113110, 2005

Satellite peaks in the Hubbard
bands. Drawbacks

® Slow (?)
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Iterated Perturbation Theory (IPT)

Principle

® Anderson model : perturbation in U is regular (Yosida,Yamada, 70’s.).

® Use first non-trivial order (Kotliar-Georges, 1992).

U B A
2(lw,)= > + sz dr (3“""75?0(7')3
0

Advantages
Quick and relatively simple.
U=0 and U= limit correct !

Reproduce the main feature of
the solution of the Mott
transition (see lecture ).

Drawbacks

Largely uncontrolled

Extension beyond /2 filling or
for clustrer do not interpolate

well between U=0 and U=«
(see however Kajueter-Kotliar, condmat/
9509152).

24
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NCA family :

Principle
® Large-N methods or resummation of diagrams.

® [owest order diagram in the Luttinger-Ward functional.
See G. Kotliar, S.Y. Savrasov, K. Haule,V. S. Oudovenko, O. Parcollet, C.A.
Marianetti, Rev. Mod. Phys. 78, 865 (2006)

Advantages Drawbacks

® Controlled by large N limits.
® Well studied in impurity

models. ® Simple NCA has trouble to
capture local Fermi liquid (it

. corresponds to overscreened
materials. Kondo, see O.P. PhD 1998).

® Simple enough to do complex
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Conclusion of lecture 2

® Derived DMFT equations.

® Impurity solvers : work still in progress

® Next time : clusters !
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