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1. Introduction : DMFT and the Mott transition

2. Derivation of the DMFT equations. Impurity solvers.

3. Cluster methods and applications.

4. Realistic computation in DMFT (with S. Biermann)
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Introduction to DMFT
Lecture I : DMFT and the Mott transition
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1. Mott transition.

2. Quantum impurity models.

3. Introduction to Dynamical Mean Field Theory 

4. The classic result : Mott transition in a single site DMFT.

5. Advertisement for next lectures...

 Toulouse, May 24th 2007

O. Parcollet
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General references

• DMFT, extensions and applications.

• A. Georges, G. Kotliar, W. Krauth and M. Rozenberg, Rev. Mod. 
Phys. 68, 13, (1996).

• G. Kotliar, S. Y. Savrasov, K. Haule, V. S. Oudovenko, O. Parcollet, 
C.A. Marianetti, Rev. Mod. Phys. 78, 865 (2006)

• Metal Insulator transitions.

• M.  Imada,  A.Fujimori,  Y. Tokura Rev. Mod. Phys. 70, 1039 (1998)

• Quantum impurity models.

• “The Kondo problem to heavy fermions”, A.C. Hewson, 
Cambridge University Press (1993).
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Fermi liquid theory 4

• Standard metal at low temperature.

• Effective theory with fermionic quasiparticle (spin 1/2, charge -e),
effective mass m*, residu Z. (Landau, 50’s)

• Determines low-T physics, e.g.

• Picture valid below the coherence scale :  

• Explain success of “one body” methods, in particular in ab-initio 
calculations of the electronic structure (e.g. DFT et al.). 

• Textbooks : Pines-Nozières;  Abrikosov, Gorkov, Dzyaloshinski 

ω, T < Tcoh

ρ(T ) ∝ T 2,χ(T ) ∝ cte, Cv ∝ T
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Spectral function

• Spectral function. Can be measured in photoemission experiments.

5

as we have done for the corresponding energies. This,
however, is far from trivial because during the photo-
emission process itself the system will relax. The prob-
lem simplifies within the sudden approximation, which is
extensively used in many-body calculations of photo-
emission spectra from interacting electron systems and
which is in principle applicable only to electrons with
high kinetic energy. In this limit, the photoemission pro-
cess is assumed to be sudden, with no post-collisional
interaction between the photoelectron and the system
left behind (in other words, an electron is instanta-
neously removed and the effective potential of the sys-
tem changes discontinuously at that instant). The
N-particle final state ! f

N can then be written as

! f
N!A " f

k ! f
N"1, (6)

where A is an antisymmetric operator that properly an-
tisymmetrizes the N-electron wave function so that the
Pauli principle is satisfied, " f

k is the wave function of the
photoelectron with momentum k, and ! f

N"1 is the final
state wave function of the (N"1)-electron system left
behind, which can be chosen as an excited state with
eigenfunction !m

N"1 and energy Em
N"1 . The total transi-

tion probability is then given by the sum over all pos-
sible excited states m . Note, however, that the sudden
approximation is inappropriate for photoelectrons with
low kinetic energy, which may need longer than the sys-
tem response time to escape into vacuum. In this case,
the so-called adiabatic limit, one can no longer factorize
! f

N into two independent parts and the detailed screen-
ing of photoelectron and photohole has to be taken into
account (Gadzuk and S̆unjić, 1975). In this regard, it is
important to mention that there is evidence that the sud-
den approximation is justified for the cuprate high-
temperature superconductors even at photon energies as
low as 20 eV (Randeria et al., 1995; Sec. II.C).

For the initial state, let us assume for simplicity that
! i

N is a single Slater determinant (i.e., Hartree-Fock for-
malism), so that we can write it as the product of a one-
electron orbital " i

k and an (N"1)-particle term:

! i
N!A " i

k ! i
N"1. (7)

More generally, however, ! i
N"1 should be expressed as

! i
N"1!ck! i

N , where ck is the annihilation operator for
an electron with momentum k. This also shows that
! i

N"1 is not an eigenstate of the (N"1) particle Hamil-
tonian, but is just what remains of the N-particle wave
function after having pulled out one electron. At this
point, we can write the matrix elements in Eq. (4) as

#! f
N!Hint!! i

N$!#" f
k!Hint!" i

k$#!m
N"1!! i

N"1$ , (8)

where #" f
k!Hint!" i

k$%Mf ,i
k is the one-electron dipole ma-

trix element, and the second term is the (N"1)-electron
overlap integral. Note that here we replaced ! f

N"1 with
an eigenstate !m

N"1 , as discussed above. The total pho-
toemission intensity measured as a function of Ekin at a
momentum k, namely, I(k,Ekin)!& f ,iwf ,i , is then pro-
portional to

&
f ,i

!Mf ,i
k !2&

m
!cm ,i!2'(Ekin#Em

N"1"Ei
N"h)*, (9)

where !cm ,i!2! "#!m
N"1!! i

N"1$ "2 is the probability that
the removal of an electron from state i will leave the
(N"1)-particle system in the excited state m . From this
we can see that, if ! i

N"1!!m0

N"1 for one particular state
m!m0 , then the corresponding !cm0 ,i!2 will be unity
and all the other cm ,i zero; in this case, if Mf ,i

k +0, the
ARPES spectra will be given by a delta function at the
Hartree-Fock orbital energy EB

k !",k , as shown in Fig.
3(b) (i.e., the noninteracting particle picture). In
strongly correlated systems, however, many of the !cm ,i!2

will be different from zero because the removal of the
photoelectron results in a strong change of the systems
effective potential and, in turn, ! i

N"1 will overlap with
many of the eigenstates !m

N"1 . Thus the ARPES spec-
tra will not consist of single delta functions but will show
a main line and several satellites according to the num-
ber of excited states m created in the process [Fig. 3(c)].

This is very similar to the situation encountered in
photoemission from molecular hydrogen (Siegbahn
et al., 1969) in which not simply a single peak but many
lines separated by a few tenths of eV from each other

FIG. 3. Angle-resolved photoemission spetroscopy: (a) geometry of an ARPES experiment in which the emission direction of the
photoelectron is specified by the polar (-) and azimuthal (.) angles; (b) momentum-resolved one-electron removal and addition
spectra for a noninteracting electron system with a single energy band dispersing across EF ; (c) the same spectra for an interacting
Fermi-liquid system (Sawatzky, 1989; Meinders, 1994). For both noninteracting and interacting systems the corresponding ground-
state (T!0 K) momentum distribution function n(k) is also shown. (c) Lower right, photoelectron spectrum of gaseous hydrogen
and the ARPES spectrum of solid hydrogen developed from the gaseous one (Sawatzky, 1989).

478 Damascelli, Hussain, and Shen: Photoemission studies of the cuprate superconductors

Rev. Mod. Phys., Vol. 75, No. 2, April 2003

ARPES Z<1

Quasi-particle-peak

A(k, ω) =
1
π

Im
∫

dxdtei(kx−ωt)iθ(t)〈[c(x, t), c†(0, 0)]〉
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Local spectral function

• Local component of the spectral function 

6

• Can be measured in STM experiments.

• G(ω) will be the central object of DMFT method.

G(ω) = −i

∫
dteiωtθ(t)

∑

k

〈[c(k, t), c†(k, 0)]〉

=
∫

dε
ρ(ε)

ω − ε + i0+

6



Hubbard model  

• A toy-model for strongly correlated systems.

• Plays a role similar to the Ising model in classical statistical physics.

• Parameters : 

• hopping t, frustration t’/t (lattice shape), Coulomb repulsion U

• doping δ (chemical potential µ), temperature T.

• Half filling  : 1 electron/site in average : δ=0

7

H = −
∑

〈ij〉,σ=↑,↓

tijc
†
iσcjσ + Uni↑ni↓, niσ ≡ c†iσciσ

Kinetic term Interaction term
local Coulomb 

δ = 1 − 〈n↑ + n↓〉

7



Mott transition

• Metal-Insulator transition due to interactions (Mott, 49).

• Hubbard model : 2 solvable limits (δ=0, ph symmetric, μ = U/2)

8

U=0 : half-filled band
Metal 

U/t large : charge motion frozen  
Mott Insulator   

ρ(ω)

ω

Easy in k-space
Easy in real space
Charge gap ~ U

8



Mott insulators

• Spin-spin interaction (Heisenberg exchange)

• Mott insulators with various spin orders: 

 AF, spin liquids, VBS, depending on the lattice

9

JAF =
4t2

U

AF order

5HFM2006 - G. Misguich

Examples of valenceExamples of valence--bond crystals (from ED studies)bond crystals (from ED studies)

Fouet et al. PRB 2003J1-J2-J3 model

Fouet et al. EPJB  2001

 

Heisenberg model & 4-spin “ring” exchange

Läuchli et al. PRL 2005

J1-J2-J3 model

Mambrini et al., cond-mat/0606776

Kagome, 1/3 magnetization plateau

Cabra et al., PRB 2005

 

Shastry-Sutherland lattice

Läuchli, Wessel & Sigrist PRB 2002

+ others…

Valence Bond Solids

Introduction : G. Misguich and C.Lhuillier cond-mat/0310405 
9

http://arXiv.org/abs/cond-mat/0310405
http://arXiv.org/abs/cond-mat/0310405


Mott transition (2)
• An intermediate coupling problem

➡ How is the metal destroyed close to a Mott transition ?
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disappears continuously (at T=0) at a critical value
Uc2/D!2.92, as explained in more detail in Sec. VII.E.

2. Insulating phase

When U/t is large, we begin with a different ansatz
based on the observation that in the ‘‘atomic limit’’ t=0
(U/t=!), the spectral function has a gap equal to U . In
this limit the exact expression of the Green’s function
reads

G" i#n$at!
1/2

i#n"U/2
"

1/2
i#n#U/2

. (232)

Since ImG(#"i0") also plays the role of the density of
states of the effective conduction electron bath entering
the impurity model, we have to deal with an impurity
embedded in an insulator [%(#=0)=0]. It is clear that an
expansion in powers of the hybridization t does not lead
to singularities at low frequency in this case. This is very
different from the usual expansion in the hybridization
V with a given (flat) density of states that is usually con-
sidered for an Anderson impurity in a metal. Here, t
also enters the conduction bath density of states (via the
self-consistency condition) and the gap survives an ex-
pansion in t/U . An explicit realization of this idea is to
make the following approximation for the local Green’s
function (Rozenberg, Zhang, and Kotliar, 1992):

G" i#n$!
1/2

G 0
#1" i#n$#U/2

"
1/2

G 0
#1" i#n$"U/2

, (233)

which can be motivated as the superposition of two mag-
netic Hartree-Fock solutions or as a resummation of an
expansion in %/U . This implies that G(i#)&i# for small

#, and the substitution into the self-consistency condi-
tion implies that G 0

−1&i# , which is another way of say-
ing that the effective bath in the Anderson model pic-
ture has a gap. We know from the theory of an
Anderson impurity embedded in an insulating medium
that the Kondo effect does not take place. The impurity
model ground state is a doubly degenerate local mo-
ment. Thus, the superposition of two magnetic Hartree-
Fock solutions is qualitatively a self-consistent ansatz. If
this ansatz is placed into Eq. (221), we are led to a
closed (approximate) equation for G(i#n):

D4G3#8D2#G2"4"4#2"D2#U2$G#16#!0.
(234)

This approximation corresponds to the first-order ap-
proximation in the equation of motion decoupling
schemes reviewed in Sec. VI.B.4. It is similar in spirit to
the Hubbard III approximation Eq. (173) (Hubbard,
1964), which would correspond to pushing this scheme
one step further. These approximations are valid for
very large U but become quantitatively worse as U is
reduced. They would predict a closure of the gap at
Uc!D for (234) (Uc!)D for Hubbard III). The fail-
ure of these approximations, when continued into the
metallic phase, is due to their inability to capture the
Kondo effect which builds up the Fermi-liquid quasipar-
ticles. They are qualitatively valid in the Mott insulating
phase however.

The spectral density of insulating solutions vanish
within a gap #%g/2$#$"%g/2. Inserting the spectral
representation of the local Green’s function into the self-
consistency relation, Eq. (221) implies that '(#+i0+)
must be purely real inside the gap, except for a
(-function piece in Im' at #=0, with

Im'"#"i0"$!#)*2("#$ for #!+#%g/2,%g/2,
(235)

and that Re' has the following low-frequency behavior:

Re'"#"i0"$#U/2!
*2

#
"O"#$. (236)

In these expressions, *2 is given by

1
*2

!"
#!

"!

d-
*"-$

-2 . (237)

*2 can be considered as an order parameter for the insu-
lating phase [the integral in Eq. (237) diverges in the
metallic phase]. A plot of the spectral function and self-
energy in the insulating phase, obtained within the iter-
ated perturbation theory approximation, is also dis-
played in Figs. 30 and 31. The accuracy of these results is
more difficult to assess than for the metal, since exact
diagonalization methods are less efficient in this phase.
A plot of the gap %g vs U estimated by the iterated
perturbation theory and exact diagonalization is given in
Fig. 32. Within both methods, the insulating solution is
found to disappear for U$Uc1(T!0), with Uc1

ED

! 2.15D (while the iterated perturbation theory method
yields Uc1

IPT ! 2.6D). As discussed below in more detail
(Sec. VII.F), the precise mechanism for the disappear-

FIG. 30. Local spectral density )D*(#) at T=0, for several
values of U , obtained by the iterated perturbation theory ap-
proximation. The first four curves (from top to bottom, U/D
=1,2,2.5,3) correspond to an increasingly correlated metal,
while the bottom one (U/D=4) is an insulator.

64 A. Georges et al.: Dynamical mean-field theory of . . .

Rev. Mod. Phys., Vol. 68, No. 1, January 1996

Hubbard bands
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• Brinkman-Rice 

• Destruction of the Fermi liquid.

• Simple theory : slave bosons.

• Mott-Hubbard

• Closure of the Mott gap.

• Slater

• AF order.  
Reduction of the Brillouin zone.

DMFT will unify these points of view

Simple mechanisms for Mott transition 11

Z → 0,m∗ →∞

∆Mott → 0
U/2U/2

ρ(ω)

ω−U/2 U/2

∆Mott

magnetic insulator. This is an example of a Mott transi-
tion, i.e., of a metal-insulator transition driven by the
strength of electron-electron interactions in a homoge-
neous system. It is realized experimentally in three-
dimensional transition metal oxides, such as V2O3, and
can be driven by varying pressure, temperature, and
composition (for general references, see, e.g., Mott,
1990; Tsuda et al., 1991). Figure 23 reproduces the ex-
perimental phase diagram found for V2O3 by varying
these parameters (McWhan et al., 1973). Since the early
ideas of Mott (1949, 1956, 1961), this transition has been
the subject of numerous experimental and theoretical
investigations. From a theoretical point of view, several
ideas have been put foward that we shall briefly review.
They are rather different from one another and corre-
spond to the various possible ways of approaching the
transition in the phase diagram of Fig. 23, coming from
different phases (Fig. 24). The LISA provides for the
first time a unified framework in which the various
phases (and their relative stability) can be studied within
a single model, so that the validity of the previous ap-
proaches can be assessed and put in perspective.

Early work of Hubbard (1964) provided a description
of the transition rather close in spirit to Mott’s original
views. He attempted to give an effective band descrip-
tion of the correlated system (Fig. 25), and proposed
that the original density of states (of half-width D) gets

split for large U into a lower Hubbard band (corre-
sponding to holes, or empty sites) and an upper Hub-
bard band (corresponding to doubly occupied sites). For
large U these bands are separated by a gap of order
U!2D . As U is reduced there is a critical value of U
where the two bands merge again and a metal is recov-
ered. Hence, the Hubbard picture of the metal-insulator
transition is associated with the closure of a gap. This
description obviously relies on the large U insulating
limit as a starting point, and as we shall see is actually
qualitatively valid there. It fails however to provide a
description of the metal consistent with Fermi-liquid
properties.

On the other hand, Brinkman and Rice (1970), build-
ing on the work of Gutzwiller (1965), started from the
metallic phase which they described as a strongly renor-
malized Fermi liquid with a reduced low-energy scale
(or effective Fermi energy). This scale is of the order of
ZD , where Z is the quasiparticule residue, related to the
quasiparticle effective mass in this approach by
m*/m"1/Z . As the interaction strength increases, this
energy scale vanishes at a critical value of the interaction
UBR , with Z!(UBR−U). In this framework, the metal
insulator transition is driven by the localization of the
Fermi-liquid quasiparticles, m*/m!1/(UBR−U)→", and
their disappearance in the insulator. This approach is a
consistent low-energy description of the strongly corre-
lated metal, but does not account for the high-energy
excitations forming the Hubbard bands, which should be
present already in the metallic state. Furthermore, it
gives an oversimplified picture of the insulator, which is
caricatured as a collection of independent local moment
with no residual antiferromagnetic exchange and an in-
finite susceptibility at T=0. The Brinkman-Rice ap-
proach can be justified formally using slave bosons
methods (Kotliar and Ruckenstein, 1986). In that case,
the Hubbard bands and incoherent features, absent at
the saddle point level, are reintroduced by the fluctua-
tions around the slave-boson condensate, and the disap-
pearance of the resonance coincides with the closing of
the gap (Castellani et al. 1992; Raimondi and Castellani,
1993; see also Kotliar, 1993a).

Finally, early arguments by Slater (1951) focus on the
possibility of long-range antiferromagnetic order at low
enough temperature. At weak coupling, this possibility
is confirmed (on bipartite lattices) by a simple Hartree-
Fock approximation. In this picture, the driving force
behind the metal-insulator transition is the doubling of
the unit cell which makes the band structure of the sys-

FIG. 24. Classic theories for the description of the various
phases.

FIG. 25. Schematic evolution of the density
of states with U in the Hubbard picture.

60 A. Georges et al.: Dynamical mean-field theory of . . .

Rev. Mod. Phys., Vol. 68, No. 1, January 1996
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What about experiments ?
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Experiments :

• Lattice size changes 
at transition.

• Early theory : 
C.Castellani et al. PRL 43 
1957 (1979)

13

Comparing these two equations, and noting that
!S! •s!L"<0 and that Jspin(U) decreases as U increases,
proves analytically that Uc1!Uc2 (Fisher, Kotliar, and
Moeller, 1995). This is in complete agreement with the
numerical work described in Sec. VII which tackles the
full problem numerically with exact diagonalization
methods (Rozenberg, Moeller, and Kotliar, 1994).

The projective method described in this section is a
particular implementation of the idea of renormaliza-
tion. It was taylored specifically to solve the LISA equa-
tions. It is worth stressing the reasons why the renormal-
ization group invented by Wilson to solve the single
impurity Kondo model does not work for the impurity
models arising in the context of the LISA applications.
The essential insight is that because of the self-
consistency conditions the energy scales of the impurity
are also the energy scales of the bath. The impurity
models are thus in an intermediate coupling regime. The
logarithmic discretization of Wilson’s mesh and the Wil-
son recursion procedure was intended to deal with a
mismatch in energy scales, typical of a weak-coupling
situation in which the Kondo coupling was much smaller
than the conduction electron bandwidth. Notice that,
even in the Kondo model, the calculation of Green’s
functions is not possible to very high precision for all
energies (cf. Hewson, 1993). In the LISA context, we are
not interested in the low-energy eigenvalue spectrum
(which we can calculate using the renormalization
group), but in the whole single-particle excitation spec-
trum (Green’s function), which is fed back into the low-
energy sector via the self-consistency condition. It is thus

not surprising that a direct numerical renormalization
group approach in the LISA context is faced with rather
serious difficulties. For early attempts to implement the
Wilson scheme to solve the LISA equations see Sakai
and Kuramoto (1994) and Shimizu and Sakai (1995).

VII. THE HUBBARD MODEL AND THE MOTT TRANSITION

In this section, we review the application of the LISA
method to the physics of the Hubbard model. We shall
be concerned with the phase diagram, thermodynamics,
one-particle spectra, and two-particle response func-
tions. The control parameters are the temperature T ,
and the interaction strength U/t . In order to reveal the
full variety of possible behavior, we shall also consider
models with different degrees of magnetic frustration.
This introduces a third parameter, which can be for ex-
ample the ratio of nearest-neighbor to next-nearest
neighbor hopping amplitudes t1/t2 . As a function of
these parameters, the Hubbard model at half-filling has,
within the LISA, four possible phases: a paramagnetic
metallic phase, a paramagnetic insulating phase, an insu-
lating antiferromagnetic phase, and (in the presence of
magnetic frustration) an antiferromagnetic metallic
phase. The effect of doping away from half-filling will
also be considered towards the end of this section (Sec.
VII.H).

A. Early approaches to the Mott transition

We shall put a special emphasis in this section on the
transition between the paramagnetic metal and the para-

FIG. 23. Experimental phase diagram for the
metal-insulator transition in V2O3 as a func-
tion of doping with Cr or Ti and as a function
of pressure (after McWhan et al., 1973). See
also recent results by Carter et al. (1992,
1993) that report a low temperature metallic
phase with antiferromagnetic order in
V2"yO3 .

59A. Georges et al.: Dynamical mean-field theory of . . .

Rev. Mod. Phys., Vol. 68, No. 1, January 1996

Mc Whan et al, 1973

V2O3

First order transition of purely electronic nature ?
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Organics (resistivity measurements)

• 2-d organics : resistivity measurement versus T and pressure P.

14

P. Limelette, P. Wzietek, S. Florens, A. Georges, T.A. Costi, C. Pasquier, D. Jérome, C. Meziere, P. Batail 
PRL 91, 016401 (2003)
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Mott transition in ultra-cold atoms (1)

• Controled realisation of (bosonic) Hubbard model in optical lattices 
(Jaksch et al, PRL 81 (1998) 3108)

15

Vopt(!r) = V0

3∑

i=1

sin2(kL xi)

kL =
2π

λ
; λ = wavelength

Standing wave with lasers

Wannier basis

Bosonic Hubbard model

H = −
∑

i,j

tijb
†
i bj

︸ ︷︷ ︸
Optical Lattice

+U
∑

i

ni(ni − 1)

︸ ︷︷ ︸
Feshbach resonance

• U/t tunable in experiments
15
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Mott transition in ultra-cold atoms (2)

• Mapping to Hubbard model
for some parameter range.

• U/t tunable in experiments

16

• Observation of the Mott transition by varying the depth of the optical 
potential (M. Greiner et al., Nature 2002, vol 415 p 39). 
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Doping driven Mott transition
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High temperature superconductors 18

• A family of copper oxides:                                                       , ...La2−xSrxCuO4, Bi2Sr2CaCu2O8+δ

Cu-O plane structure

oxides.8 We shall use, as an example, the archetypical
cuprate superconductor La2!xSr2CuO4 (LSCO) and its
parent compound La2CuO4 (see Fig. 1), whose undis-
torted high-temperature tetragonal structure is sketched
in Fig. 11. When the temperature is lowered, several
structural phase transitions occur, characterized by co-
herent rotations of the CuO6 octahedra (see, for ex-
ample, Kimura et al., 2000). To date, the ARPES data
are usually discussed within high-temperature tetragonal
notations, which is the approach we will also follow in

this review (note however that, with much improved
energy and momentum resolution, an important fu-
ture study will be to test the appropriateness of this
description by quantitatively estimating the effects of
local and/or long-range structural distortions on the
electronic structure). The corresponding three-dimen-
sional Brillouin zone, which is most relevant to the study
of the momentum-resolved electronic properties, is also
sketched in Fig. 11. However, as the cuprate high-
temperature superconductors have a quasi-2D electronic
structure with weak dispersion along the z axis, in
the discussion of the ARPES data we shall refer to the
2D projected zones as the ones presented in Fig. 11
for LSCO or in Fig. 12 for other systems. As emphasized
in Fig. 11, the most important structural element is
represented by the CuO2 planes which form single-layer
(as in LSCO) or multilayer blocks separated from
each other by the so-called charge reservoir layers (La/Sr
in Fig. 11). Depending on the number N of CuO2
planes contained within the characteristic blocks (N
is also the number of Cu ions per formula unit),
the cuprates are classified into single-layer compounds
[e.g., LSCO, Bi2Sr2CuO6"! , Nd2!xCexCuO4 , and
(Sr,Ca)2CuO2Cl2], bilayer compounds (e.g.,
Bi2Sr2CaCu2O8"! and YBa2Cu3O7!!), and trilayer
compounds (e.g., Bi2Sr2Ca2Cu3O10"!). This structural
characteristic profoundly affects the superconducting
properties: within each family of cuprates Tc increases
with N , at least for N"3 (Tarascon et al., 1988; Di Sta-
sio et al., 1990). For instance, within the Bi-based cu-
prate high-temperature superconductors, a maximum Tc
of 34, 96, and 110 K is found for N#1, 2, and 3, respec-
tively (Eisaki et al., 2002). By substituting different ele-
ments in the reservoir layers or by varying their oxygen
content (other methods are also possible, depending on
the system) one can dope charge carriers into the CuO2
planes. The latter are believed to be responsible for
high-temperature superconductivity as the Cu-O bands
are the lowest-energy electronic states and therefore di-
rectly determine the macroscopic electronic properties.

8For a more detailed description see Pickett (1989); Mark-
iewicz (1991, 1997); Auerbach (1994); Dagotto (1994); Fulde
(1995); Rao and Raveau (1995); Imada et al. (1998); Orenstein
and Millis (2000); Sachdev (2000); Tokura and Nagaosa (2000).

FIG. 11. Crystal structure, Fermi surface, and low-energy elec-
tronic configuration of La2!xSr2CuO4 (LSCO): Top, crystal
structure, 3D Brillouin zone (body-centered tetragonal) and its
2D projection; diamond, Fermi surface at half filling calculated
with only the nearest-neighbor hopping; gray area, Fermi sur-
face obtained including also the next-nearest-neighbor hop-
ping. Note that M̄ is the midpoint along #-Z and not a true
symmetry point. Bottom, crystal-field splitting and hybridiza-
tion giving rise to the Cu-O bands (Fink et al., 1989), and a
generic LSCO ARPES spectrum (the circle shows the low-
energy scale we shall focus on throughout this review).

FIG. 12. Cu-O2 plaquette, phase at ($,$) of Cu dx2!y2 and O
2p orbitals for bonding, antibonding, and nonbonding hybrid-
ized wave functions for the bare CuO2 plane [i.e., square lat-
tice; see also Fig. 13(a)], and 2D projected Brillouin zones with
conventional notations for different copper oxides (shaded ar-
eas represent the irreducible symmetry units).
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High temperature superconductors 19

• A generic phase diagram, with 5 regions : 
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Parent compound is a Mott Insulator. 20
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δ=0 : AF Mott insulator
J = 1500K

Quickly destroyed at small δ

Neutron scattering

- detect magnetic order
- mesure spin susceptibility : 

χ(k,ω) ∝
∫

dxdtei(kx−ωt)〈S(t, x)S(0, 0)〉
AF order

δ

20



Superconducting phase 21
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!• Cooper pairs (as in BCS)
• d-wave gap and order parameter

• Deviation from BCS: (?)

In order to understand the LSCO data within a d-wave
BCS theory of low-temperature heat transport, it will be nec-
essary to incorporate the effects of impurity scattering in the
underdoped regime outside of the clean !universal" limit. The
effect of impurity scattering on a d-wave superconductor has
been worked out in the standard case of a normal state that is
metallic, and conducts heat better than the superconducting
state.25 When the concentration of impurities is increased in
such a case, Tc is gradually suppressed to zero and the re-
sidual linear term rises monotonically to meet its normal
state value. However, our LSCO samples with x#0.09 ex-
hibit the well-known insulating upturns in the normal-state
resistivity associated with the ground-state metal-insulator
transition observed near x$0.16.26 In fact the resistivity in a
strong magnetic field appears to diverge as T→0.27 Thus, for
the LSCO samples where x!0.16, the effect of increasing
the impurity concentration would be to evolve the system
towards an insulating state, or at least one that conducts heat
less well. In this scenario, we expect the measured residual
linear term %0 /T to be smaller than the universal value,
which would explain how in Fig. 5 we measure a linear term
smaller than that allowed by Eq. !2".
Another possibility is suggested by the theoretical work of

Atkinson and Hirschfeld,28 in which the Bogoliubov–de
Gennes equations are used to model the paired state as an
inhomogenous superfluid. This approach allows for the pos-
sibility of quantum interference processes such as localiza-
tion which are neglected in the usual framework. In their
model, the residual linear term %0 /T is seen to decrease in
the presence of increasing impurity concentration, a direct
result of weak localization of carriers. The fact that we mea-
sure a linear term in underdoped LSCO which is smaller than
that allowed by Eq. !2" may be evidence for the existence of
such localization in LSCO. We hope these observations will
stimulate further theoretical work.

C. Doping dependence of the superconducting gap

The remarkable success of Eq. !2" at optimal doping vali-
dates the extension of our study across the doping phase
diagram, at least for our YBCO samples, where the clean
!universal" limit is established. In interpreting our measure-
ments of the anisotropy ratio vF /v2 in such a study, the first
thing to emphasize is the fact that vF , the Fermi velocity at
the node, is essentially independent of doping. This was
shown by ARPES both in Bi-2212 !Ref. 20" and in LSCO,33

where the slope of the E vs k dispersion at the Fermi energy
is seen to vary by no more than 10% over the range 0.03
!x!0.3, with an average value of vF!2.5"107 cm/s in
both materials. The position of the node in k space is also
independent of doping,20 with kF!0.7 Å#1 as measured
from (& ,&) to the Fermi surface. As a result, a study of
%0 /T vs p yields the doping dependence of v2$v2(p). In
Fig. 6, we plot the slope of the gap at the node as a function
of carrier concentration, not as v2 vs p but in a more familiar
guise as the corresponding gap maximum, '0, of a putative
d-wave gap function '$'0 cos 2( , via Eqs. !2" and !3".
Given that kF is constant, this is equivalent to plotting v2
directly. The values of '0 are also listed in Table I. Again,

here we have confined our analysis to YBCO only, given that
LSCO was seen to lie outside the clean limit. Plotted along-
side these data is a conventional BCS d-wave gap !dashed
curve", where we have assumed '0$2.14kBTc !weak-
coupling approximation". The p dependence of the gap is
estimated using Eq. !1", with a maximum Tc at optimal dop-
ing of 90 K.
Let us examine the implications of these results by start-

ing on the overdoped side of the phase diagram. The only
available data in the strongly overdoped regime is on
Tl-2201,8 a single-plane cuprate with optimal Tc!90 K. For
an overdoped crystal with Tc$15 K, the measured residual
linear term is %0 /T$1.4 mW K#2 cm#1, which yields
vF /v2$270 via Eq. !2". In comparison, the weak-coupling
BCS prediction based on the value of Tc$15 K is vF /v2
$210, using the values of vF and kF given above. The good
quantitative agreement shows that in this strongly overdoped
regime BCS theory works quite well, and the much larger
anisotropy ratio is a consequence of the much smaller Tc .
We now turn our attention to the underdoped region of the

phase diagram. In the case of YBCO the decrease in %0 /T by
a factor 2 between y$6.99 and y$6.54 provides one of the
main results of this paper: the velocity ratio decreases with
underdoping; it drops from 16 to 8 in going from a sample
with Tc$89 K to an underdoped sample with Tc$62 K.
This reflects an underlying steepening of the gap at the node

while Tc drops, with underdoping. Note that this is in con-

FIG. 6. Doping dependence of the superconducting gap '0 ob-
tained from the quasiparticle velocity v2 defined in Eq. !3" !filled
symbols". Here we assume '$'0cos2( , so that '0$)kFv2 /2,
and we plot data for YBCO alongside Bi-2212 !Ref. 7" and Tl-2201
!Ref. 8". For comparison, a BCS gap of the form 'BCS$2.14kBTc is
also plotted, with Tc taken from Eq. !1" !and Tc

max$90 K). The
value of the energy gap in Bi-2212, as determined by ARPES, is
shown as measured in the superconducting state29 and the normal
state30–32 !open symbols". The thick dashed line is a guide to the
eye.

MIKE SUTHERLAND et al. PHYSICAL REVIEW B 67, 174520 !2003"

174520-6

Sutherland, PRB2003

Tc

T*

∆(k) ∝ ∆0

(
cos(kx)− cos(ky)

)

∆0(x) ∝ Tc(x)

t-t!-t"-J model calculations, which reproduce the sub-
stantial deformation of the quasiparticle band structure
upon doping and suggest a unifying point of view for
both the undoped insulator and the high-Tc supercon-
ductors (Eder et al., 1997; Kusko et al., 2002). The
chemical-potential shift scenario is also supported by the
data available on Na-CCOC, which show a quasiparticle
dispersion strikingly similar to that of undoped CCOC.
On the other hand, the lack of chemical-potential shift
observed in LSCO in the underdoped regime and the
detection of multiple electronic components support the
formation of in-gap states upon doping the systems and,
consequently, the need for a completely new approach.
Further scrutiny is required to establish whether the
evolution from Mott insulator to high-Tc supercon-
ductor is truly accounted for by one of the existing mod-
els or whether a different approach, maybe beyond a
purely electronic description, is required (e.g., in which
other factors, such as the underlying structural distor-
tions, are explicitly included).

V. SUPERCONDUCTING GAP

The ability of ARPES to detect spectral changes
across the superconducting phase transition is a remark-
able testimony to the improvement in resolution over
recent years, and is the key to the success of this tech-
nique in the study of the cuprate superconductors. The
most important results obtained in the superconducting
state are (i) the detection of an anisotropic d-wave gap
along the normal-state Fermi surface, which contributed
to the debate on the pairing mechanism [for a recent
review of the pairing symmetry in the cuprate high-Tc
superconductors, see Tsuei and Kirtley (2000a)]; (ii) the
dramatic changes in the spectral line shape near (!,0). In

this section, we shall review point (i) for several systems,
while we shall come back to (ii) later, within the discus-
sion of the superconducting peak (Sec. VI.A) and of the
self-energy corrections (Sec. VIII).
A. Bi2Sr2CaCu2O8+!

Figure 45 shows the early ARPES data from an over-
doped Bi2212 sample at two different momenta in the
Brillouin zone (Shen et al., 1993). In the nodal region
(B), the spectra taken above and below Tc are very simi-
lar, indicating a small or vanishing superconducting gap.
Near the (!,0) point (A), on the other hand, the normal-
and superconducting-state spectra are clearly very dif-
ferent: in addition to the obvious line-shape evolution,
note the shift of the leading edge, which reflects the
opening of a sizable energy gap. These results strongly
suggest that the superconducting gap is anisotropic and,
in particular, consistent with a d-wave order parameter
(Scalapino, 1995). Together with the microwave penetra-
tion depth results (Hardy et al., 1993), this direct evi-
dence for gap anisotropy played a major role in the early
debate on the pairing symmetry (Levi, 1993).

Initially the magnitude of the gap was quantified sim-
ply on the basis of the position of the leading-edge mid-
point of the ARPES spectra, which has since become a
standard procedure (Tinkham, 1996). In particular, one
could either follow the leading-edge shift of the spectra
measured on the superconducting material above and
below Tc or compare, at the same temperature below
Tc, the positions of leading edges for the supercon-
ductor and a polycrystalline noble metal like Pt or Au (a
caveat here is that the comparison between the non-
trivial line shape measured on a single crystal of a high-

FIG. 45. Temperature dependent ARPES spectra from Bi2212
(Tc!88 K): A, measured close to (!,0); B, measured in the
nodal region, as sketched in the inset. From Shen et al., 1993.

FIG. 46. Superconducting gap measured at 13 K on Bi2212
(Tc!87 K) plotted vs the angle along the normal-state Fermi
surface (see sketch of the Brillouin zone), together with a
d-wave fit. From Ding, Norman, et al., 1996.
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Figure 2 Universal doping dependence of the ratios ωAN/ T max
c and ωN/ T max

c of
the antinodal (B1g) and nodal (B2g) superconducting peaks (obtained from
Hg-1201 (this work), Bi-2212 in refs 3,4, Y-123 in refs 4,5 and LSCO in ref. 4).
The error bars on the B1g and B2g Raman peak locations have also been reported and
show unambiguously that there are two energy scales in the underdoped side of
hole-doped cuprates. The ratios 2∆/T max

c deduced from ARPES coherent peak in
the antinodal region23,24,28 and from tunnelling spectroscopy32–34 are plotted.

γAN(φ) = γB1g cos(2φ) whereas γN(φ) = γB2g sin(2φ), and 〈···〉FS

denotes a Fermi-surface average. This predicts a sharp pair-
breaking peak (corresponding to a divergence of this expression)
in the ANR (B1g geometry) at ω = 2∆m, and a weaker singularity
in the NR (B2g) at the same frequency scale. Furthermore, within
the BCS formula above, the NR response has a maximum at a
somewhat lower energy than the peak in the ANR, but both are
governed by one energy scale, that of the maximal gap ∆m.

Inclusion of damping parameters2 in equation (1) and a more
realistic description of the doping dependence of the Fermi surface
introduces minor changes and fails to reproduce the opposite
doping dependence of the antinodal and nodal peaks.

This clearly demonstrates that one or both of the following
assumptions become invalid in the underdoped regime: (1) non-
interacting BCS quasiparticles (2) a gap function with the simple
form ∆k = ∆m cos(2φ) characterized by a single energy scale.
Moving away from assumption (1) requires taking into account, in
the framework of the Landau theory of interacting quasiparticles,
the spectral weight Zk of these quasiparticles, smaller than one and
k-dependent, as well as the Fermi-liquid vertex Λk describing the
interaction of the quasiparticles with external perturbations. This
leads to (see the Methods section):

χ′′
AN,N(ω) = 2πNF

ω
Re

〈
(ZΛ)2

k(γ
AN,N
k )2∆2

k√
ω2 −4∆2

k

〉

FS

(2)

in which a general gap function has also been taken into account.
This expression contains two unknown functions of momentum
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Figure 3 Normalized Raman response functions with respect to the sum rule.
A weak linear background coming from spurious luminescence for intermediate
doping, independent of the scattering geometry and excitation lines, has been
subtracted from raw data before carrying out the normalization (note that without
this subtraction the final result is qualitatively similar, that is, the low-energy slope α

of the normalized nodal Raman response is found to be doping independent).

on the Fermi surface: (ZΛ)k and ∆k, the determination of which
requires further considerations.

LOW-ENERGY NODAL EXCITATIONS

To gain such insight, we focus on the low-energy part of
the Raman spectra, which is controlled by the properties
of nodal quasiparticles. The B2g geometry is particularly
significant in this respect, because it directly probes the NR
(see the Methods section). Figure 1 demonstrates that a linear
dependence on frequency is found in this geometry, for all
doping levels. This is expected from equation (2), which yields:
χ′′

N(ω → 0) = γ2
B2g

(π2NF/2v∆)(ZΛ)2
Nω + ···. In this expression,

v∆ = (d∆/dφ)|N is the slope of the gap function at the nodes,
and (ZΛ)N is the value of (ZΛ)k at the node. Hence, in
principle, a study of the doping dependence of the term linear
in frequency in the (B2g) response enables the determination of the
important parameter:

α ≡ NF

v∆

(ZΛ)2
N (3)

associated with nodal low-energy physics. To compare this
parameter for different samples, the Raman spectra must be
properly normalized. In this paper, we do not present absolute
Raman cross-sections because (1) the Raman intensity is sensitive
to the surface topology and we measured a different crystal for

nature physics VOL 2 AUGUST 2006 www.nature.com/naturephysics 539
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Two energy scales in SC phase

• Raman experiments. 

• Mesure the gap around the node 
and at the antinode.
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M. LeTacon et al., Nature Physics, 2, 537,2006 

Lecture 3 

22



Pseudo-gap region (I) 23

!"#$%

$%

&'

()

*$

!"

!#

$%&'(%&% )*+,-.+/0,+ /1,-.+/0,+

!

• Pseudo-gap for T<T*  (crossover)  
observed in various quantities  : 
transport, NMR, specific heat ...

Takagi, PRL 92

In-plane resistivity
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• Fermi “arcs” (ARPES)

➡ Fermi liquid below and above 
coherence scale ? Variations of 
along the Fermi surface of 

Z,m∗, Tcoh

Pseudo-gap region (II) 24
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Figure 1: Symmetrized EDCs for underdoped samples along the Fermi surface. a  

TC = 90 K sample in the superconducting state at T = 40 K, and b the same sample 

in the pseudogap phase at T = 140 K. The bottom EDC is at the node, while the 

top is at the anti-node, as defined in d. c Variation of the gap around the Fermi 

surface extracted from a and b. d Location of the momentum cuts (red lines), 

Fermi surface (blue curves), and special points (node and anti-node) in the zone. e 

Symmetrized EDCs for a very underdoped, Tc = 25 K, sample (corresponding to 

! 

k
F
points 4 through 15), measured at 55 K in the pseudogap state. For this sample, 

the spectral weight is much reduced relative to higher doping values. We therefore 

removed the extrinsic background18.

kx π

ky

0
33

Figure 2.1: Angle Resolved Photo-Emission Spectra A(k,ω = 0+) = − 1
π G(k,ω = 0+)

in the first quadrant of the Brillouin Zone for the normal state of a hole-doped cuprate
superconductor material close to the Mott metal-insulator transition. Doping is labeled
x. (data taken form [27])

spectral function A(k,ω → 0) = − 1
π ImG(k, 0+) in a doped cuprate superconductor

[27] in the first quadrant of the two dimensional (kx, ky)-plane in the Brillouin zone.

The color scale spans from blue to bright red for the highest spectral weight. Close to

optimal doping (right-hand panel at 10% doping) we observe that the spectral weight

remains in the region close to the point (π/2,π/2) of momentum space and almost

completely disappears around (0,π) (π, 0), indicating that in the last regions the quasi-

particles have disappeared and the Fermi Surface (FS) has broken up. An arc remains

instead close to the (π/2,π/2) region. If we then look at A(k,ω)vs ω in the specific

direction (0, 0) → (π,π) of the k-space (Fig. 5.24), we observe around (π/2,π/2) a

quasiparticle peak (the line-width is of the order of 0.05-0.1 eV at T = 100K [26]) and

a wave-vector dispersion of this peak together with the temperature dependence can

be followed. On the contrary, in the regions around (0,π) (π, 0) the spectral function

is very broad (the line-width is of the order of 0.2-0.3 eV at T = 100K [26]) and a

quasiparticle cannot easily be distinguished. These features are typical of incoherent

(localized) states where a very strong scattering mechanism is dominant. The ratio of

the Fermi velocities in the two regions is vF (π/2,π/2)/vF (0,π) # 3. The quasiparticle

states around the nodal points (π/2,π/2) look therefore coherent (delocalized states)

and the scattering mechanism is weaker and more conventional.

12 

 

Figure 2: Intensity maps at the Fermi energy for an underdoped Tc = 70K sample. 

a at 110K and b at 200K (red points are measured kF values). c Angular anisotropy 

of the gap along the Fermi surface from the data of a and b. The inset to c shows 

the temperature variation of the symmetrized EDCs at the anti-node for a Tc = 89K 

sample, with the EDC at 300K in the gapless normal state above T*. 

A(k, ω = 0+)

Shen et al. Science 307, 901 (2005) Bi2212 : Kanigel et al. 2,447 (2006)
24



Pseudo-gap region (III) 25
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Ba
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O
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(A) (B)

FIG. 1: (A)Crystal structure of YBCO and (b) the Current pattern in the observed time reversal

violating states

FIG. 2: Predicted spin order in YBCO for the domain shown in fig.1(B)

Symmetry: Due to the buckling of the Oxygens, the crystal structure in fig.1(A) breaks

inversion symmetry through Copper and Oxygen, but preserves reflection symmetry about

x̂, ŷ, x̂+ŷ and x̂−ŷ. The spin-orbit coupling tensor Λ has the same symmetry as the crystal

structure. The order parameter MO, fig.1(B), also breaks inversion symmetry through

Copper and Oxygen, but only preserves one reflection symmetry (either x + y or x − y

depending on the domain). We now look for an invariant in the crystal structure which is a

product of Λ, MO and spin-order MS. Since the product of the first two preserves inversion

but breaks time-reversal and the one mentioned reflection, a MS is mandated which is odd

under that reflection. Moreover translational symmetry must be preserved. The spin-order

MS consistent with these requirements is a ferromagnetic order of the spins with moments

in the plane pointing perpendicular to the plane about which the orbital order preserves

reflection symmetry. This is shown for one of the two cu-o bilayers in fig.2. The moment

in the other bilayer must be oppositely directed since the spin-orbital coupling in the two

bi-layers have opposite signs.

3

Cu

O

Local current in the unit cell (Varma’s proposal)

 An ordered phase ?

‣ Polarized neutrons diffraction : 
B. Fauque, Y. Sidis, V. Hinkov, S. Pailhes, C.T. Lin, X. 
Chaud, Ph. Bourges, PRL 96, 197001 (2006)

‣ Hidden order : local current ? 
(C. Varma e.g. cond-mat/0507214)

Beyond Hubbard model ?

25
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• RVB (Anderson 87)
• Kotliar-Liu (88)

Prediction of d-SC !

Doped Mott insulator 

Many theoretical approaches ! 26

Critical AF 
fluctuations ? ?
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Quantum phase 
transition hidden 
below the SC.

Cooper Pair 
fluctuations ?
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Mott transition : what should a theory describe ? 

‣ Mechanism of the Mott transition (phase diagram, first order 
transition and critical point ?).

‣ How is a metal (or d-SC) destroyed close to Mott transition ?

‣ Various microscopic models (e.g. many bands)

‣ Various competing orders : AF, d-SC,DDW, local currents (?)

‣ Variations of Z, m*, lifetime, coherence temperature 
versus T, δ and along the Fermi surface.

‣ Fermi liquid above coherence temperature (pseudogap in high Tc ?) 

‣ Non trivial Mott insulators (frustrated magnets, RVB, VBS ?)

27

➡   Dynamical Mean Field Methods ?

27



Outline 

1. Mott transition.

2. Quantum impurity models.

3. Introduction to Dynamical Mean Field Theory 

28
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Quantum impurity models 

• Isolated magnetic impurity in a metal.

• Kondo model 

• Anderson model  

29

G0

−εd, U → +∞
Schrieffer-Wolf

They are correlated many-body problems.

H =
∑

kσα

εkc†kσckσ + JK
−→
S ·

∑

kk′
σσ′

c†kσ"σσσ′ck′σ′

H =
∑

kσ

εkc†kσckσ +
∑

σ

εdd
†
σdσ + Und↑nd↓ +

∑

kσ

Vkσ

(
c†kσdσ + h.c.

)

How to solve them ? See Lecture 2.

29



Action versus Hamiltonian form

• An equivalent formulation obtained by integrating the fermions 

30

H =
∑

kσ

εkσc†kσckσ +
∑

σ

εdd
†
σdσ + Und↑nd↓ +

∑

kσ

Vkσ

(
c†kσdσ + h.c.

)

S = −
∫ β

0
d†σ(τ)G−1

0σ (τ − τ ′)dσ(τ ′) +
∫ β

0
dτUnd↑(τ)nd↓(τ)

∆σ(iωn) ≡
∑

k

|Vkσ|2

iω − εkσ

G−1
0σ (iωn) ≡ iωn + εd −∆σ(iωn)

Hybridisation

Bath

• The only important quantity for the c-electrons is the hybridisation. 

30



Kondo effect

• Screening of the Kondo impurity by the metallic bath

31

• Local Fermi liquid (Nozières)

• Strong coupling picture : singlet

• Free spin (Curie law)

T ! TK T ! TK

TK ∼ De−1/Jρ0

0 T

Kondo temperature

χimp(T ) ∼ 1
TK

χimp(T ) ∼ 1
T

dos at the Fermi level

31



Kondo-Abrikosov-Suhl resonance 
• Sharp resonance in the spectral function of d at the Fermi level,

of width      , for 

32

TK T ! TK

particle-hole symmetric case (Hewson’s book) ρ(ω=0) independent of U
(Friedel)

• QP peak, Hubbard bands analogous to lattice.

• With DMFT, this analogy transformed into a formalism
32



Outline 

1. Mott transition.

2. Quantum impurity models.

3. Introduction to Dynamical Mean Field Theory

33
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 Mean Field Theory

• Ising model (Weiss) :  A single spin in an effective field.

• Derivation : e.g. large dimension limit on hypercubic lattice.

34

H = −J
∑

ij

σiσj Ising model.

m = 〈σ〉 Order parameter.

Heff = −Jheffσ Effective Hamiltonian

heff = zJm Weiss Field

m = tanh(βheff) Solution of the effective Hamiltonian

Qualitatively correct (phase diagram, second order transition)
 even if critical exponents are wrong (R.G., Field theory....,)

Generalisation for quantum models ?
34



Dynamical Mean Field Theory

• Ising model (Weiss) :  A single spin in an effective field.

• Quantum spin glass (Bray-Moore, 80)  

A single quantum spin in a fluctuating field (in imaginary time)

Close to a QCP, we must keep the (long time) dynamics.

• Fermionic Hubbard model (Kotliar-Georges, 92)

Anderson impurity model coupled to an effective band

determined self-consistently

35

H = ε0
∑

σ=↑,↓
c†σcσ + Un↑n↓

︸ ︷︷ ︸

+
∑

k,σ=↑,↓
Vkd†kσcσ + h.c. +

∑

k,σ=↑,↓
εkd†kσdkσ

︸ ︷︷ ︸

Local site Coupled to an effective electronic bath 
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DMFT equations (1 site, 1 orbital Hubbard) 36

• Bethe lattice with connectivity (z→∞)

w
ith
nearest-neighbor
hopping
t ij!
t/!
z,
for
arbitrary

connectivity
z.
W
e
concentrate
on
site
o
and
perform

the
G
aussian
integration
over
all
other
sites
(Fig.
86).
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In
this
equation
i
denotes
a
neighbor
of
o
and
G
ii(o

)
is

the
G
reen’s
function
of
site
i
once
o
has
been
rem
oved.

Translation
invariance
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all
sites
i
being
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finite
connectivity
how
ever,G
ii(o

)
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w
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G
o
o
even
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i
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neighbors.
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connectivity,
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a
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equation
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In
this
equation,G
jj(o

,i) denotes
the
G
reen’s
function
ofa

neighbor
j
of
i,in
the
truncated
tree
w
here
both
sites
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and
i
have
been
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oved.
For
an
infinite
lattice,
j
is
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so
that
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from
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hich
the
localG
reen’s
function
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"
G
o
o
[w
hich
is

also
the
H
ilbert
transform
D˜
(!)
of
the
density
of
states]

is
finally
obtained
as
[for
Im
(!)>0]

G
"
D˜
%!
&!

%z
"
2
&!"
z!
!

2 "
4
%z
"
1
&t2 /z

2
%zt2 "
!

2 &

.

(A
42)

T
he
density
of
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(O
ne
can
check
that
the
fam
iliar
d
=1
expression
can
be

recovered
for
z=2.)
Taking
the
z→
.
lim
it
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the
ex-
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used
in
this
article:
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It
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ay
also
be
useful
to
quote
the
expression
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the

reciprocalfunction
R
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)
ofthe
H
ilberttransform
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that
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For
z→
.
,one
recovers
(Sec.II)
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H = −J
∑

ij

σiσj H = −
∑

ijσ

tijc
†
iσcjσ + Uni↑ni↓

m = 〈σ〉 Gc(τ) = −〈Tc(τ)c†(0)〉Seff

Heff = −Jheffσ Seff = −
∫ β

0
c†σ(τ)G−1

0 (τ − τ ′)cσ(τ ′) +
∫ β

0
dτUn↑(τ)n↓(τ)

heff = zJm G0(iωn) = Flattice[Gc](iωn) : Self-consistency condition

m = tanh(βheff) Solution of the quantum impurity model

∆(iωn) = t2 Gc(iωn)

G−1
0 (iωn) = iωn + µ−∆(iωn)

Lecture 2 
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DMFT loop

• In practice, iterative loop is always convergent !

• All the hard work in DMFT lies in the impurity solver !
See Lecture 2 for various methods to solve the impurity problem.

37

SELF CONSISTENCY

IMPURITY PROBLEM

G0 Gc, Σ

37



Lattice quantities in DMFT

• The self-energy on the lattice is local :

38

• Therefore effective mass and Z are related : Z =
m

m∗

• G on the lattice is not local. There is a Fermi surface in metallic 
regimes.

• Finite temperature lifetime, Z are constant along the FS.

Glatt(k,ω) =
1

ω + µ− εk − Σlatt(k,ω)

Σlatt(k,ω) = Σimpurity(ω) ≡ G−1
0 −G−1

c

38



Resistivity calculation in DMFT

• One shows that there is no vertex correction : simple particle-hole 
buble (with full propagators)  in current-current correlator.

39

!""!(i# ,i#!;i$) depending on frequencies only (Zlatić
and Horvatić, 1990). This results from the power-
counting rules stated in Sec. III.B, since any two sites
belonging to ! in the real-space representation of the
ladder series are certainly connected by more than two
independent paths. If it were not so, the diagram could
be disconnected by cutting two internal propagators in
contradiction with the assumption that ! is irreducible.
Note that this assumes that all vertices in ! can be con-
sidered internal (i.e., summed over) and thus ! can be
collapsed to a fully local form only when inserted in the
ladder sum above. (When considered by itself, ! does
have some momentum dependence, but only its local
component contributes to the ladder sum.) As a result of
this simplification, the summation over momenta can be
performed in each particle-hole bubble independently,
ignoring momentum conservation at the vertex !. In
contrast, note that frequency conservation must be fully
taken into account.

For the sake of simplicity, we shall proceed with the
example of the spin susceptibility %zz. All the other re-
sponse functions can be obtained in an analogous man-
ner. The special case of the frequency-dependent con-
ductivity will also be dealt with in detail below. Only the
spin-antisymmetric component !A contributes to %zz

(the superscript A will be omitted everywhere below).
We denote by %̃q(i# ,i#!;i$) the result of the above lad-
der sum in which the summation over the first and last
frequencies #,#! have been omitted [so that the dynami-
cal susceptibility is obtained by summing over frequen-
cies, %(q,i$)=&##!%̃q(i# ,i#!;i$)]. %̃ satisfies an integral
equation:

%̃q' i# ,i#!;i$(!%̃q
0' i# ;i$()# ,#!

"%̃q
0' i# ;i$(

1
* +

#"
!' i# ,i#";i$(

#%̃q' i#",i#!;i$( (62)

in which %̃q
0(i# ;i$) is obtained by performing the sum-

mation over the internal momentum k in the elementary
particle-hole bubble,

%̃q
0' i# ;i$(!$+

k
G'k,i#(G'k"q,i#"i$(. (63)

It is clear from Eq. (62) that the q dependence of
%(q,i$n) stems entirely from that of %̃q

0. We shall now
characterize more precisely this momentum depen-
dence, concentrating on the case where one really stud-
ies a d=, lattice model (we choose for simplicity the
hypercubic lattice). Later in this section, we shall de-
scribe how dynamical mean-field approximations for
q-dependent response functions of a finite-dimensional
model can be generated in the general spirit of the LISA
approach.

For the d=, hypercubic lattice, the momentum de-
pendence of the response functions simplifies drastically:
as shown in Appendix A, %̃q

0 depends on q (for the hy-
percubic lattice) only through the following quantity
(Brandt and Mielsch, 1989; Müller-Hartmann, 1989a):

X'q(!
1
d +

i!1

d

cosqi (64)

Let us discuss in more detail the quite peculiar q depen-
dence of this quantity [and hence of %(q,i$n) in the
d→, limit]. For a ‘‘generic’’ q vector (i.e., for all q’s
except a set of measure zero), the summation in Eq. (64)
is over arguments that are random in sign, and hence is
of order !d , so that, as d→,,

X'q(!0 ' ‘‘generic’’ q(. (65)

This implies that, for any generic q, %(q,i$n) coincides
with its local (on-site) component:

%'q,i$n(!+
q

%'q,i$n(-% loc' i$n( ' ‘‘generic’’ q(.

(66)

X(q) may take arbitrary values −1.X.1 for specific
values of q, however. Important examples are the
uniform wave vector q=0 (appropriate for ferromagnetic
ordering) and the zone-corner wave vectors
q=(/0 , . . . ,/0) (appropriate for two-sublattice com-
mensurate antiferromagnetic ordering):

X'0(!"1, X'%0 , . . . ,%0(!$1. (67)

Intermediate values −1<X<1 correspond to incommen-
surate orderings. It is important to realize that even
though these types of ordering are not very easy to vi-
sualize in real space in the d→, limit, they can be stud-
ied through the X(q) dependence of % and indeed are

FIG. 8. (a) Two-particle irreducible vertex function. (b) Lad-
der decomposition of the response function %(q,i$n); the mo-
mentum dependence of ! can be ignored inside the ladder sum
in d=,.
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where !"#i"+$−%(i"), and &q is the lattice-dependent
function:

&q'(1 ,(2)!*
k

+'(k"(1)+'(k#q"(2). (76)

For a d=, lattice, &q only depends on q through X(q),
as mentioned above, and the distribution %q+(X"X(q))
is a delta function +(X), so that the above approxima-
tion becomes exact.

B. Frequency-dependent conductivity, thermopower and
Hall effect

We now deal in detail with the case of the frequency
dependent conductivity -(.,q=0). In this case, we have
seen that the current vertex vk is odd under parity
k→−k. Since all k dependence of / can be ignored and
(k is even under parity, this implies that all vertex cor-
rections drop out of the current-current correlation
function at q=0 in the d→, limit. This observation was
first made by Khurana (1990). A more detailed proof
follows from the Ward identity

0/0'k#q,k)# *
i!1,d

&'q) i/ i'k#q,k)

!G"1'k#q,.#0)"G"1'k,.), (77)

where /0 and /i denote the density and current vertex
respectively and &(q) i=2 sin[(qi)/2] on the hypercubic
lattice. Since in large dimensions the self-energy is inde-
pendent of momentum, and the density vertex is even in
q while the current vertex is odd in q, expanding Eq.
(77) to lowest order in &(q) proves that the current ver-
tex is unrenormalized. Notice that this conclusion is false
as soon as q is finite, because there are nontrivial can-
cellations between the density and the current vertex at
finite q so as to obey Eq. (77).

Hence, only the elementary particle-hole bubble sur-
vives in Eq. (62) for the current-current correlator at
q=0, and one obtains, for the paramagnetic contribution
to the optical conductivity (the diamagnetic term cancels
the 1/. divergence of the real part of the retarded
current-current correlator),

-' i.)!
1
.

1
1 *

k"n-

1
d *

l!1

d

4 sin2'kl)G'k,i"n)

$G'k,i"n#i.). (78)

One could make use of this expression (inserting the
self-energy calculated from the impurity model) to gen-
erate approximations of the optical conductivity of a
finite-dimensional lattice, in the general spirit of the
LISA method. For a d=, model however, the sum over
momenta can be further simplified by expressing it
as an energy integration, and noting that
%k% lsin2(kl)+((−(k)!dD(()/2 for d→,. This leads to
the final form (Schweitzer and Czycholl, 1991b; Moeller,
Ruckenstein, and Schmidt-Rink, 1992; Pruschke, Cox,
and Jarrell, 1993a, 1993b):

-' i.)!
1
.

1
1 *

"n
"

",

#,

d( D'()G'( ,i"n)G'( ,i"n#i.).

(79)

Using the spectral representation of the Green’s func-
tions, this is also conveniently expressed in terms of the
one-particle spectral density 2((,")=−(1/3)
ImG((,"+i0+):

-' i.)!
1
. "

",

#,

d("
",

#,

d""
",

#,

d"!

$D'()2'( ,")2'( ,"!)
f'")"f'"!)

"""!#i.
, (80)

where f is the Fermi function. Performing the analytic
continuation yields (reintroducing dimensional prefac-
tors):

Re -'.#i0#)!3
e2

4ad "
",

#,

d("
",

#,

d" D'()2'( ,")

$2'( ,"!#.)
f'")"f'"#.)

.
. (81)

Finally, we conclude by noting that the absence of vertex
corrections to the current-current correlation function
for d=, models is not restricted to that correlation func-
tion, but actually applies to the q=0 correlation function
of any operator such that the vertex factor "k satisfies

*
k

vk!0. (82)

One additional example is the thermopower Q, asso-
ciated with the heat current ((k"$)“k(k. The following
d=, expression can be established (Schweitzer and Czy-
choll, 1991b; Pruschke, Jarrell, and Freericks, 1996):

Q!

5d.5d('."$)
6f
6.

2'( ,.)2

eT5d.5d(
6f
6.

2'( ,.)2
. (83)

Notice, however, that this expression neglects the con-
tribution to the thermal current due to the transport of
doubly occupied sites, which has not been analyzed in
detail yet.

Vertex corrections can also be shown to drop out from
the Hall coefficient. The proof in this case is more in-
volved, since one needs to consider three-point correla-
tions at finite q, and the limit of small wave vector is
taken only at the end of the calculation. Following the
careful analysis of Kohno and Yamada (1988), it may be
shown that the diagrams neglected in their treatment on
the basis of being higher in the small damping constant
are in fact higher order in an expansion in 1/d relative to
the leading terms. This leads to the following expression
at finite temperature:
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where !"#i"+$−%(i"), and &q is the lattice-dependent
function:
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For a d=, lattice, &q only depends on q through X(q),
as mentioned above, and the distribution %q+(X"X(q))
is a delta function +(X), so that the above approxima-
tion becomes exact.

B. Frequency-dependent conductivity, thermopower and
Hall effect

We now deal in detail with the case of the frequency
dependent conductivity -(.,q=0). In this case, we have
seen that the current vertex vk is odd under parity
k→−k. Since all k dependence of / can be ignored and
(k is even under parity, this implies that all vertex cor-
rections drop out of the current-current correlation
function at q=0 in the d→, limit. This observation was
first made by Khurana (1990). A more detailed proof
follows from the Ward identity

0/0'k#q,k)# *
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where /0 and /i denote the density and current vertex
respectively and &(q) i=2 sin[(qi)/2] on the hypercubic
lattice. Since in large dimensions the self-energy is inde-
pendent of momentum, and the density vertex is even in
q while the current vertex is odd in q, expanding Eq.
(77) to lowest order in &(q) proves that the current ver-
tex is unrenormalized. Notice that this conclusion is false
as soon as q is finite, because there are nontrivial can-
cellations between the density and the current vertex at
finite q so as to obey Eq. (77).

Hence, only the elementary particle-hole bubble sur-
vives in Eq. (62) for the current-current correlator at
q=0, and one obtains, for the paramagnetic contribution
to the optical conductivity (the diamagnetic term cancels
the 1/. divergence of the real part of the retarded
current-current correlator),
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One could make use of this expression (inserting the
self-energy calculated from the impurity model) to gen-
erate approximations of the optical conductivity of a
finite-dimensional lattice, in the general spirit of the
LISA method. For a d=, model however, the sum over
momenta can be further simplified by expressing it
as an energy integration, and noting that
%k% lsin2(kl)+((−(k)!dD(()/2 for d→,. This leads to
the final form (Schweitzer and Czycholl, 1991b; Moeller,
Ruckenstein, and Schmidt-Rink, 1992; Pruschke, Cox,
and Jarrell, 1993a, 1993b):
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Using the spectral representation of the Green’s func-
tions, this is also conveniently expressed in terms of the
one-particle spectral density 2((,")=−(1/3)
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where f is the Fermi function. Performing the analytic
continuation yields (reintroducing dimensional prefac-
tors):
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Finally, we conclude by noting that the absence of vertex
corrections to the current-current correlation function
for d=, models is not restricted to that correlation func-
tion, but actually applies to the q=0 correlation function
of any operator such that the vertex factor "k satisfies
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vk!0. (82)

One additional example is the thermopower Q, asso-
ciated with the heat current ((k"$)“k(k. The following
d=, expression can be established (Schweitzer and Czy-
choll, 1991b; Pruschke, Jarrell, and Freericks, 1996):
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Notice, however, that this expression neglects the con-
tribution to the thermal current due to the transport of
doubly occupied sites, which has not been analyzed in
detail yet.

Vertex corrections can also be shown to drop out from
the Hall coefficient. The proof in this case is more in-
volved, since one needs to consider three-point correla-
tions at finite q, and the limit of small wave vector is
taken only at the end of the calculation. Following the
careful analysis of Kohno and Yamada (1988), it may be
shown that the diagrams neglected in their treatment on
the basis of being higher in the small damping constant
are in fact higher order in an expansion in 1/d relative to
the leading terms. This leads to the following expression
at finite temperature:
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• Need a computation of Σ(ω) at real frequencies.
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What does DMFT tell us about the Mott transition ?
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Phase diagram

• Hubbard model at half-filling (δ=0). D is half-bandwidth.

• Frustrated model (paramagnetic phase). 
Frustration is essential, otherwise hidden by Néel phase.
Self-consistency depends only on the d.o.s on the lattice.

41

Mott transition in DMFT

Hubbard model at half filling : δ = 0

Frustrated model (paramagnetic phase)

U/D

METAL INSULATOR

CROSSOVER

Uc1 Uc2

T/D

0 1 2 3 4 5

0.10

0.08

0.06

0.04

0.02

0.00

Coexistence region

First Order transition

Lyon 26-02-04 – p.10/37

Destruction of the metal : Z→0Mott gap closes
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2 solutions 

• Metallic solution : Δ(0) ≠ 0, usual Kondo problem

42

with a nonsingular density of states at the Fermi level
!("=0)=D/2#. As the interaction U is increased, we ex-
pect the Kondo effect to take place, leading to a singlet
nondegenerate ground state of the impurity model. The
low-frequency behavior of $(") is that of a local Fermi
liquid:

Re$%"!i0!&"U/2!%1#1/Z &"!O%"3&, (226)

Im$%"!i0!&"#B"2!O%"4&. (227)

The quasiparticle residue Z defines the renormalized
Fermi energy of the problem:

'F*(ZD (228)

This is also the Kondo temperature of the impurity
model. Since the self-energy is momentum independent,
Z directly yields the effective mass of quasiparticles
(Müller-Hartmann, 1989c):

m*
m

"
1
Z

"1#
)

)"
Re$%"!i0!&!""0. (229)

All these quantities can be computed quantitatively us-
ing the techniques described in Sec. VI. A plot of the
self-energy obtained within the iterated perturbation
theory approximation is given in Fig. 28 for two values
of U representative of the metallic regime. The quasi-
particle residue Z (obtained by exact diagonalization) is
plotted in Fig. 29 as a function of U [and compared to
the Gutzwiller approximation (Brinkman and Rice,
1970)]. Z is close to 1 for small U , and goes to zero at
U"Uc2(T"0)"3D , signalling the disappearance of
quasiparticles, and hence of the metallic solution. The
precise nature of this transition at Uc2 will be further
reviewed in Sec. VII.E.

A plot of the local spectral function
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is shown in Fig. 30 for various values of U . The results
displayed have been obtained with the iterated pertur-
bation theory, and it was shown in Sec. VI that this is a
quite accurate approximation in the metal, for all values
of U (except very close to Uc2). For small U , the spec-
tral function is featureless and similar to the bare lattice
density of states. For larger values of U , a narrow qua-
siparticle peak is formed at the Fermi level of width 'F*

and weight Z . This is the Abrikosov-Suhl resonance in
the impurity model language. Notice the pinning of *(0)
at its noninteracting value:

*%""0 &"D%0 &, (231)

as required by the Luttinger theorem for a momentum-
independent self-energy (Müller-Hartmann, 1989c). Two
additional features at frequencies ,U/2 (corresponding
to energies "+-=0,U) are associated with the upper and
lower Hubbard band (empty and doubly occupied sites).

Finally, we mention a very simple argument showing
that the LISA equations cannot sustain a metallic solu-
tion up to arbitrary large U at half-filling (Georges and
Krauth, 1992; Rozenberg, Zhang, and Kotliar, 1992).
Imagine solving the system of Eqs. (220) and (221) by
iteration, with a conduction electron half-bandwidth Dn
at step n . For large U , solving the Kondo problem pro-
duces a bandwidth Dn!1"e#U/tDn . Therefore, Dn iter-
ates to zero for large U . In fact, the metallic solution

FIG. 28. Real and imaginary parts of the real-frequency self-
energy $("+i0+), as obtained from the iterated perturbation
theory approximation, for two metallic values of U/D=1 and 2
(dotted and full lines).

FIG. 29. The quasiparticle weight Z as a function of the inter-
action U . The solid bold line corresponds to exact diagonaliza-
tion results with eight sites. The dotted line is obtained from
iterated perturbation theory. For comparison we also plot the
results using the Gutzwiller variational method (full line). The
error bars near Uc reflect the uncertainties inherent to the
various methods. The diamond represents the exact location of
Uc obtained from the projective method.
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with a nonsingular density of states at the Fermi level
!("=0)=D/2#. As the interaction U is increased, we ex-
pect the Kondo effect to take place, leading to a singlet
nondegenerate ground state of the impurity model. The
low-frequency behavior of $(") is that of a local Fermi
liquid:
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U"Uc2(T"0)"3D , signalling the disappearance of
quasiparticles, and hence of the metallic solution. The
precise nature of this transition at Uc2 will be further
reviewed in Sec. VII.E.
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density of states. For larger values of U , a narrow qua-
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the impurity model language. Notice the pinning of *(0)
at its noninteracting value:
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as required by the Luttinger theorem for a momentum-
independent self-energy (Müller-Hartmann, 1989c). Two
additional features at frequencies ,U/2 (corresponding
to energies "+-=0,U) are associated with the upper and
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Finally, we mention a very simple argument showing
that the LISA equations cannot sustain a metallic solu-
tion up to arbitrary large U at half-filling (Georges and
Krauth, 1992; Rozenberg, Zhang, and Kotliar, 1992).
Imagine solving the system of Eqs. (220) and (221) by
iteration, with a conduction electron half-bandwidth Dn
at step n . For large U , solving the Kondo problem pro-
duces a bandwidth Dn!1"e#U/tDn . Therefore, Dn iter-
ates to zero for large U . In fact, the metallic solution

FIG. 28. Real and imaginary parts of the real-frequency self-
energy $("+i0+), as obtained from the iterated perturbation
theory approximation, for two metallic values of U/D=1 and 2
(dotted and full lines).

FIG. 29. The quasiparticle weight Z as a function of the inter-
action U . The solid bold line corresponds to exact diagonaliza-
tion results with eight sites. The dotted line is obtained from
iterated perturbation theory. For comparison we also plot the
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ance of the insulating solution at Uc1, the behavior of
the gap at this point, and the value of Uc1 have not yet
been fully settled.

In summary, the existence of two classes of solutions
of the paramagnetic LISA equations at zero tempera-
ture can be established analytically. Metallic solutions
are characterized by a nonzero density of states !(0)
=D(0) [=2/("D) for the Bethe lattice], while insulating
solutions have !(0)=0, for both the impurity and the ef-
fective conduction bath at zero frequency. The density of
states at zero energy is an order parameter for this prob-

lem, and can be shown to be self-consistently nonzero
for small U/D and zero for large U/D .

D. Phase diagram and thermodynamics

1. Paramagnetic phases

The qualitative distinction between a metal and an
insulator is precise at zero temperature. At finite but
small temperatures a sharp distinction between a metal-
lic and an insulating solution can still be made in the
present problem, since a region of the (U ,T) parameter
space defined by Uc1(T)!U!Uc2(T) is found where
two paramagnetic solutions are allowed within the
LISA, as shown on Fig. 33 (Georges and Krauth, 1993;
Rozenberg, Kotliar, and Zhang, 1994). This is evidenced
by the plot of the double occupancy #n↑n↓$ given in Fig.
34. One of these solutions is continuously connected to
the T=0 metallic solution, and its density of states dis-
plays a peaklike feature at the Fermi energy. The other
solution can be connected to the T=0 insulating solution,
and the Green’s function extrapolates to zero at zero
frequency. As the temperature is further increased, this
region of coexistent solutions disappears and we are left
with a rapid crossover from a metallic-like solution to an
insulating-like one. This is possible because at finite tem-
perature there is no qualitative distinction between a
metallic and an insulating state. The two lines Uc1(T)
and Uc2(T) defining the coexistence region merge at a
second-order critical point (Fig. 33). The actual metal-
insulator transition at finite temperature is first order,
and takes place at the coupling Uc(T) where the free
energy of the two solutions cross. Note that this is the
case even though no lattice deformations have been in-
cluded in the model. For early discussions of the occur-
rence of a first-order metal-insulator transition at finite
temperature in the Hubbard model, see the works of
Cyrot (1972); Castellani, DiCastro, Feinberg, and Ran-
ninger (1979); Spalek, Datta, and Honig, 1987); Spalek

FIG. 31. Real and imaginary parts of the self-energy %(&+i0+),
as obtained from the iterated perturbation theory approxima-
tion, for a value of U/D=4 in the insulating phase. The inset
contains the same quantities on a larger scale that shows the
1/& singularity in Re%.

FIG. 32. Paramagnetic gap (solid line) as a function of the
interaction U obtained from exact diagonalization. For com-
parison, the corresponding results from iterated perturbation
theory (dotted line) and the value of Uc1

H III " )D within the
Hubbard III approximation (diamond) are also shown.

FIG. 33. Phase diagram of the fully frustrated model at half-
filling. It is possible to move continuously from one phase to
the other since at high temperature the transition becomes a
crossover. Within the region delimited by the dashed lines, the
metallic and insulating solutions coexist. The full line is the
approximate location of the actual first-order transition line.
Both ends of this line [at the full square and at Uc2(T)=0] are
second-order points.
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Self-energies in insulator
Spectral function (U/D=4)

disappears continuously (at T=0) at a critical value
Uc2/D!2.92, as explained in more detail in Sec. VII.E.

2. Insulating phase

When U/t is large, we begin with a different ansatz
based on the observation that in the ‘‘atomic limit’’ t=0
(U/t=!), the spectral function has a gap equal to U . In
this limit the exact expression of the Green’s function
reads

G" i#n$at!
1/2

i#n"U/2
"

1/2
i#n#U/2

. (232)

Since ImG(#"i0") also plays the role of the density of
states of the effective conduction electron bath entering
the impurity model, we have to deal with an impurity
embedded in an insulator [%(#=0)=0]. It is clear that an
expansion in powers of the hybridization t does not lead
to singularities at low frequency in this case. This is very
different from the usual expansion in the hybridization
V with a given (flat) density of states that is usually con-
sidered for an Anderson impurity in a metal. Here, t
also enters the conduction bath density of states (via the
self-consistency condition) and the gap survives an ex-
pansion in t/U . An explicit realization of this idea is to
make the following approximation for the local Green’s
function (Rozenberg, Zhang, and Kotliar, 1992):

G" i#n$!
1/2

G 0
#1" i#n$#U/2

"
1/2

G 0
#1" i#n$"U/2

, (233)

which can be motivated as the superposition of two mag-
netic Hartree-Fock solutions or as a resummation of an
expansion in %/U . This implies that G(i#)&i# for small

#, and the substitution into the self-consistency condi-
tion implies that G 0

−1&i# , which is another way of say-
ing that the effective bath in the Anderson model pic-
ture has a gap. We know from the theory of an
Anderson impurity embedded in an insulating medium
that the Kondo effect does not take place. The impurity
model ground state is a doubly degenerate local mo-
ment. Thus, the superposition of two magnetic Hartree-
Fock solutions is qualitatively a self-consistent ansatz. If
this ansatz is placed into Eq. (221), we are led to a
closed (approximate) equation for G(i#n):

D4G3#8D2#G2"4"4#2"D2#U2$G#16#!0.
(234)

This approximation corresponds to the first-order ap-
proximation in the equation of motion decoupling
schemes reviewed in Sec. VI.B.4. It is similar in spirit to
the Hubbard III approximation Eq. (173) (Hubbard,
1964), which would correspond to pushing this scheme
one step further. These approximations are valid for
very large U but become quantitatively worse as U is
reduced. They would predict a closure of the gap at
Uc!D for (234) (Uc!)D for Hubbard III). The fail-
ure of these approximations, when continued into the
metallic phase, is due to their inability to capture the
Kondo effect which builds up the Fermi-liquid quasipar-
ticles. They are qualitatively valid in the Mott insulating
phase however.

The spectral density of insulating solutions vanish
within a gap #%g/2$#$"%g/2. Inserting the spectral
representation of the local Green’s function into the self-
consistency relation, Eq. (221) implies that '(#+i0+)
must be purely real inside the gap, except for a
(-function piece in Im' at #=0, with

Im'"#"i0"$!#)*2("#$ for #!+#%g/2,%g/2,
(235)

and that Re' has the following low-frequency behavior:

Re'"#"i0"$#U/2!
*2

#
"O"#$. (236)

In these expressions, *2 is given by

1
*2

!"
#!

"!

d-
*"-$

-2 . (237)

*2 can be considered as an order parameter for the insu-
lating phase [the integral in Eq. (237) diverges in the
metallic phase]. A plot of the spectral function and self-
energy in the insulating phase, obtained within the iter-
ated perturbation theory approximation, is also dis-
played in Figs. 30 and 31. The accuracy of these results is
more difficult to assess than for the metal, since exact
diagonalization methods are less efficient in this phase.
A plot of the gap %g vs U estimated by the iterated
perturbation theory and exact diagonalization is given in
Fig. 32. Within both methods, the insulating solution is
found to disappear for U$Uc1(T!0), with Uc1

ED

! 2.15D (while the iterated perturbation theory method
yields Uc1

IPT ! 2.6D). As discussed below in more detail
(Sec. VII.F), the precise mechanism for the disappear-

FIG. 30. Local spectral density )D*(#) at T=0, for several
values of U , obtained by the iterated perturbation theory ap-
proximation. The first four curves (from top to bottom, U/D
=1,2,2.5,3) correspond to an increasingly correlated metal,
while the bottom one (U/D=4) is an insulator.
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Why do we need a Dynamical Mean Field ?

• Fermi liquid with low 
coherence scale : 

• Coherent and incoherent part 

• Transfer of spectral weight
from low to high ω

• Beyond a low energy        
quasi-particle description           
(slave bosons)

• Price : solve a quantum 
impurity model.
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A Kondo peak in a preformed gap

• A. Georges, G. Kotliar, 1992

• Clear in modern DMRG calculation (Cf lecture 2).
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and upper Hubbard bands which merge for U→Uc1 when
the single-particle gap ! closes.14,19,21,22

Recent progress in the numerical calculation of dynamic
quantities for quantum impurity models25–28 by dynamic
density-matrix renormalization29–31 !D-DMRG" make calcu-
lations possible with well-controlled resolution at all ener-
gies. Thereby, spectral functions and ground-state energies
become accessible which have so far eluded a quantitative
determination. With the correction vector method we com-
pute "!#" broadened !convolved" by Lorentzians of width
$! #0.01,0.1$D. The unbroadened "!#" is retrieved by least-
bias deconvolution.28 It is used to determine the continued
fraction of the bath function in the next iteration of the
DMFT self-consistency cycle.10 For all U about 20 iterations
were performed until two subsequent "!#" differed less than
%10−3 /D everywhere and the ground-state energy and the
double occupancy differ less than 10−2%. For the insulator, it
is required in addition that the static gap, derived from en-
ergy differences of the finite bath representation, differs less
than 1%.

The D-DMRG is performed with 128 or 256 basis states.
We use 120, 160, or 240 fermionic sites including the impu-
rity in the metallic regime. For the insulating solutions we
used 121 or 161 fermions. An odd number of sites implies a
pole at #=0 in "0!#". This pole is split by the interaction.
The splitting results from a pole in %!#" at #=0. Such a
solution is insulating. Hence an odd number of sites is
slightly biased toward an insulator. Vice versa, an even num-
ber of sites leads to Im %!0"=0 implying a small bias toward
the metallic solution. The relative bias is estimated by the
inverse number of sites: !4–8"&10−3. In odd chains, we
observe two almost degenerate ground states !spin ↑ or ↓ at
the interacting site" which must both be considered. Other-
wise a spurious magnetic moment is generated.

In Figs. 1 and 2, our results for metallic and insulating
"!#" are shown. In the metallic solutions, the narrowing of
the quasiparticle band around #=0 is clearly visible. From
U%D on, the DOS displays side features which develop into
the lower and upper Hubbard bands. At U%2D the Hubbard
bands are well separated from the quasiparticle peak at #
=0 by a precursor of the gap ! in the insulator: a pseudogap.
The comparison with the NRG data from Ref. 16 shows

good agreement in the quasiparticle peak but deviations in
the Hubbard bands. There the DMRG data are much sharper
and do not have significant tails at higher energies. This dif-
ference stems from the broadening proportional to the fre-
quency which is inherent to the NRG algorithm.25,26

The insulating solutions display the lower and the upper
Hubbard bands clearly. They agree excellently with the per-
turbative result33 !not shown" for U!3D. At U=Uc1
= !2.38±0.02"D both bands touch each other. No upturn in
"!#" as in Ref. 22 is found when we consider the decon-
volved "!#" for all #. An upturn occurs only if the static gap
is used. But such a procedure did not lead to stable self-
consistent solutions.

In Fig. 3 the quasiparticle weight Z in the metal and the
single-particle gap ! in the insulator are shown. The weight
Z= #1−!# Re %!0"$−1 is found from fitting the derivative of
the Dyson equation G!#"=G0##−%!#"$ implying Z−1

=D2!#G!0" /2 where G0!#" is the bare local Green’s func-
tion of the lattice. The gap ! is found from a fit proportional

FIG. 1. !Color online" Spectral densities "!#" deep in the me-
tallic regime !upper row" and deep in the insulating regime !lower
row" in DMFT for the Bethe lattice at T=0; dashed lines: numerical
renormalization group !NRG" data !Ref. 32".

FIG. 2. !Color online" Spectral densities "!#" of the metallic
!solid" and the insulating !dashed" solutions between Uc1 and Uc2.

FIG. 3. !Color online" Dotted area: region of two solutions. Left
curves: metallic quasiparticle weight Z; line with circles, interpo-
lated DMRG; line with pluses, NRG !Ref. 16"; dashed line, pertur-
bation up to U4 !Ref. 25". Right curves: insulating gap ! or
pseudogap in the metal !line with diamonds"; line with squares,
DMRG; dashed line, perturbation up to 1/U2 !Ref. 33". Inset:
weight S of the peaks at the inner Hubbard band edges.

BRIEF REPORTS PHYSICAL REVIEW B 72, 113110 !2005"

113110-2

M. Karski et al PRB 72, 113110, 2005
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Illustration of the low-coherence temperature 46

localization). Secondly, the first-order line ends at a criti-
cal point where a crossover region starts. In this region
the metal is sustained by activation across the Mott-
Hubbard gap. As a result the slope of the crossover re-
gion between the metal and the insulator is T!U!2D ,
opposite to that of the transition line.

2. Thermodynamics

Now we turn to the behavior of thermodynamic quan-
tities as a function of temperature, in both the metallic
and insulating phase. The LISA is a powerful technique
for the study of thermodynamics. This represents a sig-
nificant improvement over earlier methods like the
Gutzwiller variational approach or the slave boson
method, which did not have satisfactory extensions to
finite temperatures (because of the neglect of incoherent
excitations).

In the paramagnetic case, the energy is computed
from the Green function using Eq. (47) and the entropy
is given by

S"T #"!
0

T Cv"T!#

T!
dT!#S"0 #

"N ln4!!
T

#$ Cv"T!#

T!
dT!, (238)

where Cv is evaluated by numerical differentiation of
the energy. S(0) is zero for the metallic side and N ln2
for the insulating side, reflecting the double degeneracy
of the impurity model ground state in this phase. The
physical critical line where the first-order phase transi-
tion takes place is determined by equating the free en-
ergies of the two states,

FM!FI"EM!EI!"SM!SI#T . (239)

Figure 36 shows the specific heat Cv as a function of
temperature for two values of the interaction U , in the
metallic and insulating phases, respectively. The charac-
teristic low-energy scale in the metallic phase is set by
the renormalized Fermi energy %F* " ZD . Below this
scale (in practice, below & %F*/5), the specific heat has the
characteristic Fermi-liquid behavior Cv"'T , with the
slope ' proportional to m*/m&(Uc2!U)−1. At higher
temperatures we see a thermal activation of the incoher-
ent features corresponding mainly to density fluctua-
tions. In the insulating phase, we observe only this last
effect, which takes place at an energy scale U!2D . The
main features of the thermodynamics in the strongly cor-
related metallic state can be understood from the exist-
ence of these two energy scales: %F* , the renormalized
Fermi energy, is the scale for low-energy (local) spin
fluctuations, and U is the energy scale for charge (den-
sity) fluctuations. In the correlated metal, these two
scales are well separated and give rise to two peaks in
the specific-heat, while they coalesce for small U (Fig.
37).

The entropy as a function of temperature, obtained by
integrating Cv/T , is displayed in Fig. 38. The quasiparti-
cle peak in Cv corresponds to a spin entropy of ln2,
which is reached at a scale of order %F* , while the inte-
gral over the second peak at around U-2D contains the
ln2 entropy of the charge degrees of freedom. Figure 39
shows the evolution of the spectral function of the metal
as a function of temperature. Note that the quasiparticle
peak is suppressed above a temperature of order %F* . At
higher temperatures, the curvature at low frequencies

FIG. 35. Double occupancy as a function of temperature.
These QMC data were obtained for the hypercubic lattice
(Gaussian density of states with t ij"t/2!d). Note the presence
of a minimum at T"Tm for metallic values of U . The inset
displays Tm as a function of U .

FIG. 36. The specific heat Cv as a function of temperature.
The solid line is for U/D=2 and the dashed line corresponds to
U/D=4. The separation between the spin-fluctuation scale %F*

at low energies and the charge-fluctuations scale at high energy
(&U!2D) is apparent in the metallic case (U/D=2). Note
also the linear behavior at low temperature in the metal, in
contrast to the activated behavior in the insulator.
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changes sign, and !(") has a ‘‘pseudogap’’ shape.
In Figs. 36 and 38, we also display the specific heat

and entropy of the Mott insulating phase. They feature
the expected activated behavior #exp(−$g/T) at low
temperature. Note that, as mentioned above, the insula-
tor has a residual ground-state entropy S(0)!N ln2.
This is also the result found in the Gutzwiller approxi-
mation, where the insulator is caricatured as a collection

of independent magnetic moments. This result may
seem surprising in the present context since the LISA
does not neglect charge fluctuations and residual mag-
netic exchange. The explanation is that there are actu-
ally two different exchange scales in the d=% limit: one is
the exchange coupling between two fixed spins
Jij#t ij

2 /U#O(1/d) while the other is the exchange en-
ergy between a spin and its shell of d antiparallel neigh-
bors. Since the latter is d times the former, it remains
O(1) and sets the scale for the Néel temperature. The
first scale controls the splitting between the (#2N) states
with total Sz=0, and does vanish as d→%. Hence, the
d→% limit does lead to a degenerate ground state when-
ever the Mott insulating phase is not unstable to long-
range antiferromagnetic order (i.e., for highly frustrated
lattices). These considerations will also be crucial in or-
der to understand the behavior of local and uniform spin
susceptibilities.

The comparison of the kinetic energy
K!&'k(kc k

"ck)/N and the potential energy per site
V!U&n↑n↓) of the two solutions is shown in Fig. 40. We
find that the difference in the internal energy of the two
states within the iterated perturbation theory is much
smaller than the corresponding difference in the kinetic

FIG. 37. Low-temperature part of the specific heat Cv as a
function of temperature for several (metallic) values of U/D ,
showing the gradual increase of the slope * and gradual de-
crease of (F* .

FIG. 38. Entropy per site as a function of temperature for two
different values of interaction U/D=2,4. Note that the spin-
fluctuation entropy ln2 is reached at a scale # (F* in the metal.

FIG. 39. Local spectral density +D!(") for various tempera-
tures T/D=0.03 (full), 0.05 (dashed), 0.08 (short-dashed) and
0.10 (dotted), as obtained by iterated perturbation theory (U/
D=2.5). Note the disappearance of the quasiparticle peak at a
scale # (F* , and the corresponding transfer of spectral weight
over large energy scales.

FIG. 40. The kinetic, potential and internal energy as a func-
tion of U for T/D=0.02 from iterative perturbation theory. The
hysteresis effect is clearly observed.
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Role of the frustration 47

Paramagnetic phases : DMFT versus cluster methods

Computation of AF in DMFT (two sublattices e.g. Bethe Lattice)

G−1
0Aσ(iωn) = iωn + µ − t2GBσ(iωn) σ =↑, ↓ GBσ = GAσ̄

DMFT : paramagnetic equations = equations for a frustrated model

Example of the Bethe lattice with second neighbour

G−1
0 (iωn) = iωn + µ − (t21 + t22)G(iωn) t

2

t
1
t
AB

t
AA

=

=

=⇒ In DMFT, simply solve the paramagnetic equations.

In CDMFT, there is AF fluctuations inside the cluster :

=⇒ In CDMFT one must solve a frustrated model

Lyon 26-02-04 – p.26/37
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Complete generic phase diagram 48
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The high pressure regime above 300 bar is now con-
sidered. As demonstrated in the right inset of Fig. 5, the
resistivity in this regime has a quadratic, Fermi-liquid
dependence upon temperature at low temperatures: ! !
!0"P# $ A"P#T2. The quality of the fit, obtained by re-
plotting the data set of Fig. 2 as a function of T2, illus-
trates the high precision of the variable pressure
technique. The coherence temperature T% above which
this law is no longer valid (of the order of 35 K at
500 bar) defines the onset of a bad metal regime, as
indicated in Fig. 1. The prefactor A"P# of the T2 depen-
dence is found to depend strongly on pressure, as dis-
played in Fig. 5, and the product A"P# & "T%#2 remains
approximately pressure independent. These findings cor-
respond to a strongly correlated Fermi-liquid regime at

low temperature.We note that the residual resistivity has a
weaker pressure dependence than A, but does increase
close to the coexistence region. While A"P# cannot be
determined precisely below 280 bar, the data suggest a
divergency of A at P of order 200 bar, significantly
smaller than the pressure at which the extrapolated insu-
lating gap would vanish (of order 370 bar; see above). This
suggests that the closure of the Mott-Hubbard gap and the
loss of Fermi-liquid coherence are two distinct phenom-
ena, associated with very different energy scales, as is
also clear from the fact that the coherence scale T% (a few
tens of Kelvin) is much smaller than the insulating gap !
(several hundreds Kelvin).

In order to better characterize the crossover into the
bad metal as temperature is increased above T%, we have
performed measurements in a wider temperature range,
up to 300 K, as displayed in Fig. 6.We confirm the general
behavior reported by other authors [3]. At moderate pres-
sures (a few hundred bars), the resistivity changes from a
T2 behavior below T% to a regime characterized by very
large values of the resistivity (exceeding the Ioffe-Regel-
Mott limit by more than an order of magnitude) but still
metalliclike (d!=dT > 0). For pressures in the transition
region, this increase persists until a maximum is reached,
beyond which a semiconducting regime is entered
(d!=dT < 0). This regime is continuously connected to
that found on the insulating side, at temperatures above
50 K. Figure 1 summarizes the four regimes of transport
which we have described so far.

We now compare these experimental findings to the
DMFT description of the Mott transition. Similarities
between DMFT and some physical properties of BEDT
organics have been emphasized previously [7,8]. One of
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FIG. 5 (color online). Pressure dependence of the T2 coeffi-
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showing the increase of T% with pressure (straight lines are
guides to the eyes).
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The high pressure regime above 300 bar is now con-
sidered. As demonstrated in the right inset of Fig. 5, the
resistivity in this regime has a quadratic, Fermi-liquid
dependence upon temperature at low temperatures: ! !
!0"P# $ A"P#T2. The quality of the fit, obtained by re-
plotting the data set of Fig. 2 as a function of T2, illus-
trates the high precision of the variable pressure
technique. The coherence temperature T% above which
this law is no longer valid (of the order of 35 K at
500 bar) defines the onset of a bad metal regime, as
indicated in Fig. 1. The prefactor A"P# of the T2 depen-
dence is found to depend strongly on pressure, as dis-
played in Fig. 5, and the product A"P# & "T%#2 remains
approximately pressure independent. These findings cor-
respond to a strongly correlated Fermi-liquid regime at

low temperature.We note that the residual resistivity has a
weaker pressure dependence than A, but does increase
close to the coexistence region. While A"P# cannot be
determined precisely below 280 bar, the data suggest a
divergency of A at P of order 200 bar, significantly
smaller than the pressure at which the extrapolated insu-
lating gap would vanish (of order 370 bar; see above). This
suggests that the closure of the Mott-Hubbard gap and the
loss of Fermi-liquid coherence are two distinct phenom-
ena, associated with very different energy scales, as is
also clear from the fact that the coherence scale T% (a few
tens of Kelvin) is much smaller than the insulating gap !
(several hundreds Kelvin).

In order to better characterize the crossover into the
bad metal as temperature is increased above T%, we have
performed measurements in a wider temperature range,
up to 300 K, as displayed in Fig. 6.We confirm the general
behavior reported by other authors [3]. At moderate pres-
sures (a few hundred bars), the resistivity changes from a
T2 behavior below T% to a regime characterized by very
large values of the resistivity (exceeding the Ioffe-Regel-
Mott limit by more than an order of magnitude) but still
metalliclike (d!=dT > 0). For pressures in the transition
region, this increase persists until a maximum is reached,
beyond which a semiconducting regime is entered
(d!=dT < 0). This regime is continuously connected to
that found on the insulating side, at temperatures above
50 K. Figure 1 summarizes the four regimes of transport
which we have described so far.

We now compare these experimental findings to the
DMFT description of the Mott transition. Similarities
between DMFT and some physical properties of BEDT
organics have been emphasized previously [7,8]. One of
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ρ ∼ exp(∆/2T )

• Δ still large close to 
coexistence

• Mott transition not driven 
by closure of the gap.
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• Divergence of A 
(extrapolated) when Mott 
gap still large.

• T_coh << Δ

The high pressure regime above 300 bar is now con-
sidered. As demonstrated in the right inset of Fig. 5, the
resistivity in this regime has a quadratic, Fermi-liquid
dependence upon temperature at low temperatures: ! !
!0"P# $ A"P#T2. The quality of the fit, obtained by re-
plotting the data set of Fig. 2 as a function of T2, illus-
trates the high precision of the variable pressure
technique. The coherence temperature T% above which
this law is no longer valid (of the order of 35 K at
500 bar) defines the onset of a bad metal regime, as
indicated in Fig. 1. The prefactor A"P# of the T2 depen-
dence is found to depend strongly on pressure, as dis-
played in Fig. 5, and the product A"P# & "T%#2 remains
approximately pressure independent. These findings cor-
respond to a strongly correlated Fermi-liquid regime at

low temperature.We note that the residual resistivity has a
weaker pressure dependence than A, but does increase
close to the coexistence region. While A"P# cannot be
determined precisely below 280 bar, the data suggest a
divergency of A at P of order 200 bar, significantly
smaller than the pressure at which the extrapolated insu-
lating gap would vanish (of order 370 bar; see above). This
suggests that the closure of the Mott-Hubbard gap and the
loss of Fermi-liquid coherence are two distinct phenom-
ena, associated with very different energy scales, as is
also clear from the fact that the coherence scale T% (a few
tens of Kelvin) is much smaller than the insulating gap !
(several hundreds Kelvin).

In order to better characterize the crossover into the
bad metal as temperature is increased above T%, we have
performed measurements in a wider temperature range,
up to 300 K, as displayed in Fig. 6.We confirm the general
behavior reported by other authors [3]. At moderate pres-
sures (a few hundred bars), the resistivity changes from a
T2 behavior below T% to a regime characterized by very
large values of the resistivity (exceeding the Ioffe-Regel-
Mott limit by more than an order of magnitude) but still
metalliclike (d!=dT > 0). For pressures in the transition
region, this increase persists until a maximum is reached,
beyond which a semiconducting regime is entered
(d!=dT < 0). This regime is continuously connected to
that found on the insulating side, at temperatures above
50 K. Figure 1 summarizes the four regimes of transport
which we have described so far.

We now compare these experimental findings to the
DMFT description of the Mott transition. Similarities
between DMFT and some physical properties of BEDT
organics have been emphasized previously [7,8]. One of
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ρ ≈ ρ0 + A(P )T 2

A(P )T 2
coh ≈ const
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Bad metal regime. Comparison with DMFT

• Bethe lattice, NRG solver

• Adjusted parameters : 
D, ρ(T=0), global scale and U.
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Universality and Critical Behavior
at the Mott Transition

P. Limelette,1* A. Georges,1,2 D. Jérome,1 P. Wzietek,1

P. Metcalf,3 J. M. Honig3

We report conductivity measurements of Cr-doped V2O3 using a variable
pressure technique. The critical behavior of the conductivity near the Mott
insulator to metal critical endpoint is investigated in detail as a function of
pressure and temperature. The critical exponents are determined, as well as the
scaling function associated with the equation of state. The universal properties
of a liquid-gas transition are found. This is potentially a generic description of
the Mott critical endpoint in correlated electron materials.

Since the early recognition by Mott (1, 2) that
electron-electron interactions are responsible
for the insulating character of many transition
metal oxides, extensive research over the last
decade has demonstrated the key importance
of this phenomenon for the physics of strong-
ly correlated electron materials. Outstanding
examples (3) are superconducting cuprates,
manganites displaying colossal magnetoresis-
tance, or fullerene compounds. There are two
routes for achieving a metallic state starting
from a Mott insulating material. The first is to
introduce charge carriers by doping. The sec-
ond, closely connected to Mott’s original
ideas, is to reduce the ratio U/W between the
typical strength of local Coulomb repulsion
(U ) and the typical kinetic energy of the
relevant electrons (W ). This can be achieved
in practice, in some materials, by selected
atomic substitutions or by applying pres-
sure. The most widely studied example
(4–8) is Cr-doped vanadium sesquioxide
(V1!x Crx)2O3, which displays a transition
from a paramagnetic Mott insulator to a
strongly correlated metal. The transition into
the metallic state can be triggered by lower-
ing temperature (at sufficiently small chromi-
um concentration x), by decreasing x or by
increasing pressure P [early studies (4–7 )
have revealed that decreasing concentration
by "x #!0.01 corresponds to an applied
pressure of "P # 4 kbar]. The transition is
first-order, with a sizable reduction of the
lattice spacing through the insulator-to-metal
transition, indicating a coupling between
electronic and lattice degrees of freedom. The

first-order transition line in the (P,T)- or
(x,T)-phase diagram ends in a second-order
critical endpoint (Pc,Tc).

We report on transport experiments which
allow for a precise identification of the criti-
cal behavior associated with this critical end-

point, a question of fundamental importance
in understanding the Mott transition. Recent
theoretical developments have proposed a de-
scription of the critical behavior (and also of
the crossovers between distinct transport
regimes close to the critical point) in simpli-
fied, purely electronic models. Despite exten-
sive studies of this material, the critical
behavior has not been elucidated so far ex-
perimentally. The key technique used here
was to perform conductivity measurements as
a function of continuously varying pressure,
at constant temperature [see (5) for an early
study]. This is particularly well adapted to the
situation here in which the transition line in
the (T,P) plane is very sharp. In contrast,
earlier work (8) investigated conductivity as a
function of temperature for a discrete set of
chromium concentrations x.

We used an isopentane liquid pressure
cell and controlled the value of pressure
with an accuracy of 1 bar. Conductivity
was measured at constant regulated temper-

1Laboratoire de Physique des Solides (CNRS, U.R.A.
8502), Bâtiment 510, Université de Paris-Sud, 91405
Orsay, France. 2Laboratoire de Physique Théorique de
l’Ecole Normale Supérieure (CNRS, U.M.R. 8549) 24,
rue Lhomond, 75231 Paris Cedex 05, France. 3Depart-
ment of Chemistry, Purdue University, West Lafay-
ette, IN 47907, USA.
*To whom correspondence should be addressed. E-
mail: limelette@lps.u-psud.fr

Fig. 1. (A) Conductivity
as a function of decreas-
ing pressure, for temper-
atures ranging from T $
485 K (% Tc $ 457.5 K,
orange curves) down to
T $ 290 K (& Tc, blue
curves). The dark yellow
curve is the conductivity
at Tc. Only a selected set
of values of T has been
displayed for clarity. For
a two-dimensional plot
of the data, see fig. S1.
Examples of a hysteresis
cycle are shown for T $
290 K and T $ 348 K. For
a plot of the difference
of conductivities mea-
sured in decreasing and
increasing pressure
sweeps, see fig. S2. Ar-
rows indicate direction
of pressure sweeps. (B)
Phase diagram of Cr-
doped vanadium sesqui-
oxide (V1!x Crx)2O3 as a
function of pressure and
temperature, in the range 1
bar & P & 6 kbar and 290
K & T & 500 K investigat-
ed here. At a given temper-
ature T, the metallic state
can be obtained for pres-
sures higher than the spi-
nodal pressure PM(T ), and
the insulating state for
pressures lower than the spinodal pressure PI(T ). These two spinodal lines delimit a pressure range PM&
P & PI in which the two states coexist (hatched region). This coexistence region closes at the critical
endpoint (Pc,Tc) (Pc! 3738 bar, Tc! 457.5 K). The crossover line above this point (dashed) corresponds
to the inflection point in the '(P) curves. (C) Schematic global phase diagram of Cr-doped vanadium
sesquioxide (V1!x Crx)2O3 as a function of pressure and temperature, deduced from (7). These plots
demonstrate how the critical exponents (, ), and * can be inferred from the study of the conductivity
and of its derivative with respect to pressure.
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Critical point : 56

Comparing these two equations, and noting that
!S! •s!L"<0 and that Jspin(U) decreases as U increases,
proves analytically that Uc1!Uc2 (Fisher, Kotliar, and
Moeller, 1995). This is in complete agreement with the
numerical work described in Sec. VII which tackles the
full problem numerically with exact diagonalization
methods (Rozenberg, Moeller, and Kotliar, 1994).

The projective method described in this section is a
particular implementation of the idea of renormaliza-
tion. It was taylored specifically to solve the LISA equa-
tions. It is worth stressing the reasons why the renormal-
ization group invented by Wilson to solve the single
impurity Kondo model does not work for the impurity
models arising in the context of the LISA applications.
The essential insight is that because of the self-
consistency conditions the energy scales of the impurity
are also the energy scales of the bath. The impurity
models are thus in an intermediate coupling regime. The
logarithmic discretization of Wilson’s mesh and the Wil-
son recursion procedure was intended to deal with a
mismatch in energy scales, typical of a weak-coupling
situation in which the Kondo coupling was much smaller
than the conduction electron bandwidth. Notice that,
even in the Kondo model, the calculation of Green’s
functions is not possible to very high precision for all
energies (cf. Hewson, 1993). In the LISA context, we are
not interested in the low-energy eigenvalue spectrum
(which we can calculate using the renormalization
group), but in the whole single-particle excitation spec-
trum (Green’s function), which is fed back into the low-
energy sector via the self-consistency condition. It is thus

not surprising that a direct numerical renormalization
group approach in the LISA context is faced with rather
serious difficulties. For early attempts to implement the
Wilson scheme to solve the LISA equations see Sakai
and Kuramoto (1994) and Shimizu and Sakai (1995).

VII. THE HUBBARD MODEL AND THE MOTT TRANSITION

In this section, we review the application of the LISA
method to the physics of the Hubbard model. We shall
be concerned with the phase diagram, thermodynamics,
one-particle spectra, and two-particle response func-
tions. The control parameters are the temperature T ,
and the interaction strength U/t . In order to reveal the
full variety of possible behavior, we shall also consider
models with different degrees of magnetic frustration.
This introduces a third parameter, which can be for ex-
ample the ratio of nearest-neighbor to next-nearest
neighbor hopping amplitudes t1/t2 . As a function of
these parameters, the Hubbard model at half-filling has,
within the LISA, four possible phases: a paramagnetic
metallic phase, a paramagnetic insulating phase, an insu-
lating antiferromagnetic phase, and (in the presence of
magnetic frustration) an antiferromagnetic metallic
phase. The effect of doping away from half-filling will
also be considered towards the end of this section (Sec.
VII.H).

A. Early approaches to the Mott transition

We shall put a special emphasis in this section on the
transition between the paramagnetic metal and the para-

FIG. 23. Experimental phase diagram for the
metal-insulator transition in V2O3 as a func-
tion of doping with Cr or Ti and as a function
of pressure (after McWhan et al., 1973). See
also recent results by Carter et al. (1992,
1993) that report a low temperature metallic
phase with antiferromagnetic order in
V2"yO3 .

59A. Georges et al.: Dynamical mean-field theory of . . .

Rev. Mod. Phys., Vol. 68, No. 1, January 1996

Mc Whan et al, 
1973

V2O3

P. Limelette, A. Georges, D. Jérome, P. Wzietek, P. Metcalf, J.M. Honig, Science 302, 89 (2003)

Resistivity under pressure.
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Critical regime 57

ature with an accuracy of order 0.1 K as a
function of pressure using a standard four-
probe method. All of our measurements
were performed on crystals of (V0.989

Cr0.011)2O3 grown using the skull-melter
technique followed by appropriate anneal-
ing (9). The choice of a Cr concentration
x ! 0.011 ensures that the sample is on the
insulating side of the transition at ambient
pressure but that a moderate pressure of a
few kilobars (or, alternatively, a decrease in
temperature) drives the system into the me-
tallic state. This is visible on the data set
(Fig. 1A), which displays the conductivity
" as a function of pressure P, for several
temperatures in the range 290 K # T # 485
K. These data were obtained by decreasing
pressure from P ! 6 kbar down to ambient
pressure, going from a high-conductivity
metallic regime to a low-conductivity insu-
lating regime. For temperatures smaller
than the critical temperature Tc this transi-
tion is discontinuous, with a sudden jump
of conductivity. To locate precisely this
critical point and to demonstrate the first-
order nature of the transition, we performed
hysteresis experiments in which the con-
ductivity was measured during increasing
and decreasing pressure sweeps at a slow
rate of order 25 bar/min (Fig. 1A). From the
difference between the measured conduc-
tivities in these two sweeps (fig. S2), two
characteristic pressures can be identified,

PM(T ) and PI(T ) (PM # PI), corresponding
to the lowest pressure at which a metallic
state can be sustained while decreasing
pressure (PM) and to the highest pressure at
which an insulating state can be sustained
while increasing pressure (PI), respective-
ly. These two spinodal lines, plotted as a
function of temperature on Fig. 1B, merge
at the critical endpoint (Pc,Tc). We can then
estimate that Pc ! 3738 bar and Tc ! 457.5
K. Varying pressure rather than tempera-
ture is essential for a precise determination
of Tc, which is compatible with the early
estimate of 450 K (8). At the critical tem-
perature, the pressure dependence of
"(P,Tc) becomes singular, with a vertical
tangent at the critical pressure P ! Pc (Fig.
2A). For T $ Tc, this singular behavior is
replaced by a continuous variation of the
conductivity with pressure, which never-
theless defines a sharp crossover line in the
(P,T ) phase diagram (as also depicted in
Fig. 1B). This crossover line extrapolates to
a temperature of order %500 K for the
pressure (%5 kbar) corresponding to the
pure V2O3 compound. Interestingly, the lo-
cation of this crossover coincides with the
one detected in early nuclear magnetic res-
onance (NMR) experiments (10).

We show that the critical singularities
found in the vicinity of the critical endpoint
(Pc,Tc) can be analyzed in the framework of
the scaling theory of the liquid-gas transi-

tion of classical systems (11). The analogy
between the latter and the finite-tempera-
ture Mott transition has been emphasized
earlier (5, 12). The insulating phase (in
which the vanadium is mainly in the V3&

state, corresponding to the d2 configura-
tion) can be pictured as a “gas” phase with
a low density of double occupancies or
holes (corresponding to V2& and V4&, or d3

and d1, respectively). The metallic phase
corresponds to a “liquid” with a sizeable
density of holes and double occupancies.
Recently, this analogy has been given firm
theoretical foundations within the frame-
work of a Landau theory (13, 14 ) derived
from dynamical mean-field theory (DMFT)
(15). In this framework, a scalar order pa-
rameter ' is associated with the low-energy
electronic degrees of freedom that build up
the quasiparticle resonance in the strongly
correlated metallic phase close to the tran-
sition. This order parameter couples to the
singular part of the double occupancy
(hence providing a connection to the pic-
ture described above), as well as to other
observables such as the Drude weight or
conductivity. Because of the scalar nature
of the order parameter, the transition falls
in the Ising universality class. Coupling to
lattice degrees of freedom can also be in-
cluded in the theory (16 ) without changing
this conclusion. Here, we denote the scal-
ing variable corresponding to the tempera-
ture scaling axis in the Ising model analysis
(i.e., to the term r'2 in the Landau func-
tional) by r and the scaling axis corre-
sponding to magnetic field (i.e., to the sym-
metry-breaking term (h' ) by h. These
scaling variables are a priori linear combi-
nations of (T ( Tc)/Tc and (P ( Pc)/Pc.
However, our data are compatible with no
or little mixing, so we choose in all the
following: r ! (T ( Tc)/Tc&. . . , h ! (P (
Pc)/Pc &. . . (the dots indicate higher order
terms). Denoting the measured conductivi-
ty at the critical point by "c ! "(Pc,Tc) (!
449.5 )(1cm(1), it is expected that
"(P,T ) ( "c depends linearly on the order
parameter *'+ close to the critical point.
(This can be explicitly proven in the con-
text of DMFT.) At T ! Tc, this implies a
critical singularity of the form "(P,Tc) (
"c % h1/,, with , the critical exponent
associated with the singular dependence of
the magnetization at the critical point in the
Ising model. The data in Fig. 2A are very
well fitted by this form, as demonstrated in
the inset. Over more than two decades of
variation in h, we find the best fit value of the
exponent to be , ! 3, i.e., the mean-field
value. In a narrow pressure interval (-P ! 10
bar) close to the critical pressure, indication
for a crossover toward a value , ! 5 is found,
close to the three-dimensional (3D) Ising val-
ue , ! 4.814.

Fig. 2. (A) At the crit-
ical temperature T !
Tc, the conductivity "
is plotted as a func-
tion of pressure. The
bold line is a fit to
"("c % (P(Pc)

1/,,
with , ! 3. The use of
a logarithmic scale
(inset) confirms this
value and also reveals
a non–mean-field re-
gime for P close to Pc.
(B) Order parameter
"*(T ) ! "(PI(T ),T )("c
versus T/Tc, for T # Tc.
The line is a fit to
(Tc(T )

. with . ! 0.5.
The inset (logarithmic
scale) reveals a non–
mean-field regime close
to Tc. (C) Derivative of
the conductivity (analo-
gous to a susceptibility
/, as described in text),
for T # Tc and T $ Tc.
The plain lines are fits to
/01T(Tc1

(2, with 2 ! 1
and /&//( ! 2.
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We addressed the critical behavior away
from Tc by studying the temperature depen-
dence of the conductivity in the following
manner. For T ! Tc, we focused on the
conductivity of the metallic state, at the high-
pressure boundary of the coexistence re-
gion. That is, we considered "*(T) #
"met(PI(T ),T ) $ "c with PI(T ) as the spi-
nodal of the insulating phase. This quantity
(Fig. 2B) is expected to display the critical
behavior of the order parameter, by analogy
with the liquid-gas transition "*(T ) %
($r)&, with r ' (T $ Tc)/Tc. As shown in
the inset, a mean-field value of the critical
exponent & ! 0.5 is found to fit the data
over almost two decades away from the
critical point. In a narrow temperature in-
terval (T ! 4 K close to Tc ((T/Tc ! 0.01),
some indication for a crossover towards a
non–mean-field value & ! 0.34 is found,
close to the 3D Ising value & ! 0.327. We
also consider the derivative of the conduc-
tivity with respect to pressure, in the me-
tallic state, taken on the same spinodal line:
)(T) # (d"met(P,T )/dP)|P * PI(T ). This
quantity can be defined as well for T + Tc

by taking the derivative at the inflection
point of the "(P) curve (Fig. 1A). Follow-
ing the liquid-gas analogy, it corresponds
to the magnetic susceptibility in the equiv-
alent Ising model: ) ' d,-./dh. As shown
in Fig. 2C, it is found to diverge as ) %
)//(T$Tc)

0 for T + Tc and as ) % )$/
(Tc$T )01 for T ! Tc. The exponent 0 and
the (universal) amplitude ratio )//)$ are
found to be close to their mean-field val-
ues: 0 * 01 * 1 and )//)$ * 2. Very close
to Tc, the noise in the numerical derivative
involved in the determination of ) prevents
a reliable determination of deviations from
mean field, in contrast to the study of the
conductivity itself.

Finally, we demonstrate that the whole set
of conductivity data in the metallic phase can
be scaled onto a universal form, which can be
written as:

"met(P,T )$"c*(2h)1/2ƒ3" 2h
4r402/(2$1)# (1)

In this expression, 2h * h $ hI denotes the
difference between the “field” h *
(P $ Pc)/Pc and its value on the spinodal line
of the insulating phase hI * (PI $ Pc)/Pc, i.e.,
2h * (P $ PI(T ))/Pc. This amounts to a
simple shift of the field variable on the stan-
dard form (11) of the universal equation of
states near a liquid-gas critical point. The
functions f/ and f$ are universal scaling
functions that apply for T + Tc (r + 0) and
T ! Tc (r ! 0), respectively. When written in
this form, the equation of state is such that the
order parameter "*(T ) defined above is re-
covered when the limit 2h3 0 is taken in the
right-hand side of Eq. 1. The pressure-depen-
dent data sets for many different temperatures

have been plotted in this manner (Fig. 3), in
which the two exponents 0 and 2 were taken
as adjustable parameters (fig. S3) in order to
obtain the best collapse of all the data points
onto single curves. This leads to values of
these exponents close to the mean-field ones,
0 ! 1 and 2 ! 3, which provides a strong
check on the individual determination of each
critical exponent performed here. The quality
of the scaling is seen to be excellent over a
very large range of variation of the scaling
variables (several decades). It is apparent that
the scaling functions obey the expected as-
ymptotic behaviors of f/(x !! 1) % x1$1/2,
f$(x !! 1) % x$1/2, and f3(x ++ 1) %
constant. This finding is essential to ensure
that Eq. 1 is compatible with the critical
behavior of the order parameter "* at small
and large field, for both T ! Tc and T + Tc,
investigated previously in Fig. 2. It also im-

plies that the critical exponents obey the re-
lation 0 * &(2$1), in agreement with the
above determination of &.

These universal scaling properties of the
pressure- and temperature-dependent con-
ductivity experimentally demonstrate that
the electronic degrees of freedom undergo a
liquid-gas phase transition at the Mott crit-
ical endpoint. Critical exponents and a uni-
versal scaling function have been deter-
mined. Our results are consistent with
mean-field values over most of the param-
eter range, with some indication for 3D
Ising behavior very close to the transition.
A possible explanation for why the range of
validity of mean-field theory is so large can
be put forward by analogy with the theory
of conventional superconductors. There,
the key point is the existence of a very large
length scale (the pair coherence length),

Fig. 3. Scaling plot of the conductivity onto a universal equation of state. The whole data set in the
metallic state has been used in order to plot ("$"c)/(P$PI)

1/2 vs. (P$PI)/(T$Tc)
02/(2$1), as

described in the text. The data collapse onto two universal curves for T + Tc and T ! Tc,
corresponding to the universal scaling functions f3 in Eq. 1.
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DMFT : Ising universality class  G. Kotliar.E. Lange, M.J. Rozenberg, PRL84 5180 (2000). 

r ∼ T − Tc, h ∼ P − Pc
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Analogous to Pomeranchuk effect

• Entropy of the localized phase > Entropy of the liquid

• One can increase localization by heating

• Real of artefact of a too simple paramagnetic insulator ?

• A possible test in cold fermions....

58

Pomeranchuk temperature

ance of the insulating solution at Uc1, the behavior of
the gap at this point, and the value of Uc1 have not yet
been fully settled.

In summary, the existence of two classes of solutions
of the paramagnetic LISA equations at zero tempera-
ture can be established analytically. Metallic solutions
are characterized by a nonzero density of states !(0)
=D(0) [=2/("D) for the Bethe lattice], while insulating
solutions have !(0)=0, for both the impurity and the ef-
fective conduction bath at zero frequency. The density of
states at zero energy is an order parameter for this prob-

lem, and can be shown to be self-consistently nonzero
for small U/D and zero for large U/D .

D. Phase diagram and thermodynamics

1. Paramagnetic phases

The qualitative distinction between a metal and an
insulator is precise at zero temperature. At finite but
small temperatures a sharp distinction between a metal-
lic and an insulating solution can still be made in the
present problem, since a region of the (U ,T) parameter
space defined by Uc1(T)!U!Uc2(T) is found where
two paramagnetic solutions are allowed within the
LISA, as shown on Fig. 33 (Georges and Krauth, 1993;
Rozenberg, Kotliar, and Zhang, 1994). This is evidenced
by the plot of the double occupancy #n↑n↓$ given in Fig.
34. One of these solutions is continuously connected to
the T=0 metallic solution, and its density of states dis-
plays a peaklike feature at the Fermi energy. The other
solution can be connected to the T=0 insulating solution,
and the Green’s function extrapolates to zero at zero
frequency. As the temperature is further increased, this
region of coexistent solutions disappears and we are left
with a rapid crossover from a metallic-like solution to an
insulating-like one. This is possible because at finite tem-
perature there is no qualitative distinction between a
metallic and an insulating state. The two lines Uc1(T)
and Uc2(T) defining the coexistence region merge at a
second-order critical point (Fig. 33). The actual metal-
insulator transition at finite temperature is first order,
and takes place at the coupling Uc(T) where the free
energy of the two solutions cross. Note that this is the
case even though no lattice deformations have been in-
cluded in the model. For early discussions of the occur-
rence of a first-order metal-insulator transition at finite
temperature in the Hubbard model, see the works of
Cyrot (1972); Castellani, DiCastro, Feinberg, and Ran-
ninger (1979); Spalek, Datta, and Honig, 1987); Spalek

FIG. 31. Real and imaginary parts of the self-energy %(&+i0+),
as obtained from the iterated perturbation theory approxima-
tion, for a value of U/D=4 in the insulating phase. The inset
contains the same quantities on a larger scale that shows the
1/& singularity in Re%.

FIG. 32. Paramagnetic gap (solid line) as a function of the
interaction U obtained from exact diagonalization. For com-
parison, the corresponding results from iterated perturbation
theory (dotted line) and the value of Uc1

H III " )D within the
Hubbard III approximation (diamond) are also shown.

FIG. 33. Phase diagram of the fully frustrated model at half-
filling. It is possible to move continuously from one phase to
the other since at high temperature the transition becomes a
crossover. Within the region delimited by the dashed lines, the
metallic and insulating solutions coexist. The full line is the
approximate location of the actual first-order transition line.
Both ends of this line [at the full square and at Uc2(T)=0] are
second-order points.

65A. Georges et al.: Dynamical mean-field theory of . . .
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He3 phase diagram
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Signature of Mott transition in double occupancy

• There is a minimum for metallic values.

59

d ≡ 〈ni↑ni↓〉

localization). Secondly, the first-order line ends at a criti-
cal point where a crossover region starts. In this region
the metal is sustained by activation across the Mott-
Hubbard gap. As a result the slope of the crossover re-
gion between the metal and the insulator is T!U!2D ,
opposite to that of the transition line.

2. Thermodynamics

Now we turn to the behavior of thermodynamic quan-
tities as a function of temperature, in both the metallic
and insulating phase. The LISA is a powerful technique
for the study of thermodynamics. This represents a sig-
nificant improvement over earlier methods like the
Gutzwiller variational approach or the slave boson
method, which did not have satisfactory extensions to
finite temperatures (because of the neglect of incoherent
excitations).

In the paramagnetic case, the energy is computed
from the Green function using Eq. (47) and the entropy
is given by

S"T #"!
0

T Cv"T!#

T!
dT!#S"0 #

"N ln4!!
T

#$ Cv"T!#

T!
dT!, (238)

where Cv is evaluated by numerical differentiation of
the energy. S(0) is zero for the metallic side and N ln2
for the insulating side, reflecting the double degeneracy
of the impurity model ground state in this phase. The
physical critical line where the first-order phase transi-
tion takes place is determined by equating the free en-
ergies of the two states,

FM!FI"EM!EI!"SM!SI#T . (239)

Figure 36 shows the specific heat Cv as a function of
temperature for two values of the interaction U , in the
metallic and insulating phases, respectively. The charac-
teristic low-energy scale in the metallic phase is set by
the renormalized Fermi energy %F* " ZD . Below this
scale (in practice, below & %F*/5), the specific heat has the
characteristic Fermi-liquid behavior Cv"'T , with the
slope ' proportional to m*/m&(Uc2!U)−1. At higher
temperatures we see a thermal activation of the incoher-
ent features corresponding mainly to density fluctua-
tions. In the insulating phase, we observe only this last
effect, which takes place at an energy scale U!2D . The
main features of the thermodynamics in the strongly cor-
related metallic state can be understood from the exist-
ence of these two energy scales: %F* , the renormalized
Fermi energy, is the scale for low-energy (local) spin
fluctuations, and U is the energy scale for charge (den-
sity) fluctuations. In the correlated metal, these two
scales are well separated and give rise to two peaks in
the specific-heat, while they coalesce for small U (Fig.
37).

The entropy as a function of temperature, obtained by
integrating Cv/T , is displayed in Fig. 38. The quasiparti-
cle peak in Cv corresponds to a spin entropy of ln2,
which is reached at a scale of order %F* , while the inte-
gral over the second peak at around U-2D contains the
ln2 entropy of the charge degrees of freedom. Figure 39
shows the evolution of the spectral function of the metal
as a function of temperature. Note that the quasiparticle
peak is suppressed above a temperature of order %F* . At
higher temperatures, the curvature at low frequencies

FIG. 35. Double occupancy as a function of temperature.
These QMC data were obtained for the hypercubic lattice
(Gaussian density of states with t ij"t/2!d). Note the presence
of a minimum at T"Tm for metallic values of U . The inset
displays Tm as a function of U .

FIG. 36. The specific heat Cv as a function of temperature.
The solid line is for U/D=2 and the dashed line corresponds to
U/D=4. The separation between the spin-fluctuation scale %F*

at low energies and the charge-fluctuations scale at high energy
(&U!2D) is apparent in the metallic case (U/D=2). Note
also the linear behavior at low temperature in the metal, in
contrast to the activated behavior in the insulator.

67A. Georges et al.: Dynamical mean-field theory of . . .

Rev. Mod. Phys., Vol. 68, No. 1, January 1996

A.Georges, W. Krauth, PRL 69, 1240 (1992)
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Interaction-Induced Adiabatic Cooling

• A relation between entropy per site s and double occupancy : 

• Isentropic curves determined by variations of d !

60

s(Ti(U), U) = cte =⇒ c(Ti)
dTi

dU
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Beyond Hubbard model and 1 site DMFT ?
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Cluster extensions of DMFT 

• Reintroduce k-dependence of Σ(k,ω) : 
variations of Z, effective mass, lifetime along the Fermi surface. 

• Describe d-wave supraconductors.

• Applications to high-Tc and to heavy fermions.

• Non trivial paramagnetic insulators (frustrated magnets ?)

62

G0
G0

short range quantum fluctuationslocal quantum fluctuations

Lecture 3 
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Cluster extensions : CDMFT

• 4 Anderson impurities coupled to an effective bath 

63

Cluster DMFT (1)

Missing in DMFT . . .

Various orders : e.g. d-SC,DDW, (AF).

k dependence of Σ(k, ω) =⇒ Z ∼ m
m∗

Variations of Z, m∗, τ on the Fermi surface.

Non trivial insulators (frustrated magnets ?)

Non-local interactions (e.g. nearest neighbours).

. . . but present in cluster methods

spatially short range quantum fluctuations

DMFT Cluster DMFT

G0

=⇒

G0

Cologne 18-01-2006 – p.12/42 Superlattice

CDMFT equations

CDMFT

H = −
∑

RmµRnν

t̂µν(Rm−Rn)c+
RmµcRnν+

∑

R1µR2ν

R3ρR4ς

Uµνρς({Ri})c
+
R1µ

c+
R2ν

cR4ςcR3ρ

Seff = −

∫∫ β

0
dτdτ ′c†µ(τ)G−1

0,µν(τ, τ
′)cν(τ

′) +

∫ β

0
dτUαβγδ(0)(c†αcβc†γcδ)(τ)

Gcµν(τ) = −
〈

Tcµ(τ)c†ν(0)
〉

Seff

Σc = G−1
0 − G−1

c

G−1
0 (iωn) =

[

′
∑

K∈R.B.Z.

(

iωn + µ − t̂(K) − Σc(iωn)

)−1
]−1

+ Σc(iωn)

Cologne 18-01-2006 – p.15/42

1 ≤ µ, ν ≤ 4

Seff = −
∫∫ β

0
dτdτ ′c†µ(τ)G−1

0,µν(τ, τ ′)cν(τ ′) +
∫ β

0
dτU(ni↑ni↓)(τ)

Gcµν(τ) = −〈Tcµ(τ)c†ν(0)〉Seff

Σc = G−1
0 − G−1

c

G−1
0 (iωn) =

[ ′∑

K∈R.B.Z.

(
iωn + µ − t̂(K) − Σc(iωn)

)−1
]−1

+ Σc(iωn)
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• Phase diagram of Hubbard model

Cluster DMFT and high-Tc ... 64

M. Jarrell et al (2001)

d−SC in Cluster DMFTs

Variant of CDMFT (2x2)

AF + SC coexistence.

A. Lichtenstein, M. Katsnelson, PRB (2000)

2x2 DCA M. Jarrell, T. Maier et al. PRL 2000=⇒
 0
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Does the Hubbard model have a d−SC phase ?

Large Clusters in DCA : T. Maier et al., condmat/0504529

For U/D = 1, Tc ≈ 0.02t > 0 (up to 26 sites).

CDMFT ?

d-SC (from ED), Tc # T DCA
c (2x2 clusters, QMC).

Here : reach the Mott insulator within the SC, at large U

CDMFT. 2x2 cluster. ED solver.

Cologne 18-01-2006 – p.33/42

• Two gaps in the SC phase 
close to Mott transition
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FIG. 4: (Color online) Antinodal energy gap ∆tot (circles),
obtained from the spectra of panel D in Fig. 2, as a func-
tion of doping δ, and decomposed in a normal contribution
∆nor (squares), obtained from panel B in Fig. 2, and in a
superconducting contribution ∆sc (diamonds).

uated the antinodal gap in the superconducting state
∆tot by measuring the distance from the Fermi level
(ω = 0) at which spectral peaks are located (panel D
of Fig. 2). ∆tot monotonically increases by reducing
doping, as observed in experiments on HTCS. At small
doping, a PG opens at a critical doping δc ≈ 0.08. In
order to disentangle the contribution of the normal com-
ponent from the superconducting gap, we look at panel
B of Fig.2, where we have set Σano = 0. While we are
able to identify (at a finite frequency ωpg < 0) a peak in
the spectrum, this may not correspond strictly speaking
to a Landau quasi-particle, since it can decay into the
lower-energy nodal quasi-particles. The weight of such
a peak, Zanod, displayed in panel C of Fig.2 does not
necessarily correspond to a Fermi-liquid quasi-particle
renormalization. As with ∆tot, we define the normal
contribution to the antinodal energy-gap ∆nor = |ωpg|
from panel B of Fig. 4. We also isolate and display
the anomalous contribution to the total antinodal gap
∆sc =

√

∆2
tot − ∆2

nor and find that, within our numer-
ical accuracy ∆sc(k) ∼ Zanod|Σano(k, 0)|. The appear-
ance of a finite ∆nor coincides with a downturn in ∆sc.
We interpret ∆tot as the monotonically increasing antin-
odal gap observed in cuprates superconductors, while the
superconducting gap ∆sc, detectable as the nodal-slope
v∆ (Fig. 3), is decreasing in approaching the Mott tran-
sition.

The concept of two energy gaps with distinct dop-
ing dependence in the high temperature superconduc-
tors has recently been brought into focus from an
analysis of Raman spectroscopy[12], and photoemission
experiments[13] [14]. Here we show that this observation
follows naturally from the simplest (dynamical) mean
field treatment of correlated superconductivity near a
Mott transition with strong antiferromagnetic correla-

tions. Notice that the one particle gap in the CDMFT
picture is unusual. It is the result of both the anomalous
self-energy and the normal self-energy. This is reminis-
cent of the earlier slave boson mean field treatment of
the t-J model[21, 22], which uses order parameters de-
fined within a plaquette and includes the possibility of
pairing in both the particle-particle and the particle-hole
channels. Compared to the self-energy of the slave boson
treatment, as in the Resonating Valence Bond (RVB)
treatment[22], the CDMFT lattice-self-energy has rele-
vant normal and anomalous components at small dop-
ing, it has considerably stronger variations on the Fermi
surface[10] and additional frequency dependence, which
makes the one electron states near the antinodal point
very incoherent even in the superconducting state. Fur-
thermore, in the RVB slave boson mean field theory the
anomalous self-energy of the electron increases with de-
creasing doping, in contrast to our findings in CDMFT.

Finally, we note that, as we have not been able to
converge a normal state CDMFT solution at very low
effective temperatures, we cannot address the seemingly
contradictory results on a non-superconductive ground-
state of Ref.[23], as discussed in Ref.[24]. It is possible
that, just like in cuprates, additional fields or pertur-
bations need to be applied to the mean field theory in
order to be able to stabilize a ”normal” state down to
zero temperature.
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Cluster extensions of DMFT : heavy fermions 65

• Heavy fermion problem. Periodic Anderson model 

• DMFT maps e.g. 2 Anderson impurities to the lattice problem

‣ Multiple impurities model have richer physics due to competition 
between Kondo screening and RKKY interaction

‣ Local QCP  → QCP of the lattice model ??
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Towards more realism... 66

• Multiorbital models. Possibility of orbitally selective Mott transition

• 3 bands for cuprates (d-p orbitals). 

• Use a better t(k)

• Mix DFT and DMFT : Lecture 4.

LaO

LaO

CuO
2

Cu Cu

Cu Cu

dp
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Conclusion lecture 1

• Introduction to Mott transition, impurities and DMFT formalism

• Mott transition in DMFT in the simplest case

• Compares nicely to experiments

• Next time : 

• Derivation of the DMFT equations ?

• How to solve quantum impurity models ?
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