# The nested loop approach to the O(n) model on random maps

Jérémie Bouttier

Joint work with Gaëtan Borot (Geneva) and Emmanuel Guitter (IPhT)

Institut de Physique Théorique, CEA Saclay Département de mathématiques et applications, ENS Paris

> Quantum Gravity in Paris, Orsay 23 March 2013

## Plan

#### Introduction

- 2 Maps and loops
- 3 The gasket decomposition
- 4 Functional equation for the resolvent
- 5 Twofold loop models and the Potts model

Consider (Euclidean) 2D quantum gravity coupled to a CFT of central charge  $c \leq 1$ . Its lattice regularization is obtained by considering a critical statistical physics model defined on a dynamical (annealed) random map.

An unsettled question is the dependence of the intrinsic Hausdorff dimension  $d_H$  on c. Several values have been proposed :

•  $d_H(c) = \frac{\sqrt{25-c}}{\sqrt{1-c}} - 1$ •  $d_H(c) = 2\frac{\sqrt{25-c}+\sqrt{49-c}}{\sqrt{25-c}+\sqrt{1-c}}$ •  $d_H(c) = 4$ 

It is believed that the second formula is correct for  $c \le 0$  and the third is correct for  $c \ge 0$ . (All fit the known value  $d_H(c = 0) = 4$ .)

See for instance [Duplantier, arXiv:1108.3327] and references therein.

- 本間 ト イヨ ト イヨ ト 三 ヨ

Many statistical physics models can be reformulated in terms of "loop gases" : polymers, self-avoiding walks, percolation, lsing/Potts... and of course the O(n) model where n plays the role of a loop fugacity. For  $n \in [-2, 2]$ , the O(n) model has critical points of central charge :

$$c=1-\frac{6e^2}{1-e}, \qquad n=2\cos\pi e.$$

This model is naturally defined on random maps (aka dynamical random lattices). On triangulations, the model was solved via matrix integral techniques [Kostov, Staudacher, Eynard, Zinn-Justin, Kristjansen...].



This solution consists in the computation of the partition function and other "global" quantities, but little is known on the "local" geometry...

In contrast, the geometry of random maps without loops is now better understood.

In a generic random map, the typical graph distance between vertices is of order  $m^{1/4}$ , where *m* is the map size. The scaling limit is the Brownian map [Le Gall, Miermont...].



picture by G. Chapuy

It is unclear how to extend this construction to models with matter (bijections exist but do not properly encode the distances).

Following a different approach, Le Gall and Miermont introduced models of maps with large faces, or gaskets, whose scaling limits differ from the Brownian map (which has spherical topology, hence no holes).



As we shall see, gaskets naturally arise in the O(n) loop model.

## Plan

#### Introduction

- 2 Maps and loops
- 3 The gasket decomposition
- 4 Functional equation for the resolvent
- 5 Twofold loop models and the Potts model

## Plan

#### Introduction

#### 2 Maps and loops

3 The gasket decomposition

- 4 Functional equation for the resolvent
- 5 Twofold loop models and the Potts model

A rooted planar map is a graph embedded in the plane, considered up to continuous deformation, with a distinguished root edge incident to the outer face.



A quadrangulation with a boundary (each inner face has degree 4)

A rooted planar map is a graph embedded in the plane, considered up to continuous deformation, with a distinguished root edge incident to the outer face.



A quadrangulation with a boundary (each inner face has degree 4)

Natural probability measures over maps : uniform distribution over maps with m edges, over triangulations with m triangles, over quadrangulations with m squares...

## Boltzmann ensemble of maps with controlled face degrees (related to the Hermitian one-matrix model)

Choose a sequence of face weights  $g_1, g_2, g_3, \dots$ 

Partition function

$$\mathcal{F}_p(g_1, g_2, \ldots) = \sum_{\substack{\text{maps with} \\ \text{outer degree } p}} \prod_{k \ge 1} g_k^{\#\{\text{inner faces of degree } k\}}$$

By convention  $\mathcal{F}_0(g_1, g_2, \ldots) = 1$  (vertex-map).

#### Specializations

- Triangulations :  $g_k = g$  if k = 3, 0 otherwise.
- Quadrangulations :  $g_k = g$  if k = 4, 0 otherwise.
- Maps with a controlled number of edges :  $g_k = t^{k/2}$

A non-negative weight sequence  $(g_1, g_2, \ldots)$  is either :

• non-admissible :  $\mathcal{F}_p(g_1, g_2, \ldots) = \infty$  for some p

- non-admissible :  $\mathcal{F}_p(g_1, g_2, \ldots) = \infty$  for some p
- admissible :  $\mathcal{F}_p(g_1, g_2, \ldots) < \infty$  for all p

- non-admissible :  $\mathcal{F}_p(g_1, g_2, \ldots) = \infty$  for some p
- admissible :  $\mathcal{F}_p(g_1, g_2, \ldots) < \infty$  for all p
  - ► subcritical : P(#{vertices} > m) decays exponentially

A non-negative weight sequence  $(g_1, g_2, \ldots)$  is either :

- non-admissible :  $\mathcal{F}_p(g_1, g_2, \ldots) = \infty$  for some p
- admissible :  $\mathcal{F}_p(g_1, g_2, \ldots) < \infty$  for all p
  - ► subcritical : P(#{vertices} > m) decays exponentially
  - critical :  $\mathbb{P}(\#\{\text{vertices}\} > m)$  decays subexponentially

11 / 42

- non-admissible :  $\mathcal{F}_p(g_1, g_2, \ldots) = \infty$  for some p
- admissible :  $\mathcal{F}_p(g_1, g_2, \ldots) < \infty$  for all p
  - ► subcritical : P(#{vertices} > m) decays exponentially
  - ► critical : P(#{vertices} > m) decays subexponentially
    - ★ generic :  $\mathbb{P}(\text{degree of a typical face} > k)$  decays exponentially or faster

- non-admissible :  $\mathcal{F}_p(g_1, g_2, \ldots) = \infty$  for some p
- admissible :  $\mathcal{F}_p(g_1, g_2, \ldots) < \infty$  for all p
  - ► subcritical : P(#{vertices} > m) decays exponentially
  - ► critical : P(#{vertices} > m) decays subexponentially
    - ★ generic :  $\mathbb{P}(\text{degree of a typical face} > k)$  decays exponentially or faster
    - \* non-generic :  $\mathbb{P}(\text{degree of a typical face} > k)$  decays subexponentially



- non-admissible :  $\mathcal{F}_p(g_1, g_2, \ldots) = \infty$  for some p
- admissible :  $\mathcal{F}_p(g_1, g_2, \ldots) < \infty$  for all p
  - ► subcritical : P(#{vertices} > m) decays exponentially
  - ► critical : P(#{vertices} > m) decays subexponentially
    - ★ generic :  $\mathbb{P}(\text{degree of a typical face} > k)$  decays exponentially or faster
    - \* non-generic :  $\mathbb{P}(\text{degree of a typical face} > k)$  decays subexponentially



A non-negative weight sequence  $(g_1, g_2, \ldots)$  is either :

- non-admissible :  $\mathcal{F}_p(g_1, g_2, \ldots) = \infty$  for some p
- admissible :  $\mathcal{F}_p(g_1, g_2, \ldots) < \infty$  for all p
  - ► subcritical : P(#{vertices} > m) decays exponentially
  - ► critical : P(#{vertices} > m) decays subexponentially
    - ★ generic :  $\mathbb{P}(\text{degree of a typical face} > k)$  decays exponentially or faster
    - ★ non-generic :  $\mathbb{P}(\text{degree of a typical face} > k)$  decays subexponentially



But do non-generic critical weight sequences exist?

#### Le Gall-Miermont construction

Pick an arbitrary sequence  $(g_1^\circ,g_2^\circ,\ldots)$  such that

$$g_k^{\circ} \sim_{k \to \infty} k^{-\alpha - 1/2}, \qquad \alpha \in (1, 2).$$

There exists unique constants A, B such that the weight sequence  $g_k := A B^k g_k^\circ$  is non-generic critical and then

 $\mathbb{P}(\text{degree of a typical face} > k) \sim \text{cst.} k^{-\alpha}$ 

## Le Gall-Miermont construction

Pick an arbitrary sequence  $(g_1^\circ,g_2^\circ,\ldots)$  such that

$$g_k^{\circ} \sim_{k \to \infty} k^{-\alpha - 1/2}, \qquad \alpha \in (1, 2).$$

There exists unique constants A, B such that the weight sequence  $g_k := A B^k g_k^\circ$  is non-generic critical and then

 $\mathbb{P}(\text{degree of a typical face} > k) \sim \text{cst.} k^{-lpha}$ 

Conditioning the map to have a large number m of vertices, the typical distance between vertices is then of order  $m^{1/2\alpha}$  (instead of  $m^{1/4}$  for generic critical sequences). This yields a non-generic scaling limit : a "stable" map of Hausdorff dimension  $2\alpha$ , instead of the Brownian map (dimension 4).

## Le Gall-Miermont construction

Pick an arbitrary sequence  $(g_1^\circ,g_2^\circ,\ldots)$  such that

$$g_k^{\circ} \sim_{k \to \infty} k^{-\alpha - 1/2}, \qquad \alpha \in (1, 2).$$

There exists unique constants A, B such that the weight sequence  $g_k := A B^k g_k^\circ$  is non-generic critical and then

 $\mathbb{P}(\text{degree of a typical face} > k) \sim \text{cst.} k^{-lpha}$ 

Conditioning the map to have a large number m of vertices, the typical distance between vertices is then of order  $m^{1/2\alpha}$  (instead of  $m^{1/4}$  for generic critical sequences). This yields a non-generic scaling limit : a "stable" map of Hausdorff dimension  $2\alpha$ , instead of the Brownian map (dimension 4).

Is this construction related to a "physical" process?

12 / 42

#### Loops

We consider self and mutually avoiding loops on the dual map (by convention, the outer face is not visited).



Each face is incident to 0 or 2 covered edges.

Jérémie Bouttier (IPhT)

The nested loop approach to the O(*n*) mode

## O(n) loop model

Each configuration (map with loops) receives a weight

 $n^{\#\{\text{loops}\}} \times (\text{local weights})$ 

#### Examples

- O(n) loop model on triangulations : weight g per empty triangle, h per visited triangle.
- O(n) loop model on quadrangulations :



Special cases : rigid case  $h_2 = 0$ , twisting case  $h_1 = 0$ .

The partition function of all such models is actually related to the partition function for loopless maps  $\mathcal{F}_p(g_1, g_2, \ldots)$ .

## Plan

#### Introduction

- 2 Maps and loops
- 3 The gasket decomposition
  - 4 Functional equation for the resolvent
  - 5 Twofold loop models and the Potts model



Start with a configuration of the O(n) loop model.

► < Ξ:</p>



The faces visited by a loop forms a necklace.



Cut along the outer and inner contours of each outermost loop.

► < Ξ ►</p>

18 / 42



The outer component forms the gasket. It is a map without loops, with the same outer degree as the original map.



Each outermost loop forms a necklace (cyclic sequence of polygons glued side-by-side).



Each outermost loop contains an internal configuration (of the same nature as our original object).



There exists a well-defined rooting procedure :

- necklaces have a distinguished edge on the outer contour,
- internal configurations are rooted.



Each outermost loop forms a necklace (cyclic sequence of polygons glued side-by-side).



Each outermost loop contains an internal configuration (of the same nature as our original object).

#### **Bijection**

 $\{\text{configurations}\} \simeq \{(\text{gasket, necklaces, internal configurations})\}$ 

- A gasket is a map whose faces are either regular faces or holes.
- Each hole of degree  $k \ge 1$  is associated with a necklace of outer length k.
- Each necklace of inner length k' ≥ 0 is associated with an internal configuration of outer degree k'.

## The gasket decomposition : consequences

#### Assumption

Suppose that the weight of a configuration is of the form

$$n^{\#\{\text{loops}\}} \prod_{k \ge 1} (g_k^{(0)})^{\#\{\text{empty faces of degree } k\}} \prod_{\text{necklaces}} f(\text{necklace})$$

We denote by

$$F_p = F_p(n; g_1^{(0)}, g_2^{(0)}, \dots; f)$$

the sum of weights of all configurations with outer degree p. By convention  $F_0 = 1$ . Introduce the necklace generating function

$$A(x,y) = \sum_{k \ge 1} \sum_{k' \ge 1} A_{k,k'} x^k y^{k'} := \sum_{\text{necklaces}} f(\text{necklace}) x^{\text{outer length}} y^{\text{inner length}}$$
# The gasket decomposition

#### **Bijection**

 $\{\text{configurations}\} \simeq \{(\text{gasket, necklaces, internal configurations})\}$ 

- A gasket is a map whose faces are either regular faces or holes.
- Each hole of degree  $k \ge 1$  is associated with a necklace of outer length k.
- Each necklace of inner length k' ≥ 0 is associated with an internal configuration of outer degree k'.

#### **Bijection**

 $\{\text{configurations}\} \simeq \{(\text{gasket, necklaces, internal configurations})\}$ 

- A gasket is a map whose faces are either regular faces or holes.
- Each hole of degree  $k \ge 1$  is associated with a necklace of outer length k.
- Each necklace of inner length k' ≥ 0 is associated with an internal configuration of outer degree k'.

#### **Bijection**

 $\{configurations\} \simeq \{(gasket, necklaces, internal configurations)\}$ 

- A gasket is a map whose faces are either regular faces or holes.
- Each hole of degree  $k \ge 1$  is associated with a necklace of outer length k.
- Each necklace of inner length k' ≥ 0 is associated with an internal configuration of outer degree k'.

$$n\sum_{k'\geq 0}A_{k,k'}F_{k'}$$

#### **Bijection**

 $\{configurations\} \simeq \{(gasket, necklaces, internal configurations)\}$ 

- A gasket is a map whose faces are either regular faces or holes.
- Each hole of degree  $k \ge 1$  is associated with a necklace of outer length k.
- Each necklace of inner length k' ≥ 0 is associated with an internal configuration of outer degree k'.

$$\mathcal{F}_p(g_1,g_2,\ldots)$$

$$g_k = g_k^{(0)} + n \sum_{k' \ge 0} A_{k,k'} F_{k'}$$

#### **Bijection**

 $\{\text{configurations}\} \simeq \{(\text{gasket, necklaces, internal configurations})\}$ 

- A gasket is a map whose faces are either regular faces or holes.
- Each hole of degree  $k \ge 1$  is associated with a necklace of outer length k.
- Each necklace of inner length k' ≥ 0 is associated with an internal configuration of outer degree k'.

$$F_p = \mathcal{F}_p(g_1, g_2, \ldots)$$

$$g_k = g_k^{(0)} + n \sum_{k' \ge 0} A_{k,k'} F_{k'}$$

### Proposition [BBG 2012]

The partition function of our O(n) loop model is obtained from the generating function for maps with controlled face degrees via

$$F_p = \mathcal{F}_p(g_1, g_2, \ldots)$$

where the  $g_k$ 's satisfy the fixed-point condition

$$g_k = g_k^{(0)} + n \sum_{k' \ge 0} A_{k,k'} \mathcal{F}_{k'}(g_1, g_2, \ldots).$$

#### Corollary

The gasket is distributed according to the Boltzmann measure with face weights  $g_1, g_2, \ldots$ 

We'll see that critical loop models yield a non-generic weight sequence.

Jérémie Bouttier (IPhT)

#### • O(n) loop model on triangulations

$$A_{k,k'} = \binom{k+k'-1}{k} h^{k+k'}$$



< (T) > <

3

#### • O(n) loop model on triangulations

$$A_{k,k'} = \binom{k+k'-1}{k}h^{k+k'}$$
$$A(x,y) = \frac{hx}{1-h(x+y)}$$



< 4 → <

3.5 3

#### • O(n) loop model on quadrangulations

$$A_{k,k'} = \sum_{j \equiv k \mod 2} \frac{2k}{k+k'} \binom{\frac{k+k'}{2}}{j, \frac{k-j}{2}, \frac{k'-j}{2}} h_1^j h_2^{\frac{k+k'}{2}-j}$$

(vanishes for k + k' odd)



#### • O(n) loop model on quadrangulations

$$A_{k,k'} = \sum_{j \equiv k \mod 2} \frac{2k}{k+k'} \binom{\frac{k+k'}{2}}{j, \frac{k-j}{2}, \frac{k'-j}{2}} h_1^j h_2^{\frac{k+k'}{2}-j}$$

(vanishes for k + k' odd)

$$A(x,y) = \frac{h_1 x y + 2h_2 x^2}{1 - h_1 x y - h_2 (x^2 + y^2)}$$



#### • O(n) loop model on quadrangulations

$$A_{k,k'} = \sum_{j \equiv k \mod 2} \frac{2k}{k+k'} \binom{\frac{k+k'}{2}}{j, \frac{k-j}{2}, \frac{k'-j}{2}} h_1^j h_2^{\frac{k+k'}{2}-j}$$

(vanishes for k + k' odd)

$$A(x,y) = \frac{h_1 x y + 2h_2 x^2}{1 - h_1 x y - h_2 (x^2 + y^2)}$$

Special cases :

• rigid case 
$$h_2 = 0$$
 :  $A_{k,k'} = h_1^k \delta_{k,k'}$ 

• twisting case  $h_1 = 0$  :  $A_{2k,2k'} = 2\binom{k+k'-1}{k}h_2^{k+k'}$ 



 $k = 24, \ k' = 20, \ j = 8$ 

• O(n) loop model with general face weights Attach a weight  $h_{\ell,\ell'}$  to each visited face with  $\ell$ (resp.  $\ell'$ ) edges incident to the outer (resp. inner) contour. In/out symmetry :  $h_{\ell,\ell'} = h_{\ell',\ell}$ .



face with weight  $h_{4,3}$ 

• O(n) loop model with general face weights Attach a weight  $h_{\ell,\ell'}$  to each visited face with  $\ell$ (resp.  $\ell'$ ) edges incident to the outer (resp. inner) contour. In/out symmetry :  $h_{\ell,\ell'} = h_{\ell',\ell}$ . By elementary generatingfunctionology

$$A(x,y) = x \frac{\partial}{\partial x} \log H(x,y)$$

where

$$H(x,y)=\frac{1}{1-\sum_{\ell,\ell'}h_{\ell,\ell'}x^\ell y^{\ell'}}.$$



face with weight  $h_{4,3}$ 

• O(n) loop model with general face weights Attach a weight  $h_{\ell,\ell'}$  to each visited face with  $\ell$ (resp.  $\ell'$ ) edges incident to the outer (resp. inner) contour. In/out symmetry :  $h_{\ell,\ell'} = h_{\ell',\ell}$ . By elementary generatingfunctionology

$$A(x,y) = x \frac{\partial}{\partial x} \log H(x,y)$$

where

$$H(x,y)=\frac{1}{1-\sum_{\ell,\ell'}h_{\ell,\ell'}x^{\ell}y^{\ell'}}.$$

Triangular case :  $h_{1,0} = h_{0,1} = h$ , all other zero. Quadrangular case :  $h_{1,1} = h_2$ ,  $h_{2,0} = h_{0,2} = h_2$ , all other zero.



face with weight  $h_{4,3}$ 

• O(n) loop model on triangulations with loop bending energy Introduce an extra weight *a* whenever a loop makes two successives turns in the same direction.





Exercise : check that

$$A(x,y) = x \frac{\partial}{\partial x} \log H(x,y)$$



ring with weight  $h^{14}a^6$ 

where

$$H(x,y) = \frac{1}{1 - ah(x+y) - (1 - a^2)h^2xy}$$

# Plan

### Introduction

- 2 Maps and loops
- 3 The gasket decomposition
- 4 Functional equation for the resolvent
  - 5 Twofold loop models and the Potts model

$$\begin{split} \mathcal{W}(x) &:= \sum_{p \ge 0} \frac{\mathcal{F}_p(g_1, g_2, \ldots)}{x^{p+1}} \quad (\text{maps with controlled face degrees}) \\ \mathcal{W}(x) &:= \sum_{p \ge 0} \frac{\mathcal{F}_p(n; \ldots)}{x^{p+1}} \qquad (O(n) \text{ loop model}) \end{split}$$

<ロ> (日) (日) (日) (日) (日)

3

30 / 42

$$\begin{split} \mathcal{W}(x) &:= \sum_{p \ge 0} \frac{\mathcal{F}_p(g_1, g_2, \ldots)}{x^{p+1}} & \text{(maps with controlled face degrees)} \\ \mathcal{W}(x) &:= \sum_{p \ge 0} \frac{\mathcal{F}_p(n; \ldots)}{x^{p+1}} & \text{(O}(n) \text{ loop model)} \end{split}$$

#### One-cut lemma

For any admissible sequence  $(g_1, g_2, ...)$ ,  $\mathcal{W}$  defines an analytic function on  $\mathbb{C} \setminus [\gamma_-, \gamma_+]$  where  $|\gamma_-| \leq \gamma_+$ . The "spectral density"

$$\rho(x) := \frac{\mathcal{W}(x-i0) - \mathcal{W}(x+i0)}{2i\pi}$$

is positive and continuous on  $]\gamma_-, \gamma_+[$  and vanishes for  $x \to \gamma_{\pm}$ .

Functional equation for maps with controlled face degrees The resolvent is determined by

$$\mathcal{W}(x+i0) + \mathcal{W}(x-i0) = x - \sum_{k\geq 1} g_k x^{k-1}, \qquad x \in [\gamma_-, \gamma_+]$$

and the condition  $\mathcal{W}(x) \sim 1/x$  for  $x \to \infty$ .

31 / 42

Functional equation for maps with controlled face degrees The resolvent is determined by

$$\mathcal{W}(x+i0) + \mathcal{W}(x-i0) = x - \sum_{k\geq 1} g_k x^{k-1}, \qquad x \in [\gamma_-, \gamma_+]$$

and the condition  $\mathcal{W}(x) \sim 1/x$  for  $x \to \infty$ .

The resolvent of the O(n) loop model is obtained by making the  $g_k$ 's satisfy the fixed-point condition :

$$W(x+i0) + W(x-i0) = x - \sum_{k \ge 1} g_k^{(0)} x^{k-1} - n \sum_{k \ge 1} \sum_{k' \ge 0} A_{k,k'} x^{k-1} F_{k'}$$
$$= V_0'(x) - \frac{n}{2i\pi} \oint A(x,y) W(y) dy$$

• O(n) loop model on triangulations :  $A(x, y) = \frac{hx}{1-h(x+y)}$ 

3. 3

Image: A math a math

Jérémie Bouttier (IPhT)

• O(n) loop model on triangulations :  $A(x, y) = \frac{hx}{1-h(x+y)}$ 

$$W(x+i0) + W(x-i0) = V'_0(x) - nW(h^{-1}-x)$$

[Kostov, Eynard, Kristjansen...]

< □ > < □

3

• O(n) loop model on triangulations :  $A(x, y) = \frac{hx}{1-h(x+y)}$ 

$$W(x+i0) + W(x-i0) = V'_0(x) - nW(h^{-1}-x)$$

[Kostov, Eynard, Kristjansen...]

• O(n) loop model on quadrangulations :  $A(x, y) = \frac{h_1 xy + 2h_2 x^2}{1 - h_1 xy - h_2 (x^2 + y^2)}$ 

• O(n) loop model on triangulations :  $A(x, y) = \frac{hx}{1-h(x+y)}$ 

$$W(x+i0) + W(x-i0) = V'_0(x) - nW(h^{-1}-x)$$

[Kostov, Eynard, Kristjansen...]

• O(n) loop model on quadrangulations :  $A(x, y) = \frac{h_1 xy + 2h_2 x^2}{1 - h_1 xy - h_2 (x^2 + y^2)}$ 

$$W(x+i0)+W(x-i0) = V'_0(x)-ny'_+(x)W(y_+(x))-ny'_-(x)W(y_-(x))$$

• O(n) loop model on triangulations :  $A(x, y) = \frac{hx}{1-h(x+y)}$ 

$$W(x+i0) + W(x-i0) = V'_0(x) - nW(h^{-1}-x)$$

[Kostov, Eynard, Kristjansen...]

• O(n) loop model on quadrangulations :  $A(x, y) = \frac{h_1 xy + 2h_2 x^2}{1 - h_1 xy - h_2 (x^2 + y^2)}$ 

$$W(x+i0) + W(x-i0) = V'_0(x) - ny'_+(x)W(y_+(x)) - ny'_-(x)W(y_-(x))$$

Special cases :

• rigid case : 
$$W(x + i0) + W(x - i0) = V'_0(x) + \frac{n}{x} - \frac{n}{h_1 x^2} W\left(\frac{1}{h_1 x}\right)$$

#### [BBG 2012]

・ 同 ト ・ ヨ ト ・ ヨ ト … ヨ …

• O(n) loop model on triangulations :  $A(x, y) = \frac{hx}{1-h(x+y)}$ 

$$W(x+i0) + W(x-i0) = V'_0(x) - nW(h^{-1}-x)$$

[Kostov, Eynard, Kristjansen...]

• O(n) loop model on quadrangulations :  $A(x, y) = \frac{h_1 \times y + 2h_2 \times^2}{1 - h_1 \times y - h_2(x^2 + y^2)}$ 

$$W(x+i0) + W(x-i0) = V'_0(x) - ny'_+(x)W(y_+(x)) - ny'_-(x)W(y_-(x))$$

Special cases :

- ▶ rigid case :  $W(x + i0) + W(x i0) = V'_0(x) + \frac{n}{x} \frac{n}{h_1 x^2} W\left(\frac{1}{h_1 x}\right)$
- ► twisting case :  $\tilde{W}(x+i0) + \tilde{W}(x-i0) = \tilde{V}'_0(x) 2n\tilde{W}(h_2^{-1}-x)$ where  $W(x) = x\tilde{W}(x^2)$

[BBG 2012]

• O(n) loop model on triangulations :  $A(x, y) = \frac{hx}{1-h(x+y)}$ 

$$W(x+i0) + W(x-i0) = V'_0(x) - nW(h^{-1}-x)$$

[Kostov, Eynard, Kristjansen...]

• O(n) loop model on quadrangulations :  $A(x, y) = \frac{h_1 xy + 2h_2 x^2}{1 - h_1 xy - h_2 (x^2 + y^2)}$ 

$$W(x+i0) + W(x-i0) = V'_0(x) - ny'_+(x)W(y_+(x)) - ny'_-(x)W(y_-(x))$$

Special cases :

- ▶ rigid case :  $W(x + i0) + W(x i0) = V'_0(x) + \frac{n}{x} \frac{n}{h_1 x^2} W\left(\frac{1}{h_1 x}\right)$
- ► twisting case :  $\tilde{W}(x+i0) + \tilde{W}(x-i0) = \tilde{V}'_0(x) 2n\tilde{W}(h_2^{-1}-x)$ where  $W(x) = x\tilde{W}(x^2)$

[BBG 2012]

#### • O(n) model with general face weights : many poles...

## The one-pole case

Suppose that A(x, y) is rational with a single pole in y at y = s(x) (as in the triangular and rigid quadrangular cases)

• In/out symmetry implies that *s* is a homographic involution :

$$s(x) = rac{lpha - eta x}{eta - \delta x}.$$

- This situation is generically realized in our model with loop bending energy !
- The functional equation reads

$$W(x+i0) + W(x-i0) - ns'(x)W(s(x)) = V'_0(x) - \frac{ns''(x)}{2s'(x)}$$

whose solution can be explicited using elliptic functions à la Eynard-Kristjansen.

## The one-pole case : solution

Introduce a conformal mapping to the torus.



The homogeneous functional equation becomes

$$\omega(\mathbf{v}+iT')+\omega(\mathbf{v}-iT')=n\,\omega(\mathbf{v})$$

with  $\omega$  odd and 2*T*-periodic.

Non-generic critical points :  $\gamma_+$  fixed point of s,  $T \to \infty$ ,  $T' = \pi$ 

$$\omega(\mathbf{v}) \propto e^{-(2\mp b)\mathbf{v}}, \qquad \pi b = \arccos\left(\frac{n}{2}\right), \qquad n \in (0,2)$$

#### The one-pole case : solution

Returning to the x-plane, this implies that W has a dominant singularity of the form

$$W(x) \propto (x - \gamma_+)^{1 \mp b}, \qquad x \to (\gamma_+)^+$$

hence by transfer

 $\mathbb{P}(\text{degree of a typical gasket face} > k) \sim \text{cst.} k^{-3/2 \pm b}, \quad b \in (0, 1/2).$ We have indeed a non-generic critical point. Thus, the scaling limit has Hausdorff dimension  $3 \mp 2b \in (2, 4)$ .

## The one-pole case : solution

Returning to the x-plane, this implies that W has a dominant singularity of the form

$$W(x) \propto (x - \gamma_+)^{1 \mp b}, \qquad x \to (\gamma_+)^+$$

hence by transfer

 $\mathbb{P}(\text{degree of a typical gasket face} > k) \sim \text{cst.} k^{-3/2 \pm b}, \qquad b \in (0, 1/2).$ We have indeed a non-generic critical point. Thus, the scaling limit has Hausdorff dimension  $3 \mp 2b \in (2, 4)$ .

The non-generic critical points forms a "line" in the "phase diagram".

- Unless an extra cancellation occurs, the dense exponent dominates.
- Only at one point, we obtain the dilute exponent +.
- There is also a generic critical line (as in maps without loops).



# Plan

### Introduction

- 2 Maps and loops
- 3 The gasket decomposition
- 4 Functional equation for the resolvent
- 5 Twofold loop models and the Potts model

We may consider a variant of our model where we break the symmetry between both sides of the loops (they are viewed as interfaces between domains of two different colors). This is natural in the context of the Potts model.

Recall the Fortuin-Kasteleyn representation of the Q-state Potts model

$$Z_{ ext{Potts}}(\mathcal{M}, t, J) = \sum_{S \subset E} t^{|E|} J^{|S|} Q^{c(S)}$$

where

- t is a weight per edge,
- $J = e^{K} 1$  is a weight per selected edge,
- Q appears a weight per cluster.



The Potts model may be reformulated as a twofold loop model on a triangulation :



Weights : tJ per solid edge, t per dashed edge, Q per cluster

The Potts model may be reformulated as a twofold loop model on a triangulation :



Weights : tJ per solid edge, t per solid edge, Q per cluster

The Potts model may be reformulated as a twofold loop model on a triangulation :



Weights : tJ per solid edge, t per solid edge, Q per cluster
The Potts model may be reformulated as a twofold loop model on a triangulation :



Weights : tJ per solid edge, t per solid edge, Q per cluster

The Potts model may be reformulated as a twofold loop model on a triangulation :



Weights :  $tJ/\sqrt{Q}$  per solid edge, t per solid edge,  $\sqrt{Q}$  per loop,  $\sqrt{Q}$  per vertex

The Potts model may be reformulated as a twofold loop model on a triangulation :



Weights :  $(t^2 J^2/Q)^{1/4}$  per RRG triangle,  $\sqrt{t}$  per RGG triangle,  $\sqrt{Q}$  per loop,  $\sqrt{Q}$  per vertex

The Potts model may be reformulated as a twofold loop model on a triangulation :



Weights :  $h^{(1)}$  per RRG triangle,  $h^{(2)}$  per RGG triangle,  $\sqrt{Q}$  per loop,  $u^{(1)}$  per vertex,  $u^{(2)}$  per vertex

#### Caveat

One would naïvely believe that the critical point of the Potts model on random maps is the self-dual point  $h^{(1)} = h^{(2)}$   $(J^2 = Q)$  but this is not the case because the red-green symmetry is broken by vertex weights :  $\sqrt{Q} = u^{(1)} \neq u^{(2)} = 1!$ 

39 / 42

#### Caveat

One would naïvely believe that the critical point of the Potts model on random maps is the self-dual point  $h^{(1)} = h^{(2)}$  ( $J^2 = Q$ ) but this is not the case because the red-green symmetry is broken by vertex weights :  $\sqrt{Q} = u^{(1)} \neq u^{(2)} = 1!$ 

We can also introduce :

- empty faces (≃ dilute Potts model)
- curvature weight a (Ising-like coupling, leading to a possible spontaneous red-green symmetry breaking even)



Equations are obtained by a straightforward generalization of the previous approach. Need to introduce two "resolvents"  $W_R$  and  $W_G$  satisfying

$$W_{R}(x+i0) + W_{R}(x-i0) = V_{R}'(x) - \frac{n}{2i\pi} \oint A_{RG}(x,y)W_{G}(y)dy$$
$$W_{G}(y+i0) + W_{G}(y-i0) = V_{G}'(y) - \frac{n}{2i\pi} \oint A_{GR}(y,x)W_{R}(x)dx$$

where  $V'_R$ ,  $V'_G$  generate empty faces, and  $A_{RG}$ ,  $A_{GR}$  are necklace generating functions (essentially equal upon exchanging arguments). When loops visit only triangles, these have a single pole and we can solve the model via elliptic functions.

Non-generic critical points form a manifold of codimension 2 in the space of parameters.

For instance, for the Q-state Potts model on general random maps, there are two parameters : edge weight t, coupling  $J = e^{K} - 1$ . For  $Q \leq 4$ , there is a unique non-generic critical point (t(Q), J(Q)).



41 / 42

## Conclusion

#### Main result

We have shown that the gasket of a critical O(n) loop model has a non-generic critical Boltzmann map distribution. Its scaling limit has Hausdorff dimension

$$d_H=3\pmrac{2}{\pi}rccos\left(rac{n}{2}
ight),\qquad n\in(0,2).$$

# Conclusion

#### Main result

We have shown that the gasket of a critical O(n) loop model has a non-generic critical Boltzmann map distribution. Its scaling limit has Hausdorff dimension

$$d_H = 3 \pm rac{2}{\pi} \arccos\left(rac{n}{2}
ight), \qquad n \in (0,2).$$

#### Caveat

We are only describing the gasket, not the full configuration !

#### Open questions and directions

- Understand the full scaling limit (not just the gasket), hulls...
- Higher genus, higher dimensions?
- Extend the nested loop approach to other models : 6-vertex, ADE...

< 🗗 🕨