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Introduction

Consider (Euclidean) 2D quantum gravity coupled to a CFT of central
charge c ≤ 1. Its lattice regularization is obtained by considering a critical
statistical physics model defined on a dynamical (annealed) random map.

An unsettled question is the dependence of the intrinsic Hausdorff
dimension dH on c . Several values have been proposed :

dH(c) =
√

25−c√
1−c − 1

dH(c) = 2
√

25−c+
√

49−c√
25−c+

√
1−c

dH(c) = 4

It is believed that the second formula is correct for c ≤ 0 and the third is
correct for c ≥ 0. (All fit the known value dH(c = 0) = 4.)

See for instance [Duplantier, arXiv:1108.3327] and references therein.
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Introduction
Many statistical physics models can be reformulated in terms of “loop
gases” : polymers, self-avoiding walks, percolation, Ising/Potts... and of
course the O(n) model where n plays the role of a loop fugacity. For
n ∈ [−2, 2], the O(n) model has critical points of central charge :

c = 1− 6e2

1− e
, n = 2 cosπe.

This model is naturally defined on random
maps (aka dynamical random lattices). On
triangulations, the model was solved via
matrix integral techniques [Kostov,

Staudacher, Eynard, Zinn-Justin, Kristjansen...].

This solution consists in the computation of the partition function and
other “global” quantities, but little is known on the “local” geometry...
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Introduction

In contrast, the geometry of random maps
without loops is now better understood.

In a generic random map, the typical graph
distance between vertices is of order m1/4,
where m is the map size. The scaling limit is
the Brownian map [Le Gall, Miermont...].

picture by G. Chapuy

It is unclear how to extend this construction to models with matter
(bijections exist but do not properly encode the distances).
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Introduction

Following a different approach, Le Gall and Miermont introduced models
of maps with large faces, or gaskets, whose scaling limits differ from the
Brownian map (which has spherical topology, hence no holes).

As we shall see, gaskets naturally arise in the O(n) loop model.
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A rooted planar map is a graph embedded in the plane, considered up to
continuous deformation, with a distinguished root edge incident to the
outer face.

A quadrangulation with a boundary (each inner face has degree 4)

Natural probability measures over maps : uniform distribution over maps
with m edges, over triangulations with m triangles, over quadrangulations
with m squares...
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Boltzmann ensemble of maps with controlled face degrees
(related to the Hermitian one-matrix model)

Choose a sequence of face weights g1, g2, g3, ....

Partition function

Fp(g1, g2, . . .) =
∑

maps with
outer degree p

∏
k≥1

g
#{inner faces of degree k}
k

By convention F0(g1, g2, . . .) = 1 (vertex-map).

Specializations

Triangulations : gk = g if k = 3, 0 otherwise.

Quadrangulations : gk = g if k = 4, 0 otherwise.

Maps with a controlled number of edges : gk = tk/2
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Classification of weight sequences

A non-negative weight sequence (g1, g2, . . .) is either :

non-admissible : Fp(g1, g2, . . .) =∞ for some p

admissible : Fp(g1, g2, . . .) <∞ for all p

I subcritical : P(#{vertices} > m) decays exponentially
I critical : P(#{vertices} > m) decays subexponentially

F generic : P(degree of a typical face > k) decays exponentially or faster
F non-generic : P(degree of a typical face > k) decays subexponentially

But do non-generic critical weight sequences exist ?
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Le Gall-Miermont construction

Pick an arbitrary sequence (g◦1 , g
◦
2 , . . .) such that

g◦k ∼k→∞ k−α−1/2, α ∈ (1, 2).

There exists unique constants A,B such that the weight sequence
gk := ABk g◦k is non-generic critical and then

P(degree of a typical face > k) ∼ cst.k−α

Conditioning the map to have a large number m of vertices, the typical
distance between vertices is then of order m1/2α (instead of m1/4 for
generic critical sequences). This yields a non-generic scaling limit : a
“stable” map of Hausdorff dimension 2α, instead of the Brownian map
(dimension 4).
Is this construction related to a “physical” process ?
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Loops

We consider self and mutually avoiding loops on the dual map (by
convention, the outer face is not visited).

Each face is incident to 0 or 2 covered edges.
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O(n) loop model
Each configuration (map with loops) receives a weight

n#{loops} × (local weights)

Examples

O(n) loop model on triangulations : weight g per empty triangle, h
per visited triangle.

O(n) loop model on quadrangulations :

(a)

g

(b)

h1

(c)

h2

Special cases : rigid case h2 = 0, twisting case h1 = 0.

The partition function of all such models is actually related to the partition
function for loopless maps Fp(g1, g2, . . .).
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The gasket decomposition

Start with a configuration of the O(n) loop model.

Jérémie Bouttier (IPhT) The nested loop approach to the O(n) model on random maps21 March 2013 16 / 42



The gasket decomposition

contour

outer

contour

inner

external 

face

The faces visited by a loop forms a necklace.
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The gasket decomposition

Cut along the outer and inner contours of each outermost loop.
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The gasket decomposition

The outer component forms the gasket. It is a map without loops, with the
same outer degree as the original map.
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The gasket decomposition

Each outermost loop forms a necklace (cyclic sequence of polygons glued
side-by-side).
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The gasket decomposition

Each outermost loop contains an internal configuration (of the same nature
as our original object).
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The gasket decomposition

external 

face

There exists a well-defined rooting procedure :

necklaces have a distinguished edge on the outer contour,

internal configurations are rooted.
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The gasket decomposition
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The gasket decomposition

: consequences

Bijection

{configurations} ' {(gasket, necklaces, internal configurations)}

A gasket is a map whose faces are either regular faces or holes.

Each hole of degree k ≥ 1 is associated with a necklace of outer
length k .

Each necklace of inner length k ′ ≥ 0 is associated with an internal
configuration of outer degree k ′.

Fp = Fp(g1, g2, . . .)

gk = g
(0)
k + n

∑
k ′≥0

Ak,k ′Fk ′
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The gasket decomposition : consequences

Assumption

Suppose that the weight of a configuration is of the form

n#{loops}
∏
k≥1

(
g

(0)
k

)#{empty faces of degree k} ∏
necklaces

f (necklace)

We denote by

Fp = Fp(n; g
(0)
1 , g

(0)
2 , . . . ; f )

the sum of weights of all configurations with outer degree p. By
convention F0 = 1.
Introduce the necklace generating function

A(x , y) =
∑
k≥1

∑
k ′≥1

Ak,k ′xkyk
′

:=
∑

necklaces

f (necklace)xouter lengthy inner length.
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The gasket decomposition : consequences

Proposition [BBG 2012]

The partition function of our O(n) loop model is obtained from the
generating function for maps with controlled face degrees via

Fp = Fp(g1, g2, . . .)

where the gk ’s satisfy the fixed-point condition

gk = g
(0)
k + n

∑
k ′≥0

Ak,k ′Fk ′(g1, g2, . . .).

Corollary

The gasket is distributed according to the Boltzmann measure with face
weights g1, g2, . . ..

We’ll see that critical loop models yield a non-generic weight sequence.
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Examples

O(n) loop model on triangulations

Ak,k ′ =

(
k + k ′ − 1

k

)
hk+k ′

A(x , y) =
hx

1− h(x + y)

k = 10, k ′ = 4
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Examples

O(n) loop model on quadrangulations

Ak,k ′ =
∑

j≡k mod 2

2k

k + k ′

( k+k ′

2

j , k−j2 , k
′−j
2

)
hj1h

k+k′
2
−j

2

(vanishes for k + k ′ odd)

A(x , y) =
h1xy + 2h2x

2

1− h1xy − h2(x2 + y2)

Special cases :

I rigid case h2 = 0 : Ak,k′ = hk1δk,k′

I twisting case h1 = 0 : A2k,2k′ = 2
(
k+k′−1

k

)
hk+k′

2

k = 24, k ′ = 20, j = 8
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Examples

O(n) loop model with general face weights
Attach a weight h`,`′ to each visited face with `
(resp. `′) edges incident to the outer (resp. inner)
contour. In/out symmetry : h`,`′ = h`′,`.

By elementary generatingfunctionology

A(x , y) = x
∂

∂x
logH(x , y)

where

H(x , y) =
1

1−∑`,`′ h`,`′x
`y `′

.

Triangular case : h1,0 = h0,1 = h, all other zero.
Quadrangular case : h1,1 = h2, h2,0 = h0,2 = h2, all
other zero.

face with weight h4,3
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Examples

O(n) loop model on triangulations with loop bending energy
Introduce an extra weight a whenever a loop makes
two successives turns in the same direction.

a 1

Exercise : check that

A(x , y) = x
∂

∂x
logH(x , y)

where

H(x , y) =
1

1− ah(x + y)− (1− a2)h2xy

ring with weight h14a6
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The resolvent

W(x) :=
∑
p≥0

Fp(g1, g2, . . .)

xp+1
(maps with controlled face degrees)

W (x) :=
∑
p≥0

Fp(n; . . .)

xp+1
(O(n) loop model)

One-cut lemma

For any admissible sequence (g1, g2, . . .), W defines an analytic function
on C \ [γ−, γ+] where |γ−| ≤ γ+. The “spectral density”

ρ(x) :=
W(x − i0)−W(x + i0)

2iπ

is positive and continuous on ]γ−, γ+[ and vanishes for x → γ±.
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The resolvent

Functional equation for maps with controlled face degrees

The resolvent is determined by

W(x + i0) +W(x − i0) = x −
∑
k≥1

gkx
k−1, x ∈ [γ−, γ+]

and the condition W(x) ∼ 1/x for x →∞.

The resolvent of the O(n) loop model is obtained by making the gk ’s
satisfy the fixed-point condition :

W (x + i0) + W (x − i0) = x −
∑
k≥1

g
(0)
k xk−1 − n

∑
k≥1

∑
k ′≥0

Ak,k ′xk−1Fk ′

= V ′0(x)− n

2iπ

∮
A(x , y)W (y)dy
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Examples

O(n) loop model on triangulations : A(x , y) = hx
1−h(x+y)

W (x + i0) + W (x − i0) = V ′0(x)− nW
(
h−1 − x

)
[Kostov, Eynard, Kristjansen...]

O(n) loop model on quadrangulations : A(x , y) = h1xy+2h2x2

1−h1xy−h2(x2+y2)

W (x+i0)+W (x−i0) = V ′0(x)−ny ′+(x)W (y+(x))−ny ′−(x)W (y−(x))

Special cases :

I rigid case : W (x + i0) + W (x − i0) = V ′0(x) + n
x − n

h1x2 W
(

1
h1x

)

I twisting case : W̃ (x + i0) + W̃ (x − i0) = Ṽ ′0(x)− 2nW̃
(
h−1

2 − x
)

where W (x) = xW̃ (x2)

[BBG 2012]

O(n) model with general face weights : many poles...
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(
h−1

2 − x
)

where W (x) = xW̃ (x2)

[BBG 2012]

O(n) model with general face weights : many poles...

Jérémie Bouttier (IPhT) The nested loop approach to the O(n) model on random maps21 March 2013 32 / 42



Examples

O(n) loop model on triangulations : A(x , y) = hx
1−h(x+y)

W (x + i0) + W (x − i0) = V ′0(x)− nW
(
h−1 − x

)
[Kostov, Eynard, Kristjansen...]

O(n) loop model on quadrangulations : A(x , y) = h1xy+2h2x2

1−h1xy−h2(x2+y2)

W (x+i0)+W (x−i0) = V ′0(x)−ny ′+(x)W (y+(x))−ny ′−(x)W (y−(x))

Special cases :

I rigid case : W (x + i0) + W (x − i0) = V ′0(x) + n
x − n

h1x2 W
(

1
h1x

)

I twisting case : W̃ (x + i0) + W̃ (x − i0) = Ṽ ′0(x)− 2nW̃
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The one-pole case

Suppose that A(x , y) is rational with a single pole in y at y = s(x)
(as in the triangular and rigid quadrangular cases)

In/out symmetry implies that s is a homographic involution :

s(x) =
α− βx
β − δx .

This situation is generically realized in our model with loop bending
energy !

The functional equation reads

W (x + i0) + W (x − i0)− ns ′(x)W (s(x)) = V ′0(x)− ns ′′(x)

2s ′(x)

whose solution can be explicited using elliptic functions à la
Eynard-Kristjansen.
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The one-pole case : solution
Introduce a conformal mapping to the torus.

γ− γ+ s(γ+) s(γ−)
0

T

T + iT ′

T − iT ′

iT ′

−iT ′

The homogeneous functional equation becomes

ω(v + iT ′) + ω(v − iT ′) = nω(v)

with ω odd and 2T -periodic.

Non-generic critical points : γ+ fixed point of s, T →∞, T ′ = π

ω(v) ∝ e−(2∓b)v , πb = arccos
(n

2

)
, n ∈ (0, 2)
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The one-pole case : solution
Returning to the x-plane, this implies that W has a dominant singularity
of the form

W (x) ∝ (x − γ+)1∓b, x → (γ+)+

hence by transfer

P(degree of a typical gasket face > k) ∼ cst.k−3/2±b, b ∈ (0, 1/2).

We have indeed a non-generic critical point. Thus, the scaling limit has
Hausdorff dimension 3∓ 2b ∈ (2, 4).

The non-generic critical points forms a
“line” in the “phase diagram”.

Unless an extra cancellation occurs, the
dense exponent - dominates.

Only at one point, we obtain the dilute
exponent +.

There is also a generic critical line (as
in maps without loops).

0.00 0.02 0.04 0.06 0.08 0.10
0.00

0.05

0.10

0.15

0.20

0.25

0.30

g
1/12

dense

dilute
*g( , h*)

1

1
h

non−generic
critical

generic
critical

subcritical

b =0.3
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Twofold loop models

We may consider a variant of our model where we break the symmetry
between both sides of the loops (they are viewed as interfaces between
domains of two different colors). This is natural in the context of the Potts
model.

Recall the Fortuin-Kasteleyn representation
of the Q-state Potts model

ZPotts(M, t, J) =
∑
S⊂E

t |E |J |S |Qc(S)

where

t is a weight per edge,

J = eK − 1 is a weight per selected
edge,

Q appears a weight per cluster.

t

Q
3

Jt
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Twofold loop models

The Potts model may be reformulated as a twofold loop model on a
triangulation :

Weights : tJ per solid edge, t per dashed edge, Q per cluster
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Twofold loop models

The Potts model may be reformulated as a twofold loop model on a
triangulation :

Weights : tJ/
√
Q per solid edge, t per solid edge,

√
Q per loop,

√
Q per

vertex
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Twofold loop models

The Potts model may be reformulated as a twofold loop model on a
triangulation :

Weights : (t2J2/Q)1/4 per RRG triangle,
√
t per RGG triangle,

√
Q per

loop,
√
Q per vertex
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Twofold loop models

The Potts model may be reformulated as a twofold loop model on a
triangulation :

Weights : h(1) per RRG triangle, h(2) per RGG triangle,
√
Q per loop, u(1)

per vertex, u(2) per vertex
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Twofold loop models

Caveat

One would näıvely believe that the critical point of the Potts model on
random maps is the self-dual point h(1) = h(2) (J2 = Q) but this is not
the case because the red-green symmetry is broken by vertex weights :√
Q = u(1) 6= u(2) = 1 !

We can also introduce :

empty faces (' dilute
Potts model)

curvature weight a
(Ising-like coupling,
leading to a possible
spontaneous red-green
symmetry breaking even)
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Twofold loop models

Equations are obtained by a straightforward generalization of the previous
approach. Need to introduce two “resolvents” WR and WG satisfying

WR(x + i0) + WR(x − i0) = V ′R(x)− n

2iπ

∮
ARG (x , y)WG (y)dy

WG (y + i0) + WG (y − i0) = V ′G (y)− n

2iπ

∮
AGR(y , x)WR(x)dx

where V ′R ,V
′
G generate empty faces, and ARG ,AGR are necklace

generating functions (essentially equal upon exchanging arguments). When
loops visit only triangles, these have a single pole and we can solve the
model via elliptic functions.
Non-generic critical points form a manifold of codimension 2 in the space
of parameters.
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Twofold loop models

For instance, for the Q-state Potts model on general random maps, there
are two parameters : edge weight t, coupling J = eK − 1. For Q ≤ 4, there
is a unique non-generic critical point (t(Q), J(Q)).

1 2 3 4

0.025

0.05

0.075

0.1

0.125

0.15

0.175

t

Q 1 2 3 4

0.5

1

1.5

2

2.5

J

Q

J(Q) is distinct from the self-dual value
√
Q !

Jérémie Bouttier (IPhT) The nested loop approach to the O(n) model on random maps21 March 2013 41 / 42



Conclusion

Main result

We have shown that the gasket of a critical O(n) loop model has a
non-generic critical Boltzmann map distribution. Its scaling limit has
Hausdorff dimension

dH = 3± 2

π
arccos

(n
2

)
, n ∈ (0, 2).

Caveat

We are only describing the gasket, not the full configuration !

Open questions and directions

Understand the full scaling limit (not just the gasket), hulls...

Higher genus, higher dimensions ?

Extend the nested loop approach to other models : 6-vertex, ADE...
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