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Square lattice QDM

Rokhsar & Kivelson PRL ‘88
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Columnar valence-bond crystal (VBC) Staggered crystal

No genuine liquid RVB phase...

~ -0.2

L. S. Levitov, Phys. Rev. Lett. 64, 92 (1990)
S. Sachdev, Phys. Rev. B 40, 5204 (1989)
P. W. Leung, et al., Phys. Rev. B 54, 12 938 (1996)
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Triangular lattice QDM

Moessner & Sondhi PRL ‘01
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But what is so remarkable with RVB liquids ?
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Spinon deconfinement in RVB liquids

Energy grows linearly with distance
� confinement

(different from 1D)

One spinon is surrounded  by 
a local reorganization of the 
(liquid-like) dimer background.
Deconfinement

r Crystal r Liquid

This work: a solvable model 
with a RVB liquid ground-state

- No broken symmetry
- Short-ranged correlations
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Single hexagon moves on the kagome lattice

h.c.

+

h.c.

xσ = +

+ +
�

Kinetic energy operator σx : linear combination of all 
these possible moves:

32 different loops 
when applying the 
hexagon symmetries

Any other move will 
involve at least 2 
hexagons
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Solvable QDM
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Spectrum and wave-functions ?

Need for two representations:

- Arrows

- Pseudo-spins
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Arrow representation
Zeng & Elser PRB ‘93 ‘95

Constraint :
- Number of outgoing arrows
must be odd on every triangle
- Flipping the arrows along any 
closed loop is an admissible move.

On a lattice made of corner-sharing triangles (such as kagome), 
dimer coverings are easily represented with arrows:

Relation to our model ?
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Arrows and σx

( )x hσ :  Flips the 6 arrows around h

ððð ð ( )2
1x hσ =

In terms of the arrows, σx has a very simple meaning: 

( ) ( )[ ] ',    0', hhhh xx ∀=σσ

σx ⇔ Ising pseudo-spin 

⇔⇔⇔⇔h h
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σz pseudo-spin operators

1zσ = ±Label dimer coverings by on each hexagon : 

Zeng & Elser PRB ‘93 ‘95

Reference covering C0

New covering C

= non-intersecting loops
= Ising domain walls � σz(h)=±1

- C and C0 must be in the same 
topological sector (all loops are 
contractible).

- σz(h) is defined modulo 
a global spin flip

Remarks in case of periodic boundary conditions:

Related to the solution of the 
2D Ising model with dimers on 
a decorated lattice.
M. E. Fisher, J. Math. Phys. 7, 
1776 (1966)
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σx and σz

( ) ( ) ( ) ( )x z z xh h h hσ σ σ σ= −

The pseudo-spin operators satisfy the usual Pauli matrix algebra:

( ), ( ') 0     'x zh h h hσ σ� � = ∀ ≠� �

σx
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Ground-state wave function

= linear combination of all dimer coverings
(belonging to a given topological sector)
= Rokhsar-Kivelson wave-function

Dimer-dimer correlations :

Strictly no correlation as soon as bonds (ij) and (kl) do not 
involve a common triangle. Most disordered dimer liquid.

( ) ( ) ( )
0

   

c

c

= → → →

= ↑ + ↓ ↑ + ↓ ↑ + ↓

=�

�

�

( ) 2 22
0 0 1 4 0 0 0 0ij kl ij kld d d d= = = (Simple proof using  

σx(h)|0>=|0>)

( )�
∈

−=
hexagonsh

x hH σ

Excitations ?
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Excitations: Ising vortices (visons)

ððð ð Contraint on physical states: ∏ =
h

x h 1)(σ

∏
h

x h)(σ : Flips all the arrows twice � no effect

ððð ð Excitations are created by pairs

Systems without ‘edges’ (periodic 
boundary conditions). Related to the 
two-fold redundancy σz ⇔ -σz
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Wave-function in terms of dimers ?

N. Read and B. Chakraborty, Phys. Rev. B 40, 7133 (1989)
S. Kivelson, Phys. Rev. B 39, 259 (1989)
T. Senthil and M. P. A. Fisher, Phys. Rev. Lett. 86, 292 (2001) 
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Ising vortex (vison) wave-function
( )�

∈
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hexagonsh

x hH σ
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b

a

b

= - + -

+…
Why are these excitations called vortices ?

If Ω is a topologically non-trivial loop one 
obtains a new degenerate ground-state
(topological degeneracy)
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Z2 Gauge theory

r Gauge variable = arrows
(living on the links on the hexagonal lattice)

r Gauge constraint
Number of outgoing arrows must be odd
on every triangle

1)(
3

1

=∏
=i

x iτ

1
2

3

ððð ð Dimer coverings are the physical states of the gauge theory.
Visons are the vortices of this gauge theory.

=)(izτ Flips the arrow i

�
�
	

−
+

=
1

1
)(ixτ

Otherwise

If the arrow i is the same as in the 
reference

2+1 dimensions - Hamiltonian formulation
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S=½ Heisenberg model on the kagome lattice

W
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 (1998)
Huge number of low-energy singlets in the spectrum

Small (or vanishing ?) spin gap

No clear signature of any LRO so far

Explanation ...?

1/N

∆

NB: Log(1.15)/log(2)=0.2



16

S=
0

Variational subspace of dimer coverings

= ground-state of
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In a dimer covering, ¾ of the triangles have their 
minimal energy
� Good variational starting point

Numerical diagonalization of the Heisenberg model in the dimer subspace
� Large density of singlet states (similar to spectra in the full space)

Simplified model to describe 
the dimer dynamics induced by 
the Heisenberg interaction ?

2N/3+1 coverings

GM, Serban and Pasquier, PRB 2003
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Effective models in the dimer subspace
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µ-algebra and extensive degeneracy

1221 µµµµ = If 1 and 2 are not neighboring hexagons

If 1 and 2 are neighboring hexagons � Frustration

12 =aµ

+ same for the µ~

Kind of Ising pseudo-spin but...

�−=
h

h� )(µµ

1221 µµµµ −=
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Extensive degeneracy

With the        one can build Nh/2 operators which commute with each 

other (as well as with Hµ).

� Degeneracy ~ 2Nh/2 (=2N/6)
� Residual entropy (1/6)log(2) per site at T=0.

Explanation for the large density of S=0 states in the s=½ model ?

0]~,[   :, =∀ baba µµ

µ~The µ and     commute with each other :

Starting from one ground-state, one generate some others by acting 
with the
= generators of a large non-Abelian  symmetry group

µ~

µ~

�−=
h

h� )(µµ
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Deconfinement

Ground-state energy in presence of 2 static holes at distance d

E2(d) goes to a constant at large distance � Deconfinement

See also: S. Dommange et al., cond-mat/0306299 (Heisenberg S=½) 
Lauechli and Poilblanc, cond-mat/0310597 (t-J model)
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µ-model

( )

µ µ

µ σ

= −

= −

�
hexagons

Num. of dimers on 

(h)

( ) 1 ( )
h x

H

h hr Exact results :

1) Hµ has a (hidden) local non-Abelian symmetry.

� Extensive ground-state degeneracy ≈2N/6 !

2) Short-ranged dimer-dimer correlations � Dimer liquid

r Numerics (exact diagonalizations up to 144 sites) :

1) Gapless spectrum

2) Finite-size scaling of correlations and susceptibilities 
suggest that the system is critical

Is there a relation between this quantum dimer model and 
the low-energy singlet sector of the kagome-lattice spin-½ 
Heisenberg model ?
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Summary

r σx model

- First exactly solvable quantum dimer model

- Deconfined RVB liquid ground-state with topological degeneracy

- Exact mapping to an Ising gauge theory

r µ model

- Extensive ground-state degeneracy

- Numerics � Probably critical

- Relation with the spin-½ Heisenberg model on the kagome lattice ?


