Quantum dimer models on the kagome lattice

Grégoire Misguich

Didina Serban
Vincent Pasquier
Service de Physique Théorique
CEA-Saclay

Phys. Rev. Lett 89, 137202 (2002)
Phys. Rev. B 67, 214413 (2003)
J. Phys. Cond. Mat. 16, 823 (2004)
[cond-mat/0204428]
[cond-mat/0302152]
[cond-mat/0310661]

Square lattice QDM

Rokhsar \& Kivelson PRL ‘88

$$
\begin{aligned}
H & =-J \square|\square\rangle\langle\square|+|\square\rangle\langle\square| \\
& +v \square|\square\rangle\langle\square|+|\square\rangle \square \square \mid
\end{aligned}
$$

Columnar valence-bond crystal (VBC) Staggered crystal

L. S. Levitov, Phys. Rev. Lett. 64, 92 (1990)
S. Sachdev, Phys. Rev. B 40, 5204 (1989)
P. W. Leung, et al., Phys. Rev. B 54, 12938 (1996)

No genuine liquid RVB phase...

Triangular lattice QDM

Moessner \& Sondhi PRL ‘01

$$
\begin{aligned}
H & =-J \square|\triangle\rangle\rangle\langle\Delta|+|\Delta\rangle\langle\Delta| \\
& +V \square|\Delta\rangle\langle\Delta|+|\triangle\rangle\langle\Delta|
\end{aligned}
$$

But what is so remarkable with RVB liquids ?

Spinon deconfinement in RVB liquids

I Crystal

Energy grows linearly with distance
\square confinement
(different from 1D)

I Liquid

- No broken symmetry
- Short-ranged correlations

One spinon is surrounded by a local reorganization of the (liquid-like) dimer background.
Deconfinement
This work: a solvable model with a RVB liquid ground-state

Single hexagon moves on the kagome lattice

32 different loops when applying the hexagon symmetries

Any other move will involve at least 2 hexagons

Kinetic energy operator σ^{x} : linear combination of all these possible moves:

$$
\begin{aligned}
\sigma^{x} & =|\nabla\rangle\rangle\langle\nabla\rangle \mid+ \text { н.c. } \\
& +\square \\
& +|\nabla\rangle\rangle\langle\lambda \nabla|+\text { h.c. }
\end{aligned}
$$

Solvable QDM

$$
H=-\square_{h \in \text { hexagons }} \sigma^{x}(h)
$$

Spectrum and wave-functions?

Need for two representations:

- Arrows

- Pseudo-spins

Arrow representation

Zeng \& Elser PRB ‘93 ‘95

On a lattice made of corner-sharing triangles (such as kagome), dimer coverings are easily represented with arrows:

Constraint:

- Number of outgoing arrows must be odd on every triangle
- Flipping the arrows along any closed loop is an admissible move.

Relation to our model ?

Arrows and σ^{x}

In terms of the arrows, σ^{x} has a very simple meaning:
$\sigma^{x}(h)$: Flips the 6 arrows around h

\Leftrightarrow Ising pseudo-spin

σ^{2} pseudo-spin operators

Zeng \& Elser PRB ‘93'95 Label dimer coverings by $\sigma^{z}= \pm 1$ on each hexagon :

σ^{x} and σ^{z}

The pseudo-spin operators satisfy the usual Pauli matrix algebra:

Ground-state wave function

$$
\begin{aligned}
|0\rangle & =|\rightarrow \quad \rightarrow \quad \square \quad \rightarrow\rangle \\
& =(|\uparrow\rangle+|\downarrow\rangle) \quad H=-\underset{h \in \text { hexagons }}{\square} \sigma^{x}(h) \\
& =\square_{c}|c\rangle \\
& =\text { linear combination of all dimer coverings }
\end{aligned}
$$

(belonging to a given topological sector)
= Rokhsar-Kivelson wave-function

Dimer-dimer correlations :

$$
\langle 0| d_{i j} d_{k l}|0\rangle=(1 / 4)^{2}=\langle 0| d_{i j}|0\rangle^{2}=\langle 0| d_{k l}|0\rangle^{2} \quad \begin{aligned}
& \text { (Simple proof using } \\
& \sigma \times(\mathrm{h})|0>=| 0>)
\end{aligned}
$$

Strictly no correlation as soon as bonds (ij) and (k) do not involve a common triangle. Most disordered dimer liquid.

Excitations?

Excitations: Ising vortices (visons)

N. Read and B. Chakraborty, Phys. Rev. B 40, 7133 (1989)
S. Kivelson, Phys. Rev. B 39, 259 (1989)
T. Senthil and M. P. A. Fisher, Phys. Rev. Lett. 86, 292 (2001)

$$
H=-\prod_{h \in \text { hexagons }} \sigma^{x}(h)
$$

$\prod_{h} \sigma^{x}(h):$ Flips all the arrows twice \square no effect

Contraint on physical states: $\quad \prod_{h} \sigma^{x}(h)=1$
Systems without 'edges' (periodic boundary conditions). Related to the two-fold redundancy $\sigma^{2} \Leftrightarrow-\sigma^{2}$

Excitations are created by pairs

$$
\begin{aligned}
& |a b\rangle=\left|\rightarrow \rightarrow \leftarrow_{a} \rightarrow \square \leftarrow_{b} \rightarrow\right\rangle \\
& E_{a b}=E_{0}+4
\end{aligned}
$$

Wave-function in terms of dimers ?

Ising vortex (vison) wave-function

$$
H=-\square_{h \in \text { hexagons }} \sigma^{\times}(h)
$$

$$
\begin{aligned}
|a b\rangle & =\left|\rightarrow \rightarrow \leftarrow_{a} \rightarrow \square \leftarrow_{b} \rightarrow\right\rangle \\
& =\sigma^{z}(a) \sigma^{z}(b)|0\rangle \\
& =\square_{c}(-1)^{\Omega(a, b)}|c\rangle
\end{aligned}
$$

If Ω is a topologically non-trivial loop one obtains a new degenerate ground-state (topological degeneracy)

Why are these excitations called vortices ?

Z_{2} Gauge theory

I. Gauge variable = arrows
(living on the links on the hexagonal lattice)

$\tau^{z}(i)=$ Flips the arrow i
r Gauge constraint
Number of outgoing arrows must be odd on every triangle

$$
\prod_{i=1}^{3} \tau^{x}(i)=1
$$

Dimer coverings are the physical states of the gauge theory. Visons are the vortices of this gauge theory.

$S=1 / 2$ Heisenberg model on the kagome lattice

Huge number of low-energy singlets in the spectrum
Small (or vanishing ?) spin gap
No clear signature of any LRO so far

Explanation ...?

NB: $\log (1.15) / \log (2)=0.2$

[^0]
Variational subspace of dimer coverings

In a dimer covering, $3 / 4$ of the triangles have their minimal energy
— Good variational starting point

Numerical diagonalization of the Heisenberg model in the dimer subspace \square Large density of singlet states (similar to spectra in the full space)
 Simplified model to describe
the dimer dynamics induced by
the Heisenberg interaction? Simplified model to describe
the dimer dynamics induced by
the Heisenberg interaction? Simplified model to describe
the dimer dynamics induced by
the Heisenberg interaction?

GM, Serban and Pasquier, PRB 2003
N

Effective models in the dimer subspace

Lage	Heizentarg	π^{2}	μ	μ
x	\ominus_{4}^{3}	1	O-1	-1
y_{3-3}^{x-4}	4	1	1	-1
$\underset{x \rightarrow x}{ }$	$\frac{1}{4}$	1	1	1
$x_{3} 4$	4	1	1	-1
$\sum x$	26	1	$\bigcirc 1$	-1
	Θ_{16}	1	$\bigcirc 1$	1
E	Θ_{16}	1	-1	-1
$x+5$	0	1	1	-1.
			$\boxed{\square}$	

$$
\square_{\mu}=-\prod_{h} \mu(h)
$$

Sign of the matrix

element $=(-1)^{\text {Num. }}$ dimers

μ-algebra and extensive degeneracy

$$
\square_{\mu}=-\square_{h} \mu(h)
$$

$\mu_{a}^{2}=1$ Kind of Ising pseudo-spin but...

$$
\begin{aligned}
& \mu_{1} \mu_{2}=\mu_{2} \mu_{1} \quad \text { If } 1 \text { and } 2 \text { are not neighboring hexagons } \\
& \mu_{1} \mu_{2}=-\mu_{2} \mu_{1} \quad \text { If } 1 \text { and } 2 \text { are neighboring hexagons } \square \text { Frustration }
\end{aligned}
$$

+ same for the $\tilde{\mu}$

Extensive degeneracy

$\square_{\mu}=-\prod_{n} \mu(h)$

The μ and $\tilde{\mu}$ commute with each other :

$$
\forall a, b:\left[\mu_{a}, \tilde{\mu}_{b}\right]=0
$$

Starting from one ground-state, one generate some others by acting with the $\widetilde{\mu}$
= generators of a large non-Abelian symmetry group
With the $\tilde{\mu}$ one can build $N_{h} / 2$ operators which commute with each other (as well as with H_{μ}).
\square Degeneracy ~ $2^{\mathrm{N} / 2}\left(=2^{\mathrm{N} / 6}\right)$
\square Residual entropy (1/6) $\log (2)$ per site at $\mathrm{T}=0$.
Explanation for the large density of $S=0$ states in the $S=1 / 2$ model ?

Deconfinement

Ground-state energy in presence of 2 static holes at distance d

$E_{2}(d)$ goes to a constant at large distance \square Deconfinement
See also: S. Dommange et al., cond-mat/0306299 (Heisenberg S=1⁄2) Lauechli and Poilblanc, cond-mat/0310597 (t-J model)

μ-model

r Exact results :

$$
H_{\mu}=-\square_{\text {hexagons }} \mu(\mathrm{h})
$$

$$
\mu(h)=(-1)^{\text {Num. of dimers on } h} \sigma^{x}(h)
$$

1) H_{μ} has a (hidden) local non-Abelian symmetry.
[Extensive ground-state degeneracy $\approx 2^{\mathrm{N} / 6}$!
2) Short-ranged dimer-dimer correlations \square Dimer liquid

I Numerics (exact diagonalizations up to 144 sites) :

1) Gapless spectrum
2) Finite-size scaling of correlations and susceptibilities suggest that the system is critical

Is there a relation between this quantum dimer model and the low-energy singlet sector of the kagome-lattice spin- $1 / 2$ Heisenberg model?

Summary

r σ^{x} model

- First exactly solvable quantum dimer model
- Deconfined RVB liquid ground-state with topological degeneracy
- Exact mapping to an Ising gauge theory
r μ model
- Extensive ground-state degeneracy
- Numerics \square Probably critical
- Relation with the spin $-1 / 2$ Heisenberg model on the kagome lattice ?

[^0]: Waldtmann et al. Eur. Phys. J. B (1998)

