Spontaneously broken symmetries (in condensed matter, and in quantum magnets in particular)

Grégoire Misguich

Institut de Physique Théorique CEA Saclay, France

http://ipht.cea.fr/Pisp/gmisguich/

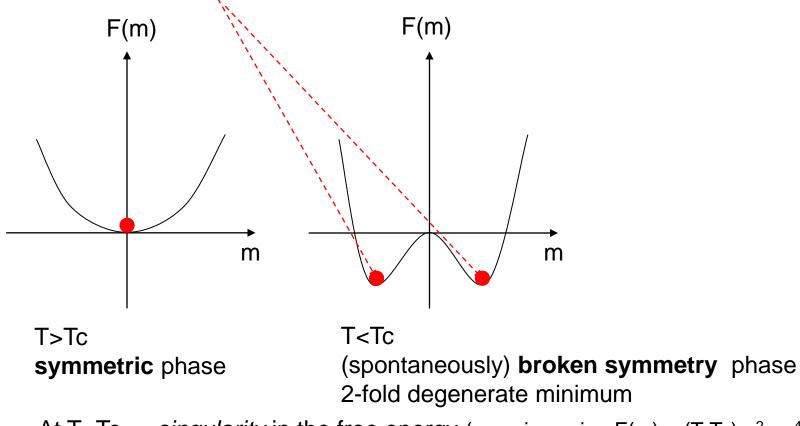
Ecole "Matériaux et interactions en compétition", GDR MICO, 5-11 Juin 2010, Aussois, France

Broken symmetries

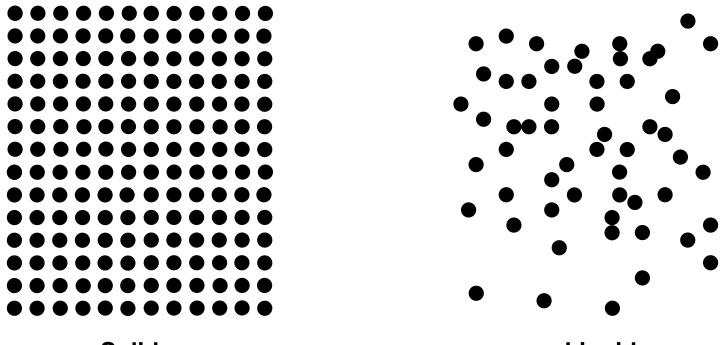
Uniaxial ferromagnet **m**: magnetization

Free energy F(m) has a **m** ⇔ -**m symmetry**

but the values $+/- m_0$ which minimizes F breaks this symmetry.



At T=Tc \rightarrow singularity in the free energy (exercice using F(m)=a(T-Tc)m²+m⁴)



Solid

Liquid

- □ A "snapshot" of the solid looks more symmetric
- But... a statistical ensemble, **the liquid is more symmetric**
- \square Example: the average particle density $\mathsf{n}(\mathsf{r})$ is spatially uniform in the liquid, not in the solid
- The less symmetric phase (i.e. the solid) has some long-ranged order

Plan

Introduction

- Modèles, Hamiltoniens et symétries, définitions
- Exemples simples de symétries brisées en physique statistique classique et quantique

Paramètres d'ordre

- définition(s)
- exemples (et contre exemples!)
- Un tout petit peu de théorie des groupes (& représentations)
- Fonctions de corrélation, ordre à longue portée, susceptibilités
- Théorie de Landau

Brisure spontanée de symétries continues

- Modes de Goldstone
- □ Théorème de Mermin-Wagner:
- Invariance de Jauge & mécanisme de Higgs

Systèmes de taille finie Signature dans le spectre d'une brisure de sym., nombres quantiques, etc.

Models and symmetries, examples

Notations

H: Hamiltonian (a priori quantum, but may be classical too)
 G: symmetry group.

□ Group elements act on states g $|i\rangle = |g(i)\rangle$ (unitary $g^{-1} = g^{+}$)

 \Box Equivalently, group elements act on operators/observables: $O \rightarrow O' = g^+ Og$

$$\begin{vmatrix} a \rangle \rightarrow |a'\rangle = g |a\rangle \\ |b\rangle \rightarrow |b'\rangle = g |b\rangle \qquad \qquad \langle a |O|b\rangle \rightarrow \langle a'|O|b'\rangle = \langle a |g^{+}Og|b\rangle$$

□ g is a symmetry of $H \Leftrightarrow g^{-1}Hg = H \Leftrightarrow [g,H]=0$

Symmetries - simplest examples

 $H = \sum J_{ij} \vec{S}_i \cdot \vec{S}_i$ Heisenberg model Example1: spin & rotations $\langle i, j \rangle$ g (θ) global rotation of angle θ and axis \vec{n} $= \exp\left(i\theta \sum \left[\int_{a}^{x} n^{x} + S_{i}^{y} n^{y} + S_{i}^{z} n^{z} \right] \right)$ $\left[H,\sum_{i} S_{i}^{\alpha}\right] = 0 \implies H,g \not\in \theta \supseteq 0$ $H = \sum_{i} \frac{\vec{p}_{i}^{2}}{2m} + \sum_{i \leq j} V(\vec{r}_{i} - \vec{r}_{j})$ Example 2: Atoms in a solid. Translation g_R : shifts the particle positions $r_i \rightarrow r_i + R$; $g_{\mathbf{R}} = \exp\left(i\mathbf{R}\cdot\sum_{j}\mathbf{p}_{j}\right)$ Corresponding operator: [proof: check on plane waves] $\mathbf{r}_i \rightarrow \mathbf{r}_i + \mathbf{R}$ does not change $H \Leftrightarrow P = \Sigma_i p_i$ is conserved] Solid state is *not* invariant under $r_i \rightarrow r_i + R$, contrary to liquids.

Classical Ising model: Z₂ sym. breaking & thermodynamic limit

Ising model

$$E\left(\sigma_{i}\right) = -\sum_{\langle ij \rangle} \sigma_{i}\sigma_{j}, \quad \sigma_{i} = \pm$$

$$Z = \sum_{\sigma_{i}=\pm 1} \exp\left(-\frac{E(\sigma_{i})}{k_{B}T}\right)$$

 $\sigma_i \rightarrow -\sigma_i$ is a symmetry

□ Spontaneously broken in the low-temperature phase (d≥2): $T \ge T_c : \langle \sigma_i \rangle = 0$

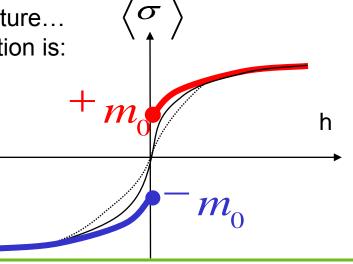
$$T < T_{c} : \left\langle \sigma_{i} \right\rangle = \pm m_{0}(T)$$

□ Warning: thermodynamic limit required !

If the number of spins is finite $\rightarrow \langle \sigma \rangle = 0$ at *any* temperature... The proper way to measure a "spontaneous" magnetization is:

$$E = -\sum_{\langle ij \rangle} \sigma_{i} \sigma_{j} - h \sum_{i} \sigma_{i}$$

ext. magnetic field
$$\left\langle \sigma_{i} \right\rangle = \lim_{h \to 0^{+}} \lim_{N \to \infty} \left\langle \sigma_{i} \right\rangle_{T,N,h}$$



G. Misguich, June 2010, Aussois

Jahn-Teller distorsion

 δ_i

Describes the atoms positions in a solid in terms of the deviation from their (high-temperature) equilibrium positions, which are assumed to form a regular (say cubic) lattice $\sum e = s$

$$H = \sum_{\langle i,j \rangle} V \, {\boldsymbol{\$}}_{i} - \delta_{j} -$$

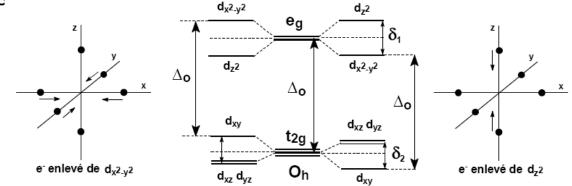
3 spatial directions are equivalent

V: complicated...:

-electrostatic interactions between electronic clouds

-electron kinetic energies

Electronic configuration & 3d orbitals



Spontaneous selection of one particular direction (driven by electronic energy gain) Reduction of the lattice symmetries

Bose-Einstein condensation (bosons)

Bose-Hubbard model

$$H = -t \sum_{\langle ij \rangle} \mathbf{S}_{i}^{+} b_{j}^{+} + b_{j}^{+} b_{i}^{-} - \mu \sum_{i} b_{i}^{+} b_{i}^{+} + U \sum_{i} b_{i}^{+} b_{i}^{+} \mathbf{S}_{i}^{+} - 1 - \frac{1}{2} b_{i}^{+} b_{i}^{-} - \frac{1}{2} b_{i}^{-} - \frac{1}{2} b_{i}^{+} b_{i}^{-} - \frac{1}{2} b_{i}^{+} b_{i}^{-} - \frac{1}{2} b_{i}^{+} b_{i}^{-} - \frac{1}{2} b_{i}^{+} b_{i}^{-} - \frac{1}{2} b_{i}^{-} - \frac{$$

Bose condensation: non-zero expectation value of the creation/annihilation operator associated to the condensed (often k=0) mode

$$\left\langle b_{k_0}^{+}\right\rangle = \sqrt{Nn_c} \exp \left\langle \varphi \right\rangle \quad \left\langle b_{k_0}^{+}b_{k_0}^{+}\right\rangle = Nn_c$$

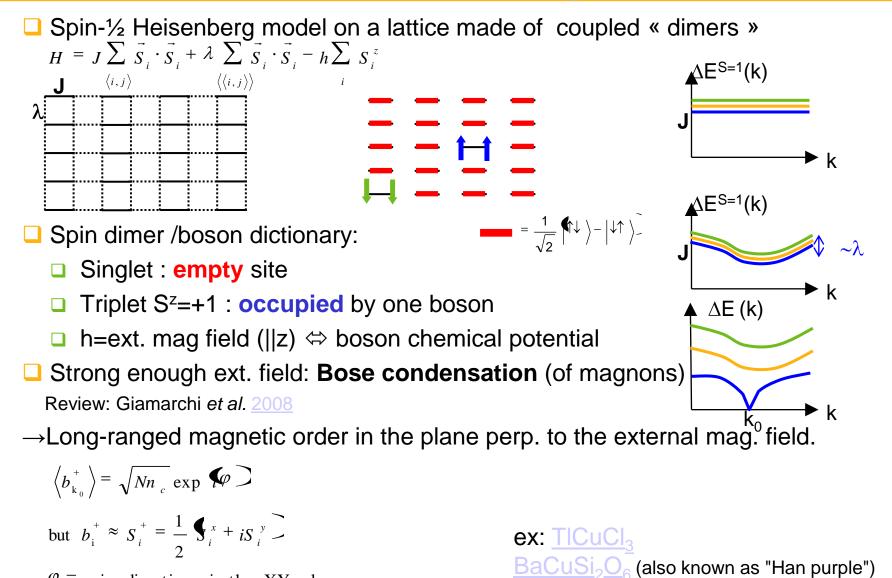
□ φ = "phase of the condensate". Spontaneous break down of the U(1) symmetry □ But ... what is the symmetry g_{φ} which rotates the phase φ ? Looking for g which satisfies $g_{\varphi}^{-1} b_{i}^{+} g_{\varphi} = e^{i\varphi} b_{i}^{+}$

 $H \varphi(\varphi) = 0$

Operator which changes the phase : $g(\varphi) = \exp\left(i\varphi \sum_{i} b_{i}^{+}b_{i}\right)$

Particle conservation.

Bose-Einstein condensation of magnons



. . .

 φ = spin direction in the XY plane

11

Order parameters

Ecole "Matériaux et interactions en compétition", GDR MICO, 5-11 Juin 2010, Aussois, France

What is an order parameter ?

idea: An order parameter is an observable which allows to detect if a symmetry is broken or not.

□ T=0

A local observable O is an order for the symmetry g if:

<x|O|x>=0 when the symmetry is not broken (g|x>~|x>, up to a possible phase)

 $< x|O|x > \neq 0$ when the sym. is broken.

O is local, or a sum of local terms;

□ Remark: to get an observable which expectation value vanishes in any symmetric state, use: $O' = O - \frac{1}{|G|} \sum_{g \in G} g^{-1} Og$

T>0 if
$$\forall g \ g | x \rangle \sim | x \rangle$$
 then $\langle x | O' | x \rangle = 0$

A local observable O is an order for the symmetry g if:

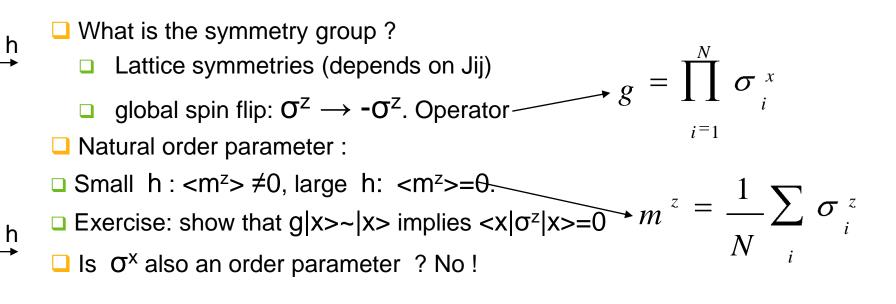
<O> (thermal average) when the symmetry is not broken, and <O> can be non-zero when the sym. is broken.

Example of order parameters: quantum Ising model

Ising model in transverse field

$$H = -\sum_{\langle ij \rangle} J_{ij} \sigma_i^z \sigma_j^z - h \sum_i \sigma_i^x \qquad \sigma_i^z = \begin{bmatrix} 1 & 0 \\ 0 & -1 \end{bmatrix} \sigma_i^x = \begin{bmatrix} 0 & 1 \\ 1 & 0 \end{bmatrix}$$

remarks: exactly solvable in 1d (spin chain, using Jordan-Wigner transf.) relevant to describe <u>LiHoF</u>₄ (then J_{ij}:= dipolar, long-ranged) CsCoCl₃, K₂CoF₄



h_c

¦h_c

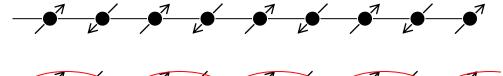
Spin Peierls

Quantum spins coupled to an « elastic » lattice

$$H = \sum_{\langle ij \rangle} J(\vec{r}_i - \vec{r}_j) \vec{S}_i \cdot \vec{S}_j + \sum_{\langle ij \rangle} V(\vec{r}_i - \vec{r}_j)$$

Spontaneous « dimerization »

(magnetic energy gain > elastic energy cost)

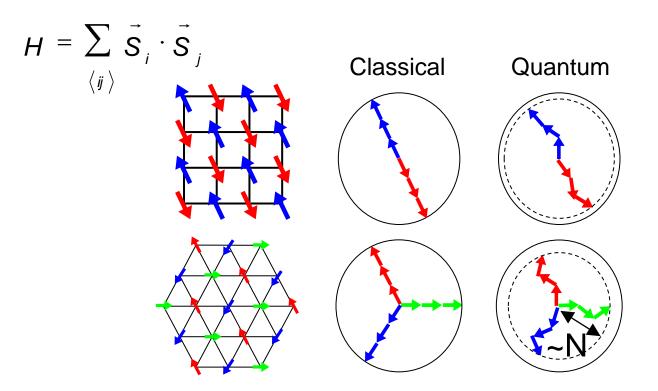


□ Examples of order parameters (translation symmetry breaking) $\sum_{i}^{i} (-1)^{i} \vec{s}_{i} \cdot \vec{s}_{i+1}$ Example: CuGeO₃ $\sum_{i}^{i} (-1)^{i} |\vec{r}_{i} - \vec{r}_{i+1}|$

 \Box Dimerized phase: spin gap Δ for magnetic excitations.

Is Δ an order parameter ?

Néel (antiferromagnetic) orders



 $\vec{S}(\mathbf{q}) = \sum_{i} e^{i\mathbf{q}\cdot\mathbf{r}_{i}} \vec{S}_{i}$ sublattice magnetizat ion

Examples of order parameters which detect rotation and translation symmetry breakings.

 $\mathbf{q} = (\pi, \pi)$ square lattice

$$\mathbf{q} = \left(\frac{4\pi}{3}, 0 \right)$$
 triangula r lattice

Long-range order, correlation functions & susceptibilities

\Box Spontaneous symmetry breaking $\Leftrightarrow \langle O_r O_r \rangle$ is long-ranged

□ Take a large but *finite* system.

How can we measure if we are in the ordered or disordered phase ?

Problem $\langle O \rangle = 0$ in both phases (since the system is *finite*).

Solution: Compute $\langle O_r O_{r'} \rangle$ for sufficiently distant spins

If it does not decay to zero at large distances \rightarrow broken symmetry phase.

Structure factor:

 $\begin{array}{l} O=\Sigma_r \; O_r \;\;,\; O^2=\Sigma_{rr'} \; O_r \; O_{r'} \;\; <O^2>=N \; \Sigma_r \; <O_0 \; O_r> \; LRO \Leftrightarrow <O^2>\sim N^2 \\ \mbox{If } O=S(q),\; <O^2> \mbox{ is accessible through neutron scattering for instance.} \\ |S(q)|\sim N^2 \; \mbox{gives Bragg peaks.} \end{array}$

□One can also look at the susceptibility $H \rightarrow H(\lambda)=H - \lambda.O$ $\chi = d < O > /d\lambda$ (taken at $\lambda=0$) = $<O^2 > /T$

□ χ diverges as N^2 ⇔ LRO

□ Remark: one can also define χ =[<O²> - <O>²]/T, in which case

 χ is *finite* in both phases, and only diverges *at* the transition.

(a little bit of) Group theory

Symmetry group G (finite for simplicity)

An observable O

One can generate other observables by acting with the symmetry operations.

$$g \in G \quad O_g = g^{-1}Og$$

$$\Box \text{ Chose a basis of the space (of observables) generated by } \{g^{-1} \cup g\}: \quad \vec{O} = \begin{bmatrix} O_1 \\ \vdots \\ \vdots \\ O_n \end{bmatrix}$$

$$Ex.: m^z = \sum_i S_i^z \quad \text{Rotations} \rightarrow \vec{m} = \begin{bmatrix} m^x \\ m^y \\ m^z \end{bmatrix} \quad \begin{bmatrix} O_1 \\ \vdots \\ O_n \end{bmatrix}$$

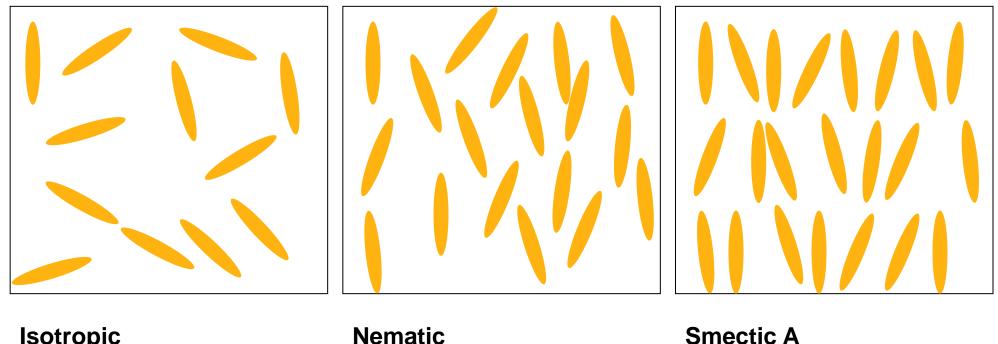
$$\Box \text{ This defines a representation of the group G}$$

- This defines a **representation** of the group G
- Definition: a representation of a group G is an application which associates an n*n invertible (unitary) matrix M(g) to each group element g, with the property: M(g) * M(g') = M(gg') and M(Id)=identity matrix

Decompose each g⁻¹ O_i g⁻¹ in this basis :
$$g^{-1}O_ig = \sum_{j=1}^n M_{ij}(g)O_j$$

The matrices M(g) form a rep. of the group G.

Nematic orders



Isotropic

Nematic $exp(2i\theta)$

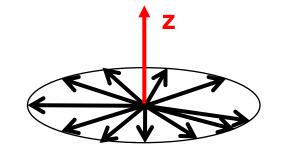
Broken sym.:

Smectic A $exp(2i\theta)$ exp(i k. ry)

Broken sym.:

Example of order parameter: spin nematics

A spin system in which the spins spontaneously chose a common plane, but no particular direction in this plane



□ Or, selection of an axis, but no direction along that axis:

Several quantum spin models are known to realize such kind of spin nematic phases Lauchli *et al.* 2005; Shannon *et al.* 2006
 Experimental realization ? Perhaps NiGa₂S₄ (Nakatsuji *et al.* 2005) ?

Example of order parameter: spin nematics

$$Q^{1} \approx \sum_{i} \left\{ S_{i}^{z} \stackrel{?}{\xrightarrow{?}} : n = 1 \right\} \left\{ x \left| S_{i}^{z} \stackrel{?}{\xrightarrow{?}} \right| x \right\} = \frac{1}{3} \overline{S}_{i}^{2} = \frac{1}{3} S(S+1) \text{ in a symmetric state}$$

$$Q^{1} \approx \sum_{i} \left[\left\{ S_{i}^{z} \stackrel{?}{\xrightarrow{?}} - \frac{1}{3} \left\{ S_{i}^{x} \stackrel{?}{\xrightarrow{?}} + \left\{ S_{i}^{y} \stackrel{?}{\xrightarrow{?}} + \left\{ S_{i}^{z} \stackrel{?}{\xrightarrow{?}} \right\} \right\} \right]$$

$$rotations \rightarrow \overline{Q} = \begin{bmatrix} \frac{1}{\sqrt{3}} \left\{ S_{i}^{z} \stackrel{?}{\xrightarrow{?}} - \left\{ S_{i}^{x} \stackrel{?}{\xrightarrow{?}} - \left\{ S_{i}^{y} \stackrel{?}{\xrightarrow{?}} \right\} \right]$$

$$= 5 \text{ components of a rank-2 symmetric & traceless tensor \\ Q^{ab} = S^{a} S^{b} - \delta^{ab} 1/3 \left[(S^{x})^{2} + (S^{y})^{2} + (S^{z})^{2} \right]$$

$$= spin-2 \text{ irreducible representation of SO(3)}$$

Ground state degeneracy & order parameters

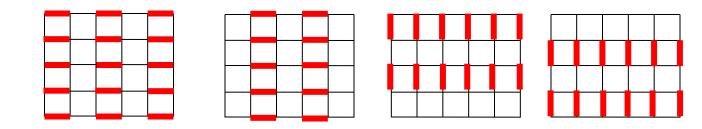
□ Phase with **discrete** broken symmetry → finite number of "ground-sates" |1>, |2>, ..., |d>

 \Box |1>,..., |d> form a representation Γ (of dim=d) of the symmetry group

 $\Box \mathbf{\Gamma} \text{ can be decomposed onto I.R. } \Gamma = \mathbf{1} \oplus \gamma_{a} \oplus \gamma_{b} \oplus \gamma_{c} \oplus \dots$

One can find an order parameter associated to each of the **γ** above (except the trivial one).

- Example: dimer on the square lattice & the columnar phase.
- Four ground states $\Rightarrow \Gamma$ is a rep. of dim=4
- Decomposition over IR. $\Gamma_{\dim = 4} = 1_{\dim = 1} \oplus \gamma_{\dim = 1} \oplus \gamma_{\dim = 2}$
- Find 2 "irreducible" order parameters of dim=1 and dim=2 ? Exercise !



Landau theory of phase transitions (in a nutshell)

- Idea: to describe the "universal" (long-distance & low-energy) properties of a system in the vicinity of a phase transition, one does not need to know the behavior of all the particles... Instead, one only needs to consider a few macroscopic variables: the order parameter(s) of the competing phases.
- Expand the free energy in powers of the expectation values of the order parameters. At a given order, include all possible terms allowed by symmetries.

ex: Symmetry: $m \leftrightarrow -m$ $F(T,m) = a(T)^*m + b(T)^*m^2 + c(T)^*m^3 + d(T)^*m^4$

- Minimize the free energy F(T,m) as a function of the phenomenological parameters (appearing in the expansion above: b(T) and d(T)) ((mean field).
- \Box Include space derivatives & fluctuations \rightarrow better description of transitions
- Remark: in the group-theory language, "allowed by symmetry" means "component in the trivial representation". Useful when looking for "allowed" terms involving several (possibly complicated) order parameters.

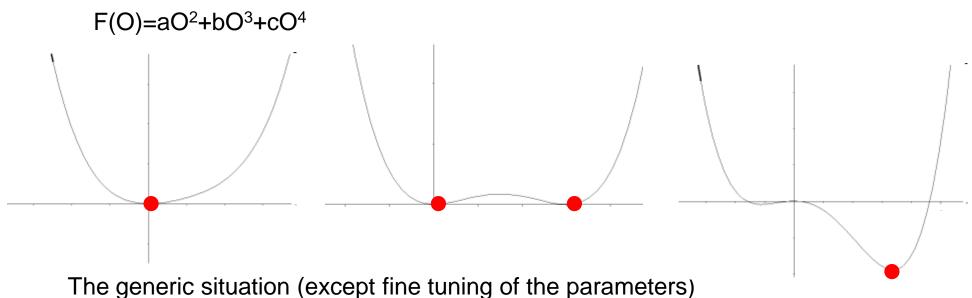
Application of the Landau theory: cubic invariant

□ n- component order parameter: O¹..Oⁿ.

□ Assume that some polynomial of degree 3 in the O^i is invariant under $\lfloor O_n$ all the symmetries of the model.

Remark: Finding if such terms exist is easy using group theory the characters of representations !

Result: 1st order phase transition !



 O_1

=

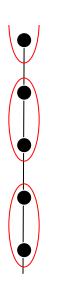
Beyond Landau's theory of phase transitions

Sometimes, find order parameter(s) is not enough to describe phase transitions. Examples:

- Liquid-gaz transition
- Metal-Insulator transition

□ 2d classical XY model and the "Berezinsky-Kosterlitz-Thouless" phase transition

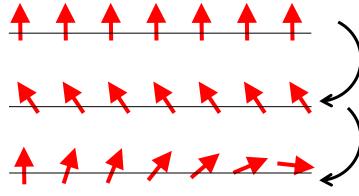
Low: T: algebraic spin-spin correlations High T: exponential decay. ⇒In both phases: no spontaneously broken symmetry, and therefore no order parameter to distinguish the two phases. Physics of topological defects (vortices) is not captured by a simple Landau approach.



□ Transition between a dimerized and a gapless phase in the J₁-J₂ Heisenberg chain (spin=1/2).

Even though the dimerized phase has a broken symmetry, it is in fact, same universality class as the BKT transition above.

Deconfined critical points (Senthil *et al.* 2004): order parameters are there, but they are not the correct variables to describe the 2nd order quantum phase transitions in some particular 2d quantum magnets (Landau would predict them to be first order). Continuous symmetry breaking & Nambu-Goldstone mode



Uniform rotation: costs *nothing*

Long wavelength modulation

Of the rotation angle:

- costs *little*
- Spontaneously broken continuous (global) symmetry +short-range interactions
- \Rightarrow **Gapless** (long-wavelength) excitations,
- \Rightarrow linear dispersion relation: $\omega(k) \sim k$.

NB: As many modes as broken symmetry generators.

- Examples:
 - spin waves in antiferromagnets (exercise: how many modes for a collinear magnet ? For a non-collinear magnet ?)
 - spin nematics
 - Sound in crystals
 - □ Sound in superfluity He⁴, ...
 - $\hfill\square$ What about superconductors $? \rightarrow$ Higgs mechanism

Mermin Wagner theorem

Hohenberg 1967; Mermin & Wagner 1966

Spontaneous break down of a continuous symmetry is forbidden in the following situations :

- □ Classical 1d and 2d, T>0
- □ Quantum 1d T=0 (what about ferromagnets ?)

Idea: Otherwise the thermally (quantum mechanically) excited Goldstone modes would destroy the long range order. Proof: See, for instance, Auerbach *"Interacting electrons & quantum magnetism"*, Springer <u>1994</u>

Absence of cont. sym. breaking does not mean no phase transition. Examples:

- BKT in the 2d XY model: none of the two phase break any sym.
- J₁-J₂ Heisenberg model on the square lattice: break down of a discrete lattice symmetry in the ordered phase. Continuous sym. are preserved. Weber *et al.* 2003

□ 2d, T>0: No sym breaking, but correlation length can be huge: $\xi(T) \approx \exp(-T_0/T)$

□ 3d couplings are often present...

Gauge invariance – « local symmetry »

Charged particle of mass m and charge q in presence of a vector potential A :

$$H = \frac{1}{2m} \P_{i\hbar} \nabla + q \overrightarrow{A}_{\star}^{2}$$

$$E = \left\langle \Psi \mid H \mid \Psi \right\rangle = \frac{1}{2m} \int d^{3}r \mid \P_{i\hbar} \nabla + q \overrightarrow{A}_{\star} \Psi(r) \mid^{2}$$
Gauge transformation :
$$\frac{\Psi(r) \rightarrow e^{i\Lambda(r)}\Psi(r)}{\overrightarrow{A} \rightarrow \overrightarrow{A} + \frac{i\hbar}{q} \nabla \Lambda}$$

Operator which implements the transformation : $g_{\Lambda} = \exp \left[i \frac{\Lambda(r)}{q} \int n(r) - div \vec{E} \right]$

Generator of an « infinitesimal » gauge transformation: G(r) = q n(r) - div E

Gauss Law: (ρ(r)-divE)|Phys>=0

physical states must be invariant under gauge transformations.

 \rightarrow Avoid having several spurious (gauge equivalent) states for the same "physical" state.

Anderson-Higgs mechanism (Meissner effect)

Particle with mass m and charge q:

$$E = \frac{1}{2\mathrm{m}} \int d^{3}r \left| \mathbf{4}_{i\hbar} \vec{\nabla} + q\vec{A} \vec{\Psi}(r) \right|^{2}$$

But also, $\psi(\mathbf{r})$: wave-function of a Bose-Einstein condensate (assume *n*=*cst*)

$$\psi(r) = \sqrt{n}e^{i^{\theta}(r)}$$

One can choose a gauge in which θ=0 everywhere

(→no phase degree of freedom anymore, no Goldtsone anymore)

$$E = \frac{q^2 n}{2m} \int d^3 r \left| \vec{A} \right|^2 = \text{``mass term''} \text{ for the photon}$$

 \rightarrow finite excitation gap for the electromagnetic field

Higgs mechanism:

the Goldstone mode is "eaten up" by the gauge boson, which acquires a gap.

- Superconductivity & Meissner effect
- □ Effective theories for strongly correlated systems are often *gauge theories*.
- Particle physics & electroweak symmetry breaking (~200 GeV). Higgs, W & Z bosons.

Im[Ψ]

RelΨ

Conclusions

Symmetries and broken symmetries are important ! and interesting, and useful, [©]

- Starting point to define/distinguish states of matter
- Understanding some low-energy degrees of freedom (Goldstone etc.)
- Description/prediction of phase transitions (Landau theory)
- Some phases and phase transitions require however to go beyond Landau's description in terms of broken symmetry. Several active fields of research :
 - quantum Hall effect
 - spin liquids (in frustrated magnets)
 - topological insulators
 - Deconfined critical points
 - Confinement / deconfinement