Speed selection in coupled Fisher waves

Martin Evans

Univ. Edinburgh, Inst. Condensed Matter and Complex Systems, School of Physics

Mon, Feb. 03rd 2014, 14:30

Salle Claude Itzykson, Bât. 774, Orme des Merisiers

The Fisher equation describes the spread of a population or the spread of an advantageous gene through a population. It is well known as a simple nonlinear equation which exhibits travelling wave solutions.
Within statistical physics It has played a major role in our understanding of phase ordering dynamics and random first order phase transitions. In this talk we review the selection mechanism for the speed of the travelling waves which was established some time ago. par We go on to consider two coupled Fisher equations representing two populations e.g. sub-populations of bacteria which are susceptible or resistant to antibiotic. par We show that a subtle coupling between two population waves gives rise to a novel speed selection mechanism.

Contact : lbervas