A few aspects of quantum chaotic scattering

S. Nonnenmacher (Saclay)

LDSG workshop "Dynamical systems and quantum mechanics", 25 March 2009

Right: resonant state for the dielectric stadium cavity, computed by C.Schmit.

Outline

- scattering wave (quantum) systems → (complex-valued) resonance spectra, metastable states
- Semiclassical (high-frequency) limit → need to understand the *ray dynamics*. Importance of the *set of trapped classical trajectories*.
- A toy model: open quantum maps
 - fractal Weyl law
 - resonance-free strip for filamentary trapped sets
 - phase space distribution of metastable states
- Another class of "leaky" quantum systems: *partially open* systems
 - clustering of decay rates near a *typical* value;
 - fractal Weyl laws

Euclidean scattering

Scattering systems with hard obstacles/smooth localized potential/noneuclidean metric.

- classical dynamics: geodesic (or Hamiltonian) flow + reflection on obstacles. *Most* rays escape to infinity.
- quantum dynamics: wave or Schrödinger equation governed by $-\Delta_{out}$, resp. (or $P_{\hbar} = -\hbar^2 \Delta + V(x)$)

0 K kj

For any E > 0 the energy shell $\{(x, \xi), |\xi|^2 = E\}$ is **unbounded**, so $-\Delta_{out}$ has a **purely continuous** spectrum on \mathbb{R}^+ .

- $(-\Delta_{out}-k^2)^{-1}: L^2_{comp} \to L^2_{loc}$ admits a meromorphic continuation from $\{\operatorname{Im} k > 0\}$ to $\{\operatorname{Im} k < 0\}$. Its poles $\{k_j\}$ (of finite multip.) are the **resonances** of $-\Delta_{out}$.
- Resonances = evals of a nonselfadjoint operator $-\Delta_{out,\theta}$ obtained from $-\Delta_{out}$ by a complex dilation (away from interaction zone)
- Each k_j is associated with a metastable (non-normalizable) state ψ_j(x), with decay rate γ_j = 2 | Im k_j | ↔ lifetime τ_j = (2 | Im k_j |)⁻¹.

 \implies long-living resonance if Im $k_j = \mathcal{O}(1)$.

Semiclassical limit

We will focus on the high-frequency limit $\operatorname{Re} k \approx K \gg 1 \Rightarrow (\operatorname{micro})$ localized wavepackets propagate along *classical rays*.

Take $\hbar_{eff} \stackrel{\text{def}}{=} K^{-1} \rightsquigarrow$ equivalent to study the resonances $\{z_i(\hbar)\}$ of \hbar -dependent operators

$$P_{\hbar} = -\hbar^2 \Delta_{out},$$
 more generally $P_{\hbar} = -\hbar^2 \Delta + V(x)$

in a disk $D(E, \gamma \hbar)$ centered on a "classical energy" E.

High-frequency \iff semiclassical limit $\hbar \ll 1$.

Semiclassical limit (2)

Main questions we will consider in the semiclassical limit:

- distribution of long-living resonances $(|\operatorname{Im} z_j| = \mathcal{O}(\hbar))$
- phase space localization of metastable modes $\psi_j(\hbar)$
- (time decay of the local intensity $|\psi(x,t)|^2$ (resolvent estimates))

Main idea: the distribution of long-living resonances depends on the properties of long classical trajectories.

Dispersion of the wave (due to the uncertainty principle) must also be taken into account.

 \rightarrow relevance of the **set of trapped trajectories**:

$$\Gamma^{\pm} = \{ (q, p) : \phi^t(q, p) \not\to \infty, \ t \to \mp \infty \}, \quad \Gamma = \Gamma^+ \cap \Gamma^-$$

Long-living resonances represent quantum mechanics living on Γ .

Chaotic scattering

• We will focus on systems for which the classical flow on Γ is strongly chaotic (uniformly hyperbolic: Axiom A system). Such systems are not Liouville-integrable (no conserved quantity except E), but their long-time dynamics is well-understood.

The trapped set Γ is a hyperbolic repeller with fractal geometry.

Semiclassical approach to $quantum \ chaos$: identify the appropriate classical-dynamical tools able to provide information on the quantum system.

A toy model: open maps

The ray dynamics can be analyzed through the **return map** κ through a **Poincaré** section Σ .

This map is defined on a subset $\Sigma' \subset \Sigma$, and preserves the induced symplectic form. It is an Axiom A homeomorphism on the trapped set $\Gamma \cap \Sigma$.

Ex: the bounce map on the obstables

$$(q, p = \sin \varphi) \mapsto \begin{cases} \kappa(q, p) &= (q', p') \\ \infty \end{cases}$$

<u>Generalization</u>: consider an arbitrary symplectic chaotic diffeomorphism $\tilde{\kappa}$ on some compact phase space (e.g. the torus \mathbb{T}^2), and an arbitrary hole H through which particles escape "to infinity" \rightsquigarrow open map $\kappa = \tilde{\kappa}_{|\mathbb{T}^2 \setminus H}$.

A toy model: open quantum maps

How to "quantize" such a map κ ? First, define quantum mechanics on \mathbb{T}^2 :

- Hilbert space $\mathcal{H}_{\hbar}\equiv\mathbb{C}^{N}$, $N\sim\hbar^{-1}$
- quantization of observables: $f(q, p) \mapsto \operatorname{Op}_{\hbar}(f)$ (Pseudodifferential Operator)
- quantization of the diffeom $\tilde{\kappa}$ (various recipes): $U = U_{\hbar}(\tilde{\kappa})$ unitary matrix (Fourier Integral Operator).

Quantum-classical correspondence (until the Ehrenfest time $T_{Ehr} = \frac{|\log \hbar|}{\Lambda}$):

$$U^{-t}\operatorname{Op}_{\hbar}(f)U^{t} = \operatorname{Op}_{\hbar}(f \circ \tilde{\kappa}) + \mathcal{O}(\hbar e^{\Lambda t}) \quad [\mathsf{Egorov}]$$

Equivalently, for a wavepacket $|q,p\rangle$, we have $U|q,p\rangle \approx |\tilde{\kappa}(q,p)\rangle$.

To open the "hole": apply a "projector" $\Pi = Op_{\hbar}(\mathbb{1}_{\mathbb{T}^2 \setminus H})$.

 \implies open quantum map

$$M_N(\kappa) = M_{\hbar}(\kappa) \stackrel{\text{def}}{=} \Pi \circ U_{\hbar}(\tilde{\kappa})$$

 $(N \times N \text{ subunitary})$

Correspondence with scattering resonances

The spectrum $\{(\lambda_{i,N}, \psi_{i,N}) \mid i = 1, ..., N\}$ of the open map $M_{\hbar}(\kappa)$ should provide a good model for resonances of P_{\hbar} (numerically much easier).

We expect the statistical correspondence:

$$\{\lambda_{i,N}, i = 1, \dots, N\} \longleftrightarrow \{e^{-iz_j(\hbar)/\hbar}, |\operatorname{Re} z_j(\hbar) - E| \le \gamma \hbar\}, \quad N \sim \hbar^{-1}$$

In particular, the decay rates $\{-2 \operatorname{Im} z_j(\hbar)/\hbar\} \longleftrightarrow \{-2 \log |\lambda_{i,N}|\}.$

• To compute resonances of P_{\hbar} , one can actually construct a family of quantum maps $M_{\hbar}(z)$ associated with the Poincaré return map, such that $\{z_j(\hbar)\}$ are obtained as the roots of $\det(1 - M_{\hbar}(z)) = 0$ [N-SJÖSTRAND-ZWORSKI'09?].

Example of an open chaotic map

Dig a rectangular hole in the 3-baker's map on \mathbb{T}^2

Advantage: the trapped sets $\Gamma^{(\pm)}$ are simple Cantor sets (simple symbolic dynamics)

$$M_{\hbar}(B) = F_N^{-1} \begin{pmatrix} F_{N/3} & & \\ & 0 & \\ & & F_{N/3} \end{pmatrix}$$

, $F_M = \text{discrete Fourier transform}$

Fractal Weyl law

The *geometry* of the trapped set influences the semiclassical density of long-living resonances.

<u>Ex:</u> 2 convex obstacles $\Rightarrow \Gamma =$ single unstable periodic orbit.

Quantum normal form ~> quasi-lattice of resonances [IKAWA,GÉRARD,SJÖSTRAND,..]

How about a fractal repeller Γ ?

Theorem. [Sjöstrand'90, Sjöstrand-Zworski'05] In the semiclassical limit, the density of resonances is bounded from above by a fractal Weyl law

 $\#\{j : |z_j(\hbar) - 1| \le \gamma \hbar\} = \mathcal{O}(\hbar^{-\nu}), \quad \text{resp.} \quad \#\{j : |\lambda_{j,N}| \ge c\} = \mathcal{O}(N^{\nu})$

where $\dim_{Mink}(\Gamma) = 2\nu + 1$ (resp. $= 2\nu$).

<u>Main idea</u>: after a suitable transformation, long-living resonant states "live" in a $\sqrt{\hbar}$ -nbhd of $\Gamma \rightsquigarrow$ count the number of \hbar^d -boxes in this nbhd.

Conjecture: = $\mathcal{O}(\hbar^{-\nu})$ should be replaced by $\sim C_{\gamma} \hbar^{-\nu}$

Fractal Weyl law (2)

• Such a fractal Weyl law has been numerically confirmed for various systems. Ex: an asymmetric open baker's map (ν known explicitly).

• This law was *proven* for an alternative *solvable* quantization of the open baker's map [N-ZWORSKI'05].

• To understand the factor C_{γ} (shape of the curve), an ensemble of random subunitary matrices $(\Pi U)_{U \in COE}$ was proposed in [SCHOMERUS-TWORZYDLO'05]. Universal?

Resonance-free strip for "filamentary" repellers

Another dynamical "tool" associated with the flow on Γ : the *topological pressure*

$$\mathcal{P}(s) = \mathcal{P}(-s \log J^+) \stackrel{\text{def}}{=} \lim_{t \to \infty} \frac{1}{t} \log \sum_{p: T_p \le t} J^+(p)^{-s}$$

"Compromise" between the complexity of the trapped set (# periodic orbits) and the instability of the flow along those orbits.

Properties: $\mathcal{P}(\mathbf{0}) = h_{top}(\Phi_{\uparrow\Gamma}^t) > 0$ and $\mathcal{P}(\mathbf{1}) = -\gamma_{cl} < 0$ the classical decay rate.

Theorem. [Ikawa'88,Gaspard-Rice'89,N-Zworski'07] Assume the topological pressure $\mathcal{P}(1/2) < 0$, and take any $0 < g < -\mathcal{P}(1/2)$.

Then, for $\hbar > 0$ small enough, the resonances $z_j(\hbar)$ close to E satisfy $\operatorname{Im} z_j(\hbar) \leq -g \hbar$.

• In dimension d = 2, the dynamical condition $\mathcal{P}(1/2) < 0$ is equivalent with the geometrical condition $\dim(\Gamma) < 2$

A too thin repeller disperses the wave.

Analogous results on hyperbolic manifolds

 $X = G \setminus \mathbb{H}^{n+1}$ convex co-compact (infinite volume). The trapped set Γ of the geodesic flow has dimension $2\delta + 1$, where δ is the dim. of the limit set $\Lambda(G)$, as well as the topological entropy of the flow.

Resonances $s(n-s) = \frac{n^2}{4} + k^2$ of Δ_X are given by the zeros of $Z_{Selberg}(s)$ (quantum resonances \leftrightarrow Ruelle resonances)

[PATTERSON'76, SULLIVAN'79, PATTERSON-PERRY'01]: all the zeros are in the half-plane Im $k \leq \delta - n/2 = \mathcal{P}(1/2)$.

This upper bound can be slightly sharpened, and lower bounds for the gap can be obtained [NAUD'06,'08]

Phase space distribution of metastable states

The metastable states $(\psi_j(\hbar))$ associated with long-living resonances have specific phase space distributions.

Consider a family of metastable (normalized) states $(\psi_{i_N})_{N\to\infty}$ of $M_N(\kappa)$ s.t. the corresponding resonances $|\lambda_{i_N}| \ge c > 0$. Up to extracting a subsequence, assume that (ψ_{i_N}) is associated with a semiclassical measure μ :

$$\forall f \in C^{\infty}(\mathbb{T}^2), \qquad \langle \psi_{i_N}, \operatorname{Op}_{\hbar}(f)\psi_{i_N} \rangle \xrightarrow{N \to \infty} \int_{\mathbb{T}^2} f \, d\mu \, .$$

Then for some $\lambda \geq 0$ we have

$$|\lambda_{i_N}| \xrightarrow{N \to \infty} \lambda$$
 and $\kappa^* \mu = \lambda^2 \mu$.

 μ is a *conditionally invariant measure* with decay rate λ^2 .

Phase space distribution of metastable states (2)

Condit. invar. measures are easy to construct. They are supported on Γ^+ .

Questions inspired by quantum ergodicity [N-RUBIN'05, KEATING-NOVAES-PRADO-SIEBER'06]:

For a given rate λ^2 , which condit. invar. measures μ are favored (resp. forbidden) by quantum mechanics?

Very partial results for the *solvable* quantized open baker [KEATING-NOVAES-N-SIEBER'08]:

- unique semiclassical measure at the edges of the nontrivial spectrum
- but not in the "bulk" of the spectrum (large degeneracies)

Partially open wave systems

Let us now consider systems for which rays do not escape, but *get damped*.

• Left: damped wave equation inside a closed cavity, $(\partial_t^2 - \Delta_{in} + b(x)\partial_t)\psi(x,t) = 0$, $b(x) \ge 0$ damping function \rightsquigarrow spectrum of *complex eigenvalues* $(\Delta_{in} + k^2 + i b(x) k)\psi(x) = 0$

• Right: dielectric cavity. Resonances satisfy $(\Delta + n^2k^2)\psi = 0$, with appropriate boundary conditions \rightsquigarrow reflection+refraction of incoming rays (Fresnel's laws).

In both cases, the *intensity* (\Leftrightarrow *energy*) of the rays is reduced along the flow. \rightarrow Weighted ray dymamics.

Damped quantum maps

Starting from a diffeom. $\tilde{\kappa}$, one can cook up a damped quantum map:

$$M_{\hbar}(\tilde{\kappa}, d) \stackrel{\text{def}}{=} \operatorname{Op}_{\hbar}(d) \circ U_{\hbar}(\tilde{\kappa}),$$

where $0 < \min |d| \le |d(q, p)| \le \max |d| \le 1$ is a smooth damping function.

- \Rightarrow Bounds on the distribution of decay rates of $M_{\hbar}(\tilde{\kappa}, d)$:
- obvious: all N eigenvalues satisfy min |d| ≤ |λ_{i,N}| ≤ max |d| (all resonances in a strip)
- Egorov $\Rightarrow M_{\hbar}^n \approx U^n \circ Op_{\hbar}((d_n)^n)$, where we used the *n*-averaged weights

$$d_n(q,p) \stackrel{\text{def}}{=} \left(\prod_{j=1}^n d(\tilde{\kappa}^j(q,p))\right)^{1/n}$$

 \Rightarrow all evals contained in the (often thinner) annulus $\min |d_{\infty}| \leq |\lambda_{i,N}| \leq \max |d_{\infty}|$.

Taking the chaos into account: clustering of decay rates

<u>Assume $\tilde{\kappa}$ Anosov</u> \Rightarrow sharper bounds on the decay rate distribution. Ergodicity + Central Limit Theorem for $d_n \Rightarrow almost \ all$ the N evals satisfy

 $-2|\lambda_{i,N}| = \gamma_{typ} + \mathcal{O}((\log N)^{-1/2}),$

where $\gamma_{typ} = -2 \int \log |d(q, p)| dq dp$ is the typical damping rate $(|d_{\infty}(q, p)| = e^{-\gamma_{typ}/2} \text{ almost everywhere})$ [Sjöstrand'00,N-SCHENCK'08].

Is the width of the distribution really $\mathcal{O}((\log N)^{-1/2})$? (OK for the solvable quantized baker's map).

Fractal Weyl law in the distribution tails

Large deviation estimates for $d_n \Rightarrow fractal upper bounds$ for the density of resonances away from γ_{typ} .

Theorem. [Anantharaman'08,Schenck'08]

$$\forall \alpha \ge 0, \quad \#\{i : -2\log|\lambda_{i,N}| \approx \gamma_{typ} + \alpha\} \le C_{\alpha} N^{f(\alpha)}$$

 $f(\alpha) \in [0,1] \leftrightarrow$ the rate function for d_n . Solvable baker's map: the above bound is generally not sharp.

One can also bound the decay rates using an adapted topological pressure. **Theorem. [Schenck'09]** For any $\epsilon > 0$ and any large enough $N \sim \hbar^{-1}$,

$$-2\log|\lambda_{i,N}| \ge -2\mathcal{P}\left(-\frac{1}{2}\log J^+ + \log|d|\right) - \epsilon$$

In some situations, the RHS is larger than $-2\log \max |d_{\infty}|$.

Phase space distribution of metastable states (3)

Partially open system [Asch-Lebeau'00, N-Schenck'09]: semiclassical measures associated with metastable states satisfy

$$d|^2 \times \tilde{\kappa}^* \mu = \lambda^2 \mu.$$

Such condit. invar. measures are more difficult to classify than in the fully open case. Several numerical studies for a chaotic dielectric cavity [WIERSIG, HARAYAMA, KIM..]

Examples of Husimi measures for a partially open 3-baker.

Work in progress...