A few aspects of quantum chaotic scattering
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Right: resonant state for the dielectric stadium cavity, computed by C.Schmit.



Outline

scattering wave (quantum) systems ~» (complex-valued) resonance spectra,
metastable states

Semiclassical (high-frequency) limit — need to understand the ray dynamics. Impor-
tance of the set of trapped classical trajectories.
A toy model: open quantum maps

— fractal Weyl law
— resonance-free strip for filamentary trapped sets
— phase space distribution of metastable states

Another class of “leaky” quantum systems: partially open systems

— clustering of decay rates near a typical value;
— fractal Weyl laws



Euclidean scattering

Scattering systems with hard obstacles/smooth localized potential /noneuclidean metric.

e classical dynamics: geodesic (or Hamiltonian) flow + reflection on obstacles. Most
rays escape to infinity.

e quantum dynamics: wave or Schrodinger equation governed by —A,,;, resp.
(or Py = —h?A + V(2))



Resonance spectrum

° ° .\ .O . kj/./ . °

For any E& > 0 the energy shell {(z,¢), |£|* = E} is unbounded, so —A,,; has a
purely continuous spectrum on R,

o (—Agu—k*)~t: L%, — Li . admits a meromorphic continuation from {Im k > 0}

to {Imk < 0}. Its poles {k;} (of finite multip.) are the resonances of —A,,;.

e Resonances = evals of a nonselfadjoint operator —A,,+ ¢ obtained from —A,,; by a
complex dilation (away from interaction zone)

e Each k; is associated with a metastable (non-normalizable) state 1;(z), with
decay rate v; = 2|Im k;| «— lifetime 7; = (2| Im k;|) .

—> long-living resonance if Imk; = O(1).



Semiclassical limit

We will focus on the high-frequency limit Re k ~ K > 1 = (micro)localized wavepackets
propagate along classical rays.

Take hepp <

operators

K~1 ~~ equivalent to study the resonances {z;(h)} of h-dependent

P, = —h*Agu:, more generally P, = —hA%2A 4+ V(2)
in a disk D(FE,~h) centered on a “classical energy” F.

High-frequency <= semiclassical limit h < 1.




Semiclassical limit (2)

Main questions we will consider in the semiclassical limit:

e distribution of long-living resonances (| Im z;| = O(h))
e phase space localization of metastable modes ()

e (time decay of the local intensity |[1)(x,t)]? (resolvent estimates))

Main idea: the distribution of long-living resonances depends on the properties of long

classical trajectories.
Dispersion of the wave (due to the uncertainty principle) must also be taken into

account.
— relevance of the set of trapped trajectories:

I'* = {(¢.p) : ¢'(q,p) /> 00, t— Foo}, I'=TTNT"

Long-living resonances represent quantum mechanics living on I'.



Chaotic scattering

e We will focus on systems for which the classical flow on I' is strongly chaotic
(uniformly hyperbolic: Axiom A system). Such systems are not Liouville-integrable (no
conserved quantity except E), but their long-time dynamics is well-understood.

The trapped set I' is a hyperbolic repeller with fractal geometry.

. b (P)
J (p)

Semiclassical approach to quantum chaos: identify the appropriate classical-dynamical
tools able to provide information on the quantum system.



A toy model: open maps

N
o

The ray dynamics can be analyzed through the return map ~ through a Poincaré
section ..

This map is defined on a subset X’ C 3, and preserves the induced symplectic form. It
iIs an Axiom A homeomorphism on the trapped set I' N >..

Ex: the bounce map on the obstables

(¢,p =sing) — {’;E%p) = (¢",p)

Generalization: consider an arbitrary symplectic chaotic diffeomorphism % on some
compact phase space (e.g. the torus T?), and an arbitrary hole H through which
particles escape "to infinity” ~~ open map kK = K2\ .




A toy model: open quantum maps

How to “quantize” such a map x? First, define quantum mechanics on T?:

e Hilbert space Hy; =CN, N ~ !
e quantization of observables: f(q,p) — Op;(f) (Pseudodifferential Operator)

e quantization of the diffeom & (various recipes): U = Up(K) unitary matrix (Fourier

Integral Operator).

Quantum-classical correspondence (until the Ehrenfest time Ty, = IIO—fm):

U~ Op,(f)U" = Opy(f o &) + O(he™)  [Egorov]

Equivalently, for a wavepacket |q, p), we have U|q, p) ~ |k(q,p)).

To open the “hole”: apply a “projector” II = Oph(]sz\H).

— open quantum map | My(k) = Mp(k) o Ur(R) (N x N subunitary)




Correspondence with scattering resonances

The spectrum {(\i n,¥in)e = 1,...,N} of the open map Mpy(k) should provide a
good model for resonances of Pj; (numerically much easier).

We expect the statistical correspondence:
{Nin,i=1,...,N} e {e W/ |Rez;(h) — E| <~yh}, N~k

In particular, the decay rates {—21Im z;(h)/h} «— {—2log|\; n|}.

e To compute resonances of Py, one can actually construct a family of quantum maps
M} (z) associated with the Poincaré return map, such that {z;(7)} are obtained as the
roots of det(1 — Mp(z)) = 0 [N-SIOSTRAND-ZWORSKI’'097].



Example of an open chaotic map

Dig a rectangular hole in the 3-baker’'s map on T?

Advantage: the trapped sets I'(¥) are simple Cantor sets (simple symbolic dynamics)

1

My(B) = Fy' 0 ,  Fhy = discrete Fourier transform
Fny3



Fractal Weyl law

The geometry of the trapped set influences the semiclassical density of long-living
resonances.

Ex: 2 convex obstacles = I'= single unstable periodic orbit.
Quantum normal form ~~ quasi-lattice of resonances [Ikawa,GERARD,SJOSTRAND,..|

0 E "
mz<-hM2 . . . .

How about a fractal repeller I'?

Theorem. [Sjéstrand’90, Sjostrand-Zworski’05] In the semiclassical limit, the density of
resonances is bounded from above by a fractal Weyl law

#147 + lzi(h) =1 <yhy = O(h™"), resp. #{j : [Mjn|=cp = O(NY)

where dimppink(I') = 2v 4+ 1 (resp. = 2v).

Main idea: after a suitable transformation, long-living resonant states “live” in a
v/ i-nbhd of T ~» count the number of %%boxes in this nbhd.

Conjecture: = O(h ") should be replaced by ~ C, A"



Fractal Weyl law (2)

e Such a fractal Weyl law has been numerically confirmed for various systems.

Ex: an asymmetric open baker's map ( known explicitly).

Baker 1/32 - 2/3 Baker 1/32-2/3
Unscal ed resonance counting Rescaled resonance counting
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— N=1728
— N=2304
N=2880
— N=3456
N=4032
N=4608
N=5184
— N=5760 —
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n(N,r)

200

n(N,r)/N~d

e This law was proven for an alternative solvable quantization of the open baker's map
[N-Zworsk1'05].

e To understand the factor C, (shape of the curve), an ensemble of random subunitary
matrices (I1U)yeccor was proposed in [ScHOMERUS-TwWORzZYDLO’05]. Universal?



Resonance-free strip for “filamentary” repellers

Another dynamical “tool” associated with the flow on I': the topological pressure

_ +y def . 1 + —s
P(s) =P(—slogJT) = lim glog Z JT(p)

t— 00
p:Ip<t

“Compromise” between the complexity of the trapped set (# periodic orbits) and the
instability of the flow along those orbits.

Properties: P(0) = hiop(PL-) > 0 and P(1) = —v, < 0 the classical decay rate.
p\* T

Theorem. [lkawa’88,Gaspard-Rice’89,N-Zworski’07] Assume the topological pres-
sure P(1/2) < 0, and take any 0 < g < —P(1/2).
Then, for h > 0 small enough, the resonances z;(h) close to E satisfy Im z;(h) < —gh.

e In dimension d = 2, the dynamical condition P(1/2) < 0 is equivalent with the
geometrical condition dim(I") < 2

A too thin repeller disperses the wave.



Analogous results on hyperbolic manifolds

X = G\H"*! convex co-compact (infinite volume). The trapped set I" of the geodesic
flow has dimension 26 4+ 1, where ¢§ is the dim. of the limit set A(G), as well as the

topological entropy of the flow.

2 .
Resonances s(n — s) = 2 + k? of Ax are given by the zeros of Zg.iperq(s
4 y g
(quantum resonances < Ruelle resonances)

[PATTERSON’76, SULLIVAN'7T9, PATTERSON-PERRY’01]: all the zeros are in the half-plane
Imk <§d—n/2="P(1/2).

This upper bound can be slightly sharpened, and lower bounds for the gap can be
obtained [Naup’06,’08]



Phase space distribution of metastable states

The metastable states (¢;(%)) associated with long-living resonances have specific phase
space distributions.

Consider a family of metastable (normalized) states (¢;,)N—oo Of Mn(K) s.t. the
corresponding resonances |\;, | > ¢ > 0. Up to extracting a subsequence, assume that
(i, ) is associated with a semiclassical measure

Vi€ C®(T?),  (tiy, Opp(f)tiy) —= | fdpu.

TZ
Then for some A\ > 0 we have

N —o0

Aio]| —= X and K'u=\_pu.
N

1 is a conditionally invariant measure with decay rate \°.



Phase space distribution of metastable states (2)

Condit. invar. measures are easy to construct. They are supported on I'*.

1 4

0.5 4

o Al

-y AN

1

1

0.5 H

0

0

T
0.5

1

1 ==

0.5

0 .

0

T
0.5

1

q
N=729 |Eigenv|= 0.818923 N=1500 [Eigenv|= 0.815604 N=4200 |Eigenv|= 0.816396

Questions inspired by quantum ergodicity [N-RuUBIN'05, KEATING-NOVAES-PRADO-
SIEBER’06)]:

For a given rate A\?, which condit. invar. measures u are favored (resp. forbidden)
by quantum mechanics?

Very partial results for the solvable quantized open baker [KeaTING-NOVAES-N-SIEBER’08]:
e unique semiclassical measure at the edges of the nontrivial spectrum
e but not in the “bulk” of the spectrum (large degeneracies)



Partially open wave systems

Let us now consider systems for which rays do not escape, but get damped.

n=1 q _—

o Left: damped wave equation inside a closed cavity, (07 — A;,+b(x)0;)Y(z,t) = 0,
b(x) > 0 damping function
~ spectrum of complex eigenvalues (A, + k* +ib(x) k)y(x) =0

o Right: dielectric cavity. Resonances satisfy (A + n?k?*)1) = 0, with appropriate
boundary conditions ~~ reflection+refraction of incoming rays (Fresnel’s laws).

In both cases, the intensity (< energy) of the rays is reduced along the flow.

— Weighted ray dymamics.



Damped quantum maps

Starting from a diffeom. K, one can cook up a damped quantum map:

My(%,d) & Op,(d) o Un(R),

where 0 < min |d| < |d(q,p)| < max|d| < 1 is a smooth damping function.

= Bounds on the distribution of decay rates of My(%, d):

e obvious: all NV eigenvalues satisfy min |d| < |\; y| < max|d|
(all resonances in a strip)

e Egorov = M ~ U" o Op;((d,)™), where we used the n-averaged weights
def - ~ 1/n
dn(g,p) = (] d(7(q.p)))
j=1

= all evals contained in the (often thinner) annulus min |d| < |\ n| < max |doo|.



Taking the chaos into account: clustering of decay rates

Assume k Anosov = sharper bounds on the decay rate distribution.
Ergodicity + Central Limit Theorem for d,, = almost all the N evals satisfy

_2|>‘i,N| = Ytyp T O((log N)_1/2)7

where v, = —2 [ log |d(q,p)| dq dp is the typical damping rate
(ldso(q, p)| = e~ 7twp/2 almost everywhere) [Si6sTRAND’00,N-SCHENCK08].
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Is the width of the distribution really O((log N)~1/2)? (OK for the solvable quantized
baker's map).



Fractal Weyl law in the distribution tails

Large deviation estimates for d,, = fractal upper bounds for the density of resonances
away from .

Theorem. [Anantharaman’08,Schenck’08]

Voo >0, #{i : —2log|\in| = Yiyp + o} < Coy N/

f(a) € [0,1] <> the rate function for d,.

Solvable baker’'s map: the above bound is generally not sharp.

One can also bound the decay rates using an adapted topological pressure.

Theorem. [Schenck’09] For any ¢ > 0 and any large enough N ~ h™!,
1 +
—2log | A\ N| > —277(—§logJ +log|d]) — €

In some situations, the RHS is larger than —2log max |d.|.



Phase space distribution of metastable states (3)

Partially open system [AscH-LEBEAU’00, N-ScHENCK'09]: semiclassical measures associated
with metastable states satisfy

d]? x & 1 = \p.
Such condit. invar. measures are more difficult to classify than in the fully open case.

Several numerical studies for a chaotic dielectric cavity [Wiersic,HARAYAMA,K1M. ]

Examples of Husimi measures for a partially open 3-baker.
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Work in progress...



