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Background

• (Mn, g) a compact, closed Riemannian man-

ifold with Laplacian ∆g : C∞(M)→ C∞(M)

and eigenfunctions φλj ∈ C
∞:

−∆gφλj = λ2
jφλj; ‖φλj‖L2 = 1.

• H ⊂ Mn an orientable smooth hypersur-

face. In some cases, H can be a higher-

codimension submanifold.

• Problem: Estimate the L2 restrictions∫
H
|φλ(s)|2 dσ(s). (1)

• Rationale: 1) Want to understand the

large−λ behaviour of the φλ’s. Pointwise



L∞ results are very hard; difficult to im-
prove on the bound

‖φλ‖L∞(M) = O(λ
n−1

2 ).

The problem in (1) is easier but still very
non-trivial.

2) Quantum ergodicity: Recent results (Zelditch-
T, Dyatlov-Zworski) on Quantum Ergodic
Restriction:

lim
λ→∞

〈OpH(a)φλ|H , φλ|H〉L2(H)

=
∫
B∗H

a(s, σ)γ(s, σ)dsdσ.

3) Restriction bounds naturally arise in study
of eigenfunction nodal sets, etc...

• Most results extend to semiclassical Schrödinger
operators P (h) = −h2∆+V (x) with eigen-
functions φh satisfying P (h)φh = E(h)φh,
|E(h)−E| = o(1), E a regular energy level.



General Results

• For general Laplace eigenfunctions with
‖φλ‖L2(M) = 1, Burq-Gérard-Tzvetkov [BGT]
prove that∫

H
|φλ|2 dσ(s) = O(λ

1
2), (n = 2). (2)

• The universal bound (2) is achieved on
S2 with H = {(x, y, z) ∈ S2; z = 0} the

equator and φn(x, y, z) = c0n
1
4(x+iy)n;n =

1,2,3, ..., the highest-weight harmonics.

• In the case where H has positive geodesic
curvature, the bound (2) improves to∫

H
|φλ|2 dσ(s) = O(λ

1
3); (n = 2).

BGT also obtain sharp general Lp bounds for
p 6= 2 in any dimension and Hu generalized



the positively-curved results to any dimen-

sion. Hassell-Tacy have extended these

Lp bounds to the semiclassical case where

P (h) = −h2∆ + V (x).

• For flat tori with dim = 2,3, Bourgain-

Rudnick have proved sharp upper and lower

L2-restriction bounds when H is curved.

Quantum Completely Integrable

(QCI) Case

• Here, we assume (M2, g) compact surface,

P1(h) = −h2∆ + V (x) and assume there is

P2(h) ∈ Oph(S∗) with

[P1(h), P2(h)] = 0.

Let p1, p2 ∈ C∞(T ∗M) be the correspond-

ing principal symbols; in particular, p1(x, ξ) =

|ξ|2g + V (x).



• Let (E,F ) ∈ R2 be joint energy-levels for
(p1, p2) with dp1|p−1

1 (E)
6= 0 and assume

that H ⊂ M is a smooth hypersurface (ie.
a curve).

• Examples include compact spheres and tori
of revolution, Liouville surfaces, ellipsoids,
C. Neumann oscillators, ...

• Admissibility Consider the 2n − 2 dimen-
sional submanifold of T ∗M given by N =
p−1

1 (E)∩T ∗HM. The integral p2 ∈ C∞(T ∗M)
is admissible provided p2|N is Morse.

• In the homogeneous case, p1(x, ξ) = |ξ|2g
and E = 1 so admissibility requirement on
p2 is that p2|S∗HM is Morse.

• Theorem [T (CMP)] Let φh be L2-normalized
joint eigenfunctions of (P1(h), P2(h)) with



joint eigenvalues (E1(h), E2(h)) and E1(h) =

E1 + O(h). Assuming H is admissible, for

h ∈ (0, h0] with h0 > 0 sufficiently small,∫
H
|φh(s)|2 dσ(s) = O(| logh|).

• Example: (convex surface of revolution)

In geodesic polar coordinates (t, φ) ∈ (0,1)×
[0,2π], a(t) ≥ 0, a(0) = a(1) = 0 with sin-

gle non-degenerate maximum at t = t0.

p1(t, φ, ξt, ξφ) = ξ2
t + a−1(t)ξ2

φ,

p2(t, φ, ξt, ξφ) = ξ2
φ.

Consider the equator H = {(t, φ); t = t0}.
Then,

p2|S∗HM(φ, ξt) = a(t0)(1− ξ2
t )

and this fails to be Morse. Along the equa-

tor t = t0 we already know that there are

φh’s such that
∫
H |φh|2dσ(s) ∼ h−

1
2.



• When H is a graph over the meridian of the

form H = {(t, φ(t))}, it is admissible. Sim-

ilarily, when H is a graph over the equator

of the form H = {(f(φ), φ)}, H is admissi-

ble as long as f ′(φ) 6= 0.



Quantum Ergodic Restriction (QER)

• Consider the opposite case where (Mn, g)

compact, Riemannian manifold with ergodic

geodesic flow

Gt : S∗M → S∗M

with respect to Liouville measure dµ on

S∗M.

• The set S∗HM of unit co-vectors to M with

footpoints on H forms a cross-section to

the flow in the sense that almost every tra-

jectory of the geodesic flow intersects S∗HM
transversally. In particular, almost every

trajectory from S∗HM returns to S∗HM .



Cauchy data along H

• Consider the eigenvalue problem on M

−∆gφj = λ2
jφj, 〈φj, φk〉 = δjk

Bφj = 0 on ∂M,

where 〈f, g〉 =
∫
M fḡdV (dV is the volume

form of the metric) and where B is the

boundary operator, e.g. Bφ = φ|∂M in the

Dirichlet case or Bφ = ∂νφ|∂M in the Neu-

mann case. We also allow ∂M = ∅.

• Let hj = λ−1
j and φhj be a corresponding

orthonormal basis of eigenfunctions with

eigenvalue h−2
j , so that the eigenvalue prob-

lem takes the semi-classical form,

(−h2∆g − 1)φh = 0,

Bφh = 0 on ∂M



where B = I or B = hDν in the Dirichlet

or Neumann cases respectively.

• Consider the semiclassical Cauchy data along

H:

CD(φh) := {(φh|H , hDνφh|H)}.

• Theorem 1 [Christianson-Zelditch-T] Sup-

pose H ⊂ M is a smooth, codimension 1

embedded orientable separating hypersur-

face and assume H ∩ ∂M = ∅ if ∂M 6= ∅.
Assume that {φh} is an interior quantum

ergodic sequence. Then the appropriately

renormalized Cauchy data dΦCD
h of φh is

quantum ergodic in the sense that for any

aw ∈ Ψ0(H), there exists a sub-sequence

of eigenvalues of density one so that as

hj → 0+,



〈awhDνφh|H , hDνφh|H〉L2(H)

+〈aw(1 + h2∆H)φh|H , φh|H〉L2(H)

→h→0+
4

µ(S∗M)

∫
B∗H

a0(x′, ξ′)(1−|ξ′|2)1/2dσ,

where a0(x′, ξ′) is the principal symbol of

aw, −h2∆H is the induced tangential (semi-

classical) Laplacian with principal symbol

|ξ′|2, µ is the Liouville measure on S∗M ,

and dσ is the standard symplectic volume

form on B∗H.

• Result holds for all interior hypersurfaces

and generalizes results of Hassell-Zelditch

and Burq in the boundary case (ie. H =

∂Ω.)



Dirichlet data along H

• The first return time T (s, ξ) on S∗HM de-
fined to be

T (s, ξ) = inf{t > 0 : Gt(s, ξ) ∈ S∗HM, (s, ξ) ∈ S∗HM)}

By definition T (s, ξ) = +∞ if the trajectory
through (s, ξ) fails to return to H. The
domain of T (where it is finite) is denoted
by L (loopset).

• Define the first return map on the same
domain by

Φ : L → S∗HM, Φ(s, ξ) = GT (s,ξ)(s, ξ)
(3)

When Gt is ergodic, Φ is defined almost
everywhere and is also ergodic with respect
to Liouville measure µL,H on S∗HM . The jth
return time T (j)(s, ξ) to S∗HM and the jth
return map Φj are defined inductively when
the return times are finite.



• Definition: Let rH : T ∗HM → T ∗HM be re-
flection through T ∗H. H is asymmetric
with respect to geodesic flow if

µL,H (
⋃∞
j 6=0{(s, ξ) ∈ S

∗
HM :

rHG
T (j)(s,ξ)(s, ξ) = GT

(j)(s,ξ)rH(s, ξ)} ) = 0.
(4)

• Theorem 2 (QER) [Zelditch-T (GAFA)]

Let (M, g) be a compact manifold with er-
godic geodesic flow, and let H ⊂ M be a
hypersurface that is asymmetric with re-
spect to geodesic flow. Then, there exists
a density-one subset S of N such that for
a ∈ S0,0(T ∗H × [0, h0)),

lim
hj→0+;j∈S

〈Ophj(a)γHφhj , γHφhj〉L2(H) = ω(a),

where

ω(a) =
1

vol(S∗M)

∫
S∗HM

a0(s, σ) dµL,H .



• Result applies to geodesic circles, closed
horocycles and generic closed geodesics on
a hyperbolic surface.

• The analogue of QER for piecewise smooth
bounded domains in Rn was proved in [Zelditch-
T] (AHP).

• Results have subsequently been generalized
by Dyatlov-Zworski to semiclassical Schrödinger
operators P (h) = −h2∆ + V and arbitrary
manifolds with boundary.

• Sketch of Proof of Theorem 2: As-
sume a ∈ S0 is homogeneous (semiclas-
sical case follows similarily). Let U(t) =
exp(it

√
∆) : C∞(M) → C∞(M) and γH :

C0(M) → C0(H) be restriction to H. We
study matrix elements

〈OpH(a)φj|H , φj|H〉L2(H).



〈OpH(a)γHφj, γHφj〉L2(H)

= 〈γ∗HOpH(a)γHU(t)φj, U(t)φj〉L2(M)

= 〈V (t; a)φj, φj〉L2(M) = 〈V̄T (a)φj, φj〉L2(M) (∗)

where,

V (t; a) := U(−t)γ∗HOpH(a)γHU(t),

V̄T (a) :=
1

2T

∫ ∞
−∞

χ(T−1t)V (t; a) dt.

• Here, χ ∈ C∞0 (R) with
∫∞
−∞ χ(t)dt = 1.

• Composition of wave fronts gives

WF ′(V̄T (a)) := {(x, ξ, x′, ξ′) ∈ T ∗M × T ∗M :

∃t ∈ (−T, T ), expx tξ = expx′ tξ
′ = s ∈ H,

Gt(x, ξ)|TsH = Gt(x′, ξ′)|TsH , |ξ| = |ξ
′|}.



• Modulo some technical issues regarding tan-

gential and normal directions to H, one

decompose V̄T (a) into a pseudo-differential

and a Fourier integral part according to the

dichotomy that points (x, ξ, x′, ξ′) ∈WF ′(V̄T (a))

satisfy either

(i) Gt(x, ξ) = Gt(x′, ξ′), or

(ii) Gt(x′, ξ′) = rHG
t(x, ξ),

(5)

where rH is the reflection map of T ∗H.

• One has the following decomposition: V̄T (a)

is a Fourier integral operator with local

canonical graph, and possesses the decom-

position



V̄T (a) = PT (a) + FT (a) +RT (a).

(i) PT (a) ∈ Opcl(S
0(T ∗M)) is a pseudo-

differential operator of order zero with prin-
cipal symbol

σ(PT (a))(x, ξ) =
1

T

∑
j∈Z

(γ−1aH)(Gtj(x,ξ)(x, ξ))

×χ(T−1tj(x, ξ))

where, tj(x, ξ) ∈ C∞(T ∗M) are the impact
times of the geodesic expx(tξ) with H, aH(s, ξ) =
a(s, ξ|H) ∈ S0(T ∗HM) and γ ∈ S0(T ∗HM)

(ii) FT (a) is a Fourier integral operator of
order zero with canonical relation ΓT .

FT (a) =
NT∑
j=1

F
(j)
T (a), (6)

where the F (j)
T (a); j = 1, ..., NT,ε are zeroth-

order homogeneous Fourier integral oper-
ators.



Here, WF ′(F (j)
T (a)) is in the reflection piece

of (5); explicity

WF ′(F (j)
T (a)) = {(x, ξ;Rj(x, ξ))},

Rj(x, ξ) = Gtj(x,ξ)rHG
−tj(x,ξ)(x, ξ).

Symbol is given by

σ(F (j)
T )(x, ξ) =

1

T
(γ−1aH)(Gtj(x,ξ)(x, ξ))

×χ(T−1tj(x, ξ)) |dxdξ|
1
2.

(iii) RT (a) is a smoothing operator.

• It suffices to show that

lim sup
λ→∞

1

N(λ)

∑
j:λj≤λ

∣∣∣〈V̄T (a)φj, φj〉L2(M) − ω(a)
∣∣∣2

= o(1) (as T →∞).



• Use the L2 ergodic theorem to show that

lim sup
λ→∞

1

N(λ)

∑
j:λj≤λ

∣∣∣〈PT (a)φj, φj〉L2(M) − ω(a)
∣∣∣2

= 0,

• Reduced to showing that

lim sup
λ→∞

1

N(λ)

∑
j:λj≤λ

∣∣∣〈FT (a)φj, φj〉L2(M)

∣∣∣2 = o(1)

as T → ∞. Here, we need the microlocal

asymmetry condition on H.

• First use the Schwarz inequality

1

N(λ)

∑
j:λj≤λ

∣∣∣〈FT (a)φj, φj〉L2(M)

∣∣∣2

≤
1

N(λ)

∑
j:λj≤λ

〈FT (a)∗FT (a)φj, φj〉L2(M) (∗∗)



to bound the variance sum by a trace and

use the local Weyl law for homogeneous

Fourier integral operators F : C∞(M) →
C∞(M) [Z] to prove that the right side of

(∗∗) tends to zero under geodesic asymme-

try condition.

• In the case of local canonical graphs, the

local Weyl law states that

1

N(λ)

∑
j:λj≤λ

〈Fφλj , φλj〉 →
∫
SΓF∩∆T∗M

σ∆(F )dµL,

(7)

where ΓF is the canonical relation of F ,

SΓF is the set of vectors of norm one, and

SΓF ∩∆T ∗M is its intersection with the di-

agonal of T ∗M × T ∗M . Also, σ∆(F ) is the

(scalar) symbol in this set and dµL is Liou-

ville measure. Thus, if ΓF is a local canon-

ical graph, the right side is zero unless the

intersection has dimension m = dimM , i.e.



the trace sifts out the ‘pseudo-differential
part’ of F .

• Application of (7) to F = FT (a)∗FT (a) gives:

lim
λ→∞

1

N(λ)

∑
λj≤λ

NT∑
k,`=1

〈F (`)
T (a)∗F (k)

T (a)φλj , φλj〉

=
1

T2

∫
S∗M

NT∑
j=1

∣∣∣∣∣χ(
tj(x, ξ)

T
)γ−1aH(Gtj(x,ξ)(x, ξ))

∣∣∣∣∣
2

dµL

+
1

T2

∫
S{Rj=Rk}

NT∑
j 6=k

χ(
tj(x, ξ)

T
) γ−1aH(Gtj(x,ξ)(x, ξ))

×χ(
tk(x, ξ)

T
) γ−1aH(Gtk(x,ξ)(x, ξ)) dµL. (#)

• Since NT = O(T ) and |χ| ≤ 1, the first term
on the right side (#)

O

(
1

T
‖aH‖2C0(S∗MH)

)
.



• The second term on the RHS in (#) van-

ishes as T → ∞ from the geodesic asym-

metry condition on H which can be written

in the form

µL
(
S{Rj = Rk}

)
= 0

for j 6= k.



Eigenfunction Nodal Sets

• Ω ⊂ R2 a piecewise analytic bounded do-

main and consider Neumann (or Dirichlet)

problem:

−∆Ωφλ = λ2φλ,

∂νφλ|∂Ω = 0.

• Say that an interior Cω curve H ⊂ Ω is

good if for some constant C > 0∫
H
|φλ|2 dσ ≥ e−Cλ.

• Define the nodal intersection counting func-

tion

nD(λ,H) = #{Nφλ ∩H},

where, Nφλ = {x ∈ Ω;φλ(x) = 0}.



• Theorem [Zelditch-T (JDG)] Assume that

H ⊂ int(Ω) is good. Then,

nD(λ,H) = OH(λ), as λ→∞.

• Not all curves H are good: Consider the

stadium with bisector H = {(x, y) ∈ Ω;x =

0}.

• Let Hε be a complex tube of width ε > 0

containing H as the totally-real part. Let

(φλ|H)C(z) be the holomorphic continua-

tion of φλ|H to Hε.

• Goodness condition in above result can be

weakened to

sup
z∈Hε

|(φλ|H)C(z)| ≥ e−Cλ (∗)

for some C > 0, which is easier to verify.



• Theorem [El-Hajj-T] Let H ⊂ Ω be any

interior Cω curve. Then, under the weak-

ened condition (∗),

nD(λ,H) = OH(λ).


