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Background

(M™, g) a compact, closed Riemannian man-
ifold with Laplacian Ay : C*°(M) — C°°(M)
and eigenfunctions quj e C°:

2 .
—Dgoy, = 5o o ll2 =1.
H Cc M™ an orientable smooth hypersur-

face. In some cases, H can be a higher-
codimension submanifold.

Problem: Estimate the L2 restrictions

2
[ 16x(s)P do(s). (1)

Rationale: 1) Want to understand the
large—\ behaviour of the ¢,'s. Pointwise



L°° results are very hard; difficult to im-
prove on the bound

n—1
[éxllLoo(ary = O(X 27).
The problem in (1) is easier but still very
non-trivial.

2) Quantum ergodicity: Recent results (Zelditch-
T, Dyatlov-Zworski) on Quantum Ergodic
Restriction:

M (Oppi(a)oxlm, Exlm) r2(m)

= a(s,o s,o0)dsdo.

. als.0)(s,0)

3) Restriction bounds naturally arise in study
of eigenfunction nodal sets, etc...

Most results extend to semiclassical Schrodinger
operators P(h) = —h2A 4V (z) with eigen-
functions ¢, satisfying P(h)¢;, = E(h)dy,
|[E(h) — E| = 0(1), E a regular energy level.



General Results

e For general Laplace eigenfunctions with
1Al z2¢ar) = 1, Bura-Gérard-Tzvetkov [BGT]
prove that

[ |#xRdo(s) =002), (n=2).  (2)

e The universal bound (2) is achieved on
S2 with H = {(z,y,2) € S%;z = 0} the
1
equator and ¢n(x,y,2z) = cogn4(x+iy)";n =
1,2,3,..., the highest-weight harmonics.

e In the case where H has positive geodesic
curvature, the bound (2) improves to

2 _ 3N () —
| |#x2do(s) = 003); (n=2).

BGT also obtain sharp general LP bounds for
p #= 2 in any dimension and Hu generalized



the positively-curved results to any dimen-
sion. Hassell-Tacy have extended these
LP bounds to the semiclassical case where
P(h) = —h?A + V(2).

For flat tori with dim = 2,3, Bourgain-
Rudnick have proved sharp upper and lower
L2-restriction bounds when H is curved.

Quantum Completely Integrable
(QCI) Case

Here, we assume (Mz,g) compact surface,
Pi(h) = —h2A + V(z) and assume there is
P>(h) € Oph(s*) with

[P1(h), P2(h)] = 0.

Let p1,po € C°(T*M) be the correspond-
ing principal symbols; in particular, py(x,£) =
€12 + V().



e Let (E,F) € R? be joint energy-levels for
(p1,p2) with dp1|p_1(E) #= 0 and assume
1

that H C M is a smooth hypersurface (ie.
a curve).

e Examples include compact spheres and tori
of revolution, Liouville surfaces, ellipsoids,
C. Neumann oscillators, ...

o Admissibility Consider the 2n — 2 dimen-
sional submanifold of T*M given by N =
p; H(E)NT# M. The integral py € C®(T*M)
is admissible provided ps|y is Morse.

e In the homogeneous case, pi(xz,&) = [¢[2
and £ = 1 so admissibility requirement on
po is that p2|5}k{M is Morse.

e Theorem [T (CMP)] Let ¢;, be L2-normalized
joint eigenfunctions of (Pi(h), P>(h)) with



joint eigenvalues (E1(h), E>(h)) and E1(h) =
E1 + O(h). Assuming H is admissible, for
h € (0, hg] with hg > 0 sufficiently small,

| |én()I2do(s) = O(Jlog hl).

Example: (convex surface of revolution)
In geodesic polar coordinates (¢,¢) € (0,1)x
[0,27], a(t) > 0,a(0) = a(1) = 0 with sin-
gle non-degenerate maximum at t = tg.

p1(t, 6,61, &p) = & + a1 (D5,

po(t, ,&,€p) = &5

Consider the equator H = {(t,¢);t = tg}.
Then,

p2lss m (@, &) = a(to)(1 — £7)

and this fails to be Morse. Along the equa-
tor t = tg we already know that there are

1
¢p,'s such that [y |¢p|°do(s) ~ h™2.



e When H is a graph over the meridian of the
form H = {(t,¢(t))}, it is admissible. Sim-
ilarily, when H is a graph over the equator
of the form H = {(f(¢),¢)}, H is admissi-
ble as long as f'(¢) # 0.



Quantum Ergodic Restriction (QER)

e Consider the opposite case where (M", g)
compact, Riemannian manifold with ergodic
geodesic flow

Gt: S*M — S*M

with respect to Liouville measure du on
S*M.

e The set §7; M of unit co-vectors to M with
footpoints on H forms a cross-section to
the flow in the sense that almost every tra-
jectory of the geodesic flow intersects S}‘{M
transversally. In particular, almost every
trajectory from S7;M returns to Sy, M.



Cauchy data along H

e Consider the eigenvalue problem on M
—DNgb; = N2, (pi, dp) = 8
977 YR 7 Pk Jk

B¢] =0 on oM,

where (f,g) = [y fgdV (dV is the volume
form of the metric) and where B is the
boundary operator, e.g. B¢ = ¢|gps in the
Dirichlet case or B¢ = du¢|gps in the Neu-
mann case. We also allow oM = 0.

o Let hj — )\j_l and ¢hj be a corresponding
orthonormal basis of eigenfunctions with
eigenvalue hj_z, so that the eigenvalue prob-
lem takes the semi-classical form,

(—h?Ag — 1)¢p, = 0,

B¢, =0 on M



where B = I or B = hD, in the Dirichlet
or Neumann cases respectively.

Consider the semiclassical Cauchy data along
H:

CD(¢p) .= {(¢nlu, hDuvdp|g)}-

Theorem 1 [Christianson-Zelditch-T] Sup-
pose H C M is a smooth, codimension 1
embedded orientable separating hypersur-
face and assume HNOM = ( if OM # 0.
Assume that {¢y} is an interior quantum
ergodic sequence. Then the appropriately
renormalized Cauchy data do$¢P of ¢ is
quantum ergodic in the sense that for any
a® € WO(H), there exists a sub-sequence
of eigenvalues of density one so that as
hj — 0T,



(a“hDyp| hDu¢h|H>L2(H)

+(a™(1 + h2Ay) |, PhlH) 121

4

I ! _1¢12y1)/2

where ag(z’,€¢") is the principal symbol of
a®, —h?Ay is the induced tangential (semi-
classical) Laplacian with principal symbol
€'|2, p is the Liouville measure on S*M,
and do is the standard symplectic volume
form on B*H.

Result holds for all interior hypersurfaces
and generalizes results of Hassell-Zelditch
and Burqg in the boundary case (ie. H =
0%2.)



Dirichlet data along H

e The first return time T(s,§) on S; ;M de-
fined to be

T(s,&) =inf{t >0:G'(s,¢) € S5 M, (s,&) € S5 M)}

By definition T'(s,£) = 4o if the trajectory
through (s,€) fails to return to H. The
domain of T' (where it is finite) is denoted
by £ (loopset).

e Define the first return map on the same
domain by

DL SEM, (s,¢) =GTE8 (s, 6)

(3)
When Gt is ergodic, @ is defined almost
everywhere and is also ergodic with respect
to Liouville measure uy, i on S M. The jth
return time T (s, £) to St M and the jth
return map @’ are defined mductuvely when
the return times are finite.



o Definition: Let ryg : T;M — T/ M be re-
flection through T*H. H is asymmetric
with respect to geodesic flow if

pr,a (Uszol{(s, &) € SpM

rGTV 0 (5,6) = GTV6Or(s,6)}) - c;
4

e Theorem 2 (QER) [Zelditch-T (GAFA)]
Let (M, g) be a compact manifold with er-
godic geodesic flow, and let H C M be a
hypersurface that is asymmetric with re-
spect to geodesic flow. Then, there exists
a density-one subset S of N such that for
a € SOO(T*H x [0, hg)),
hj_)'(;rr;jes@phj(a)vﬂqﬁhj, YH®h) 12y = w(a),
where

1

vol(S*M) Js3,M

w(a) = ag(s,o) dur, o



Result applies to geodesic circles, closed
horocycles and generic closed geodesics on
a hyperbolic surface.

The analogue of QER for piecewise smooth
bounded domains in R™ was proved in [Zelditch-
T] (AHP).

Results have subsequently been generalized

by Dyatlov-Zworski to semiclassical Schrodinger
operators P(h) = —h2A + V and arbitrary
manifolds with boundary.

Sketch of Proof of Theorem 2: As-
sume a € S9 is homogeneous (semiclas-
sical case follows similarily). Let U() =
exp(itvVA) : C°(M) — C®°(M) and ~p :
CO(M) — CO(H) be restriction to H. We
study matrix elements

(Opn(a)ojlm, &5l m) 2y



(Opr(a)YH D) YHSS) [2( 1)
= (YuOpu(a)vuU )¢5, U[)d5) r2(ar)
= (V(t; a)b5, 05) 1200y = (Vr(@)dj, &) 20y (*)
where,

V(t,a) .= U(=t)vgOpu(a)yagU(1),

_ 1 o0 _1
Vr(a) 1= —/ (T~ 1) V(¢ a) dt.
2T J—o
o Here, x € C§°(R) with [22 x(t)dt = 1.

e Composition of wave fronts gives
WF' (Vr(a)) .= {(x,&,2",6) e T*M x T*M
3t € (=T,T),exp, t& = exp t&’ =s € H,

G'(z,8)|r,g = G, )Irm, 1€ =1¢|}



e Modulo some technical issues regarding tan-
gential and normal directions to H, one
decompose Vy(a) into a pseudo-differential
and a Fourier integral part according to the
dichotomy that points (z, &, 2/, &) € WF'(Vr(a))
satisfy either

(1) Gi(z,&) = Gi(2',¢'), or
(5)
(i7) G, &) = rgGi(z, €),

where rg is the reflection map of T*H.

e One has the following decomposition: Vy(a)
IS a Fourier integral operator with local
canonical graph, and possesses the decom-
position



Vir(a) = Pr(a) + Fr(a) + Ry(a).

(i) Pr(a) € Opy(SO(T*M)) is a pseudo-
differential operator of order zero with prin-
cipal symbol

o(Pr(@) (@6 == 3 (7 La) (G109 (@, 0)
JjEZ
X X(T 1, )

where, t;(z,£§) € C>°(T*M) are the impact
times of the geodesic exp,(t&) with H, ag(s,§) =
a(s, &) € SO(THM) and v € SO(T} M)

(ii) Fp(a) is a Fourier integral operator of
order zero with canonical relation 7.

N .
Fr(a) = Y. F{(a), (6)
J=1
where the F}j)(a);j =1,..., Ny, are zeroth-
order homogeneous Fourier integral oper-
ators.



Here, WF’(F}j)(a)) is in the reflection piece
of (5); explicity

WF'(F$(a)) = {(2,6 Rj(z, )},

Rj(z,6) = Gy a8 (z,6).
Symbol is given by

o (F) (@) = — (5 ) (G5O (2,0))
X (T Y5(2, ) |dade]?.

(iii) Ryp(a) is a smoothing operator.

e It suffices to show that

| _ 2
Ilg\nésolgp NV j:)§§>\ ‘<VT(G)¢]’> Di)r2(M) — w(a)‘

=o0(1) (asT — 00).



e Use the L2 ergodic theorem to show that

. 1 2

:O’

e Reduced to showing that

. 1 2
"&”fo%pmg-;% (Fr(@)éj, é) 120 = (1)

as T' — oo. Here, we need the microlocal
asymmetry condition on H.

e First use the Schwarz inequality

1 2
§ F D
N 552 Pr(e)ss: 93 aan)

< S (P Fr(@)é; 65) 12y (%)
O‘) JiA<A



to bound the variance sum by a trace and
use the local Weyl law for homogeneous
Fourier integral operators F : C®°(M) —
C>°(M) [Z] to prove that the right side of
(x*) tends to zero under geodesic asymme-
try condition.

In the case of local canonical graphs, the
local Weyl law states that

1
- Féy . by o n(F)du,
N(A)jzé)\< Prj> PA;) = N A(F)dpr,
(7)

where [ is the canonical relation of F,
ST p is the set of vectors of norm one, and
ST N Ap«ps is its intersection with the di-
agonal of T*"M x T*M . Also, oA (F) is the
(scalar) symbol in this set and dujy, is Liou-
ville measure. Thus, if [ g is a local canon-
ical graph, the right side is zero unless the
intersection has dimension m =dim M, i.e.



the trace sifts out the ‘pseudo-differential
part’ of F'.

e Application of (7) to ' = Fp(a)*Fp(a) gives:

Jim N(A) 3 Z (FLD (@) Y @)y, 6.)

)\ <AkJfi=1
Np 5
T 72 /S*M Z (2 §))7_16%1{(631’37(:'3’5)(fL‘,5)) dyu
1 a4 tg(m £, _1 t:(x,8)
T2 2. X( )y Lap (G (2, €))

S{R;=Ri} /24

tp(x, &)
T

x x( ) v rag(GHEE) (2, €)) dur. (#)

e Since Ny = O(T) and |x| < 1, the first term
on the right side (#)

1 2
O (HllanlZogsensy))



e The second term on the RHS in (#) van-
ishes as T' — oo from the geodesic asym-

metry condition on H which can be written
in the form

ur (S{R; =Ry}) =0
for 57 = k.



Eigenfunction Nodal Sets

e O C R? a piecewise analytic bounded do-
main and consider Neumann (or Dirichlet)
problem:

—Aqdy = N9y,

8V¢)\|8Q = 0.

e Say that an interior C¥ curve H C 2 is
good if for some constant C > 0

2 —CA
(b do > .
/H | )\| = €

e Define the nodal intersection counting func-
tion

np(\, H) = #{Ny, N H},
where, Ny, = {z € Q; ¢)(x) = 0}.



Theorem [Zelditch-T (JDG)] Assume that
H C int(£2) is good. Then,

TLD()\,H) = OH()\), as A — oo.

Not all curves H are good: Consider the
stadium with bisector H = {(z,y) € Q;x =

0}.

Let Ho be a complex tube of width € > O
containing H as the totally-real part. Let
(¢x|;)C(2) be the holomorphic continua-
tion of ¢,|g to He.

Goodness condition in above result can be
weakened to

sup [(¢alm)C(2)] > e ()
z€EH,

for some C > 0, which is easier to verify.



e Theorem [EI-Hajj-T] Let H C Q2 be any
interior C% curve. Then, under the weak-
ened condition (x),



