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Nodal portrait of the Gaussian plane monochromatic wave
provided by Alex Barnett

2



'

&

$

%

I: Smooth Gaussian functions (= processes = fields = waves)

T Riemannian manifold without boundary (T = Rm, or T is a compact

manifold)
(
Ω,A,P)

probability space

Definition: Cp-random Gaussian function f : T × Ω → R1

(a) ∀t ∈ T ∀B ∈ Borel(R1) f(t)−1(B) ∈ A (measurability)

(b) ∀n ∈ N ∀t1, ..., tn ∈ T ∀c1, ..., cn ∈ R1

∑
cif(ti) Gaussian random variable (maybe, degenerate)

(c) ∀a.e.ω ∈ Ω f ∈ Cp(T ) (wlog, ∀ω ∈ Ω)

Claim: f :
(
Ω,A) → (

Cp(T ), Borel(Cp(T ))
)

measurable map ¤

Definition: γf = f∗P Gaussian measure on Cp(T )

Remark: for p1 > p2, Cp1(T ) ∈ Borel(Cp2(T ))

Definition: f and g are equivalent if γf = γg. We do not distinguish between

equivalent measures
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Definition: Kf (t, s) = E{
f(t)f(s)

}
covariance of f

Hermitean-positivity on T × T :
∑

i,j cicjK(ti, tj) = E
∣∣∑

i cif(ti)
∣∣2 ≥ 0

Knowing the Hermitean-postive kernel K, we can recover unique Gaussian

function f with Kf = K. Indeed, K defines finite dimensional Gaussian

distributions of
(
f(t1), ..., f(tn)

)
, which, by Kolmogorov’s theorem, define f .

Another approach uses reproducing kernel Hilbert spaces (“RKHS”, for short)

Note: all Hilbert spaces we deal with are real and separable

Suppose: ∀s ∈ T g 7→ g(s) is a bounded functional on H
=⇒ g(s) = 〈g, KH( . , s)〉H, s ∈ T , g ∈ H.

Then KH is called the reproducing kernel on H (“repro-kernel”, for short)
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Lemma: Given continuous Hermitean-positive kernel K, there exists a unique

RKHS H of functions on T with KH = K ¤
Remark: for any o.n.b.

{
ei

}
in H, KH(t, s) =

∑
i ei(t)ei(s) (convergence in H).

In particular, K(t, t) =
∑

i e2
i (t)

We take an o.n.b.
{
ei

}
in H, take independent standard Gaussian r.v.’s ξi, and

put

f(t)
def
=

∑
i

ξiei(t) (∗)

Lemma: Given t ∈ T , the series converges in L2(Ω) and a.s. ¤

That is, the series (∗) gives us a Gaussian function f with Kf = KH. What

about its smoothness?

Lemma: Suppose K ∈ C2p+ε(T × T ) with ε > 0 Then, a.s., f is Cp-smooth, and

the series (∗) converges locally uniformly with p derivatives ¤

In what follows, we need only C2-smoothness of f . In all interesting examples,

which I am aware of, everything is C∞-smooth (and even real-analytic).
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II: Zero sets of translation-invariant Gaussian functions
(Euclidean case: T = Rm)

Definition Translation-invariance ( = stationarity = homogeneity):

∀n ∈ N ∀u1, ..., un ∈ Rm ∀v ∈ Rm the random vectors
(
F (u1), ..., F (un)

)
and(

F (u1 + v), ..., F (un + v)
)

have the same (Gaussian) distribution

Then K(u, v) = E {F (u)F (v)} = E {F (u− v)F (0)} = k(u− v).

By Bochner’s theorem,

k(u) =

∫

Rm

e2πiu·λ dρ(λ) =

∫

Rm

cos (2πu · λ) dρ(λ)

ρ ∈ M+
sym(Rm) is the spectral measure of F .

In this case, the RKHS H = FL2
sym(ρ), F stands for the Fourier transform

• The spectral measure contains all information about the random function F

C2-smoothness of F : for some p > 2,

∫

Rm

|λ|2p dρ(λ) < ∞
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Examples:

• ρ = Lebesgue measure on Sm−1, “Helmholtz wave”.
The random Gaussian function F satisfies the Helmholtz equation
∆F + κ2F = 0

• ρ = Lebesgue measure on [−1, 1]m, “Paley-Wiener wave”

k(u) =
m∏

j=1

sin(2πuj)
2πuj

. The RKHS H is the m-dim Paley-Wiener space

• ρ = standard Gaussian measure on Rm, “Fock-Bargmann wave”
The RKHS H is the m-dim Fock-Bargmann space

In these examples, F has an analytic continuation to the whole Cm.
Unfortunately, it seems that up to now, this was not of much help in
understanding topology of the zero set of F

∣∣
Rm
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Notation: Z(F ) = F−1{0} the (random) zero set of F

N(R; F ) the number of connected components of Z(F ) that are contained in

the open ball B(R) = {x : |u| < R};

Theorem I (F.Nazarov - M.S.): Suppose that the spectral measure ρ has no

atoms and is not supported by a hyperplane.

(i) Then there exists a constant ν(ρ) ≥ 0 s.t.

lim
R→∞

N(R; F )

volB(R)
= ν(ρ) a.s. and in mean.

(ii) The limiting constant ν(ρ) is positive provided that

(∗) ∃ a compactly supported Hermitean-symmetric measure µ with

spt(µ) ⊂ spt(ρ) and a bounded domain G ⊂ Rm s.t. µ̂
∣∣
∂G

< 0, while for some

u0 ∈ G, µ̂(u0) > 0.

Here, µ̂ stands for the Fourier transform of µ. Hermitean positivity means:

µ(−E) = µ(E), that is, µ̂ is real-valued
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How to check condition (∗)?
(∗) ∃ a compactly supported Hermitean-symmetric mea-
sure µ with spt(µ) ⊂ spt(ρ) and a bounded domain G s.t.

µ̂
∣∣
∂G

< 0 while for some u0 ∈ G, µ̂(u0) > 0.

A simple and crude sufficient condition:

• spt(ρ) contains a sphere centered at the origin.

Proof: take µ = the Lebesgue measure on that sphere =⇒ µ̂ is radially

symmetric, vanishes on concentric spheres with radii tending to ∞ ¤

Using a little bit of harmonic analysis, one can go further:

• spt(ρ) contains an open subset of a sphere centered at the origin

In the planar case (m = 2), there is another simple sufficient condition:

• spt(ρ) contains a compact set that cannot be covered by finitely many segments

Proof: Take λ1, λ2 ∈ spt(ρ), λ2 6= cλ1, and consider

cos
(
λ1 · x

)
+ cos

(
λ2 · x

)
= 2 cos

(λ1 + λ2

2
· x)

cos
(λ1 − λ2

2
· x)

Then add an accurately chosen small trigonometric sum with frequencies at

spt(ρ) to create a bounded component around the origin. ¤
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Basics from the ergodic theory needed for the proof of Theorem I:

Suppose Rm acts by measure-preserving transformations
{
τv

}
v∈Rm on a

probability space
(
Ω, S,P)

Wiener’s Ergodic Theorem: Suppose that Φ ∈ L1(P) and that

(v, ω) 7→ Φ(τvω) is Borel(Rm)×S measurable. Then the limit

lim
R→∞

1

volB(R)

∫

B(R)

Φ(τvω) dvol(v) = Φ̄(ω)

exists with probability 1 and in L1(P). The limiting r.v. Φ̄ is τ -invariant, which

means that Φ̄ ◦ τv = Φ̄, v ∈ Rm.

The action of Rm is ergodic if for each τ -invariant set A ∈ S, either P(A) = 0

or P(A) = 1. In this case, the limiting r.v. Φ̄ is constant. Due to the

L1-convergence, Φ̄ = E{
Φ

}
.
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Basics from the ergodic theory (continuation):

In our set-up, Ω = C2(Rm) (countably normed space)

S = Borel(C2(Rm))

P = γF gaussian measure on C2(Rm) generated by F

SF the Lebesgue completion of S w.r.t. γF

Rm acts by shifts: τvG(u) = G(u + v)

Fomin-Grenander-Maruyama Theorem: The action of the shifts is

ergodic provided that the spectral measure has no atoms.

Conclusion: In assumptions of Theorem I, for any r.v. Φ ∈ L1(γF ) such

that the function (v, G) 7→ Φ(τvG) is Borel(Rm)×SF measurable,

lim
R→∞

1

volB(R)

∫

B(R)

Φ(τvG) dvol(v) = E{
Φ

}
a.s. and in L1(γF )

Now, we are ready to prove Theorem I
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III: Proof of Theorem 1

Step 1: Integral geometric sandwich

Notation: N(u, r; F ) the number of connected components of Z(F ) contained

in the open ball B(u, r), N∗(u, r; F ) the number of connected components of

Z(F ) that intersect the closed ball B̄(u, r)

“Sandwich estimate”: for 0 < r < R < ∞,
∫

B(R−r)

N(u, r; F )

volB(r)
dvol(u) ≤ N(R; F ) ≤

∫

B(R+r)

N∗(u, r; F )

volB(r)
dvol(u)

Observe that N∗(u, r; F )−N(u, r; F ) ≤ #critical pts of F
∣∣
∂B(u;r)

def
= N(u, r; F ),

and that N(u, r; F ) = N(r; τuF ), N(u, r; F ) = N(r; τuF ). Thus

1− o(1)

volB(R− r)

∫

B(R−r)

N(r; τuF )

volB(r)
dvol(u) ≤ N(R; F )

volB(R)

≤ 1 + o(1)

volB(R + r)

∫

B(R+r)

N(r; τuF ) + N(r; τuF )

volB(r)
dvol(u) , R →∞, r fixed
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Step 2. Applying ergodic theorem:

Fix r > 0 and apply ergodic theorem to the functions G 7→ N(r; G),

G 7→ N(r; G). We see that for each r > 0,

EN(r; F )

volB(r)
≤ lim

R→∞

N(R; F )

volB(R)
≤ lim

R→∞
N(R; F )

volB(R)
≤ EN(r; F ) + EN(r; F )

volB(r)

Step 3: The Kac-Rice bound for the number of critical points:

B ⊂ Rm a ball, f : B̄ → R1 Gaussian C2(B̄)-function

N(B̄; f) the number of critical points of f in B̄

Lemma: Suppose M = supB̄ E‖∇2f‖2 < ∞ and κ = infB̄ det Cov[∇f,∇f ] > 0.

Then

EN(B̄; f) .m Mm/2κ−1/2vol(B)

We apply this estimate to restriction of F to spherical caps on ∂B(r):

Corollary: EN(r; F ) . volm−1∂B(r)

Hence, lim
R→∞

N(R; F )

volB(R)
exists (a.s. and in L1) and equals lim

r→∞
EN(r; F )

volB(r)
=: ν(ρ)
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Idea of the proof of Kac-Rice bound:

g : B̄ → Rm C1-vector field (g = ∇f)

Let X(ε, δ) =
{
x ∈ B̄ : |g(x)| < δ(|dg|+ ε)

}
(dg the differential of g)

Suppose g(x0) = 0 =⇒ B(x0, δ) ∩ B̄ ⊂ X(ε, δ) provided that δ is small

( sup
{|dg(x1)− dg(x2)| : |x1 − x2| < δ

}
< ε suffices )

Hence, if g vanishes at N different points, then Nδm . volX(ε, δ) for small δ’s

=⇒ N . lim sup
δ→0

δ−mvolX(ε, δ)

We apply this argument to the Gaussian vector field g = ∇f , and find an upper

bound for δ−mE{
volX(ε, δ)

}
uniform in δ and ε

For this, the uniform non-degeneration of the covariance matrix

Cov[∇f(x),∇f(x)] is essential. ¤
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Step 4: Positivity of ν(ρ):

Recall: by the sandwich estimate, ∀r > 0 ν(ρ) ≥ EN(r; F )

volB(r)

=⇒ it suffices to show that ∃r0 > 0 s.t. P{
N(r0; F )

}
> 0

Recall condition (∗): ∃ a compactly supported Hermitean-symmetric measure µ

with spt(µ) ⊂ spt(ρ) and a bounded domain G ⊂ Rm s.t. µ̂
∣∣
∂G

< 0 while for

some u0 ∈ G, µ̂(u0) > 0.

Hence, the following Gaussian lemma does the job:

Lemma: Let µ be a Hermitean symmetric compactly supported measure with

spt(µ) ⊂ sptρ. Then ∀ ball B ⊂ Rm and ∀ε > 0,

P{‖F − µ̂‖C(B̄) < ε
}

> 0 .

Applying this lemma with µ from condition (∗) and with a ball B(r0) s.t.

Ḡ ⊂ B(r0), we see that with a positive probability the zero set Z(F ) has a

bounded connected inside B(r0), whence, P{
N(r0; F )

}
> 0 ¤
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Lemma: Let µ be a Hermitean symmetric compactly supported measure
with spt(µ) ⊂ sptρ. Then ∀ ball B ⊂ Rm and ∀ε > 0,

P{‖F − µ̂‖C(B̄) < ε
}

> 0 .

Proof: Recall that F (u) =
∑

j ξjej(u),
{
ej

}
is an O.N.B. in H = FL2

sym(ρ),

ξj ’s are independent standard Gaussian r.v.’s, and a.s. the series converges

uniformly in B

=⇒ For every h ∈ L2
sym(ρ), P{‖F − ĥ dρ‖C(B̄) < ε

}
> 0

Using that

• Every Hermitean symmetric compactly supported measure with

spt(µ) ⊂ sptρ can be weakly approximated by measures of the form h dρ, h is a

compactly supported function in L2
sym(ρ)

• Weak convergence of compactly supported measures yields locally uniform

convergence of their Fourier transforms.

we complete the proof of Lemma and finish off the proof of Theorem I. ¤
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Part IV: Some questions

• Nature of the limiting constant ν(ρ)

• Growth of the variance of N(R; F ) (presumably, ∼ const Rm)

• Exponential concentration of N(R; F )/volB(R) around ν(ρ): show that for

each ε > 0,

P
{∣∣∣N(R; F )

volB(R)
− ν(ρ)

∣∣∣> ε
}
≤ C(ε)e−c(ε)R

This is open even in the 1-dimensional case (cf. Tsirelson’s lecture notes

http://www.tau.ac.il/~tsirel/Courses/Gauss3/main.html)

Obstacle: nodal domains of small volume (clumping zeroes in the 1-dim case).

The exponential concentration is known for Gaussian Helmholtz waves when

such nodal domains do not exist ( due to equation ∆F + κ2F = 0 )

• Statistics of bounded components of large diameter: given α ∈ (0, 1), find the

asymptotics of the mean number of connected components of diameter ' Rα
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More questions: Bogomolny-Schmit bond percolation model

2D Gaussian Helmholtz wave, ρ Lebesgue measure on S1

=⇒ ∆F + κ2F = 0 =⇒ local maxima are > 0, local minima are < 0

Näıve checkerboard nodal picture: the square lattice; the cells represent
local maxima/minima, the sites are the saddle points; the saddle heights
equal 0

Note: asymptotic Morse relations: Nmax + Nmin ≈ Nsaddle

Two dual square lattices:
blue one (local maxima) vertices at the cells of the grid where F > 0
red one (local minima) vertices at the cells of the grid where F < 0
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If the saddle height is positive then the bond between two neighboring
maxima is open, if it is negative, then the bond is closed.

Bogomolny-Schmit assumptions: saddle heights are
uncorrelated and have equal probability being positive
or negative:

+

−

−

+ −

+−

− +

−+

+

Each realization generates two graphs: the blue one whose vertices are
the blue lattice points and the red one whose vertices are the red lattice
points.

Each of these graphs uniquely
determines the whole picture,
and each of them represents the
critical bond percolation on the
corresponding square lattice:
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Using heuristics from statistical mechanics, B-S predicted that for R →∞,

EN(R; F ) = (ν + o(1))R2, variance of N(R; F ) = (b + o(1))R

with explicitly computed positive constants ν and b, and checked consistency of

their predictions with numerics

Major problem: ignores correlations (which decay only as dist−1/2)

‘Minor’ problem: no rigorous mathematical treatment of the critical bond

percolation on the square lattice ...

Challenge: Reveal ”hidden universality law” that provides the rigorous

foundation for the B-S work

Question: Show that a.s. there is no infinite nodal line

Question: Show that for each ε > 0, the probability that the set{
x : F (x) > ε, |x| < R

}
has a component with diameter ≥ εR tends to zero.
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Part V. Riemannian case

Set-up: X smooth compact m-dim Riemannian manifold without boundary

We start with a family of finite-dimensional RKHS HL of smooth functions on

X, dimHL →∞ as L →∞.

KL(x, y) is a repro-kernel of HL: f(y) = 〈f( . ), KL( . , y)〉HL , f ∈ HL, y ∈ X

We always assume that x 7→ KL(x, x) does not vanish on X.

Gaussian ensemble: fL =
∑

ξkek,
{
ek

}
is an ONB in HL, and ξk are

independent standard Gaussian r.v.’s

The covariance of the Gaussian function fL:

E{
fL(x)fL(y)

}
=

∑
ek(x)ek(y) = KL(x, y)

The distribution of fL does not depend on the choice of the orthonormal basis{
ek

}
in HL.
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Normalization:

Wlog, we assume that the functions fL are normalized, that is,

Ef2
L(x) = KL(x, x) = 1, x ∈ X.

Otherwise, replace the functions fL and the kernel KL by

f̃L(x) =
fL(x)√
Ef2

L(x)
, K̃L(x, y) =

KL(x, y)√
KL(x, x) ·KL(y, y)

.

This normalization changes the Hilbert spaces HL but the zero sets of the

Gaussian functions fL and f̃L remain the same.

In basic examples, the function x 7→ KL(x, x) is constant (that is, the norm of

the point evaluation in HL does not depend on the point), so the normalization

boils down to the division by that constant.
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Transplantation to the Euclidean space and scaling

TxX the tangent space at x

expx : Rm → X the exponential map

Ix : Rm → Tx(X) a linear Euclidean isometry (its choice is irrelevant for us)

Put Φx = expx ◦Ix : Rm → X, Φx(0) = x

To scale the covariance kernel KL at x ∈ X in L times, put

Kx,L(u, v)
def
= KL

(
Φx(L−1u), Φx(L−1v)

)
, u, v ∈ Rm .

Note: Kx,L(u, v) are covariance kernels of scaled Gaussian functions

fx,L(u)
def
= fL(Φx(L−1u)), u ∈ Rm, that is,

Kx,L(u, v) = E{fx,L(u)fx,L(v)}
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Definition: The Gaussian ensemble (fL) has translation-invariant local limits

as L →∞ if for a.e. x ∈ X, there exists a Hermitean positive definite function

kx : Rm → R1, such that for each R < ∞,

lim
L→∞

sup
|u|,|v|≤R

|Kx,L(u, v)− kx(u− v)| = 0 .

The limiting kernels kx(u− v) are covariance kernels of translation-invariant

Gaussian functions Fx : Rm → R1 (x ∈ X)

kx = ρ̂x, ρx are probability meas ρx on Rm, symmetric w.r.t. the origin

We call the function Fx the local limiting function, and the measure ρx the local

limiting spectral measure of the family
{
fL

}
at the point x.
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Technical assumptions: smoothness and non-degeneration

C2-smoothness: The Gaussian ensemble (fL) is C2+ε-smooth if ∃p > 2 s.t. for

every R < ∞,

lim sup
L→∞

sup
x∈X

E‖fx,L‖2Cp(B̄(R)) < ∞

Remark: this holds provided that there exists p > 2 s.t. ∀R < ∞
Kx,L ∈ C2p(B̄(R)× B̄(R)) uniformly in x ∈ X.

Non-degeneracy: lim inf
L→∞

inf
x∈X

det Cov[∇fL(x),∇fL(x)] > 0 .

Here, Cov[∇fL(x),∇fL(x)] is the covariance matrix of ∇fL(x).

Note: if (fL) is C2+ε-smooth, non-degenerate and has translation-invariant

local limits, then limiting spectral measures ρx are not supported by

hyperplanes and satisfy the moment condition

∫

Rm

|λ|p dρx(λ) < ∞.

This holds uniformly w.r.t. x ∈ X.
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N(fL) number of components of the zero set of the function fL.

ν(ρ) limiting constant from Theorem I. Put ν̄(x) = ν(ρx).

Theorem II (F.Nazarov-M.S.): Suppose that (fL) is a C2+ε-smooth

non-degenerate Gaussian ensemble on X that has translation-invariant local

limits. Suppose that local limiting spectral measures ρx have no atoms. Then

ν̄ ∈ L∞(X), and

lim
L→∞

E
{∣∣∣L−mN(fL)−

∫

X

ν̄ d vol
∣∣∣
}

= 0 .

Remark: The measure ν̄ dvolX does not depend on the choice of the

Riemannian metric on X. The change of the scalar products in the tangent

space TxX boils down to the counting the number of components of the zero

set of the limiting translation-invariant Gaussian function Fx in concentric

ellipsoids instead of balls.
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Local version of Theorem II: ∀a.e.x ∈ X ∀ε > 0,

lim
R→∞

lim
L→∞

P
{∣∣∣N

(
x, R/L; fL

)

volB(R)
− ν̄(x)

∣∣∣ > ε
}

= 0 (loc)

Here, N
(
x, R

L
; fL

)
= N

(
R; fx,L

)
is a number of connected components of the

zero set Z(fL) containing in the open ball centered at x ∈ X of radius R/L,

volB(R) is the Euclidean volume of a ball of radius R.

Idea of the proof: x ∈ X, R À 1 are fixed. Let L →∞. Then

E{
fx,L(u)fx,L(v)

} → E{
Fx(u)Fx(v)

}
uniformly in u, v ∈ B̄(R).

1. Coupling: ∃ Gaussian random functions f̃x,L, F̃x defined on the same

probability space, s.t. f̃x,L is equidistributed with fx,L, F̃x is equidistributed

with Fx, and E‖f̃x,L − F̃x‖C1(B̄(R)) is small.

2. With high probability, minB̄(R) max
(|fx,L|, |∇fx,L|

)
is NOT small. This is

due to statistical independence of fx,L and ∇fx,L

1. & 2. & some basic calculus yield N(R− 1; Fx) ≤ N(R; fx,L) ≤ N(R + 1; Fx)

(with high probability). Then, applying Theorem I, we get (loc). ¤
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Theorem II is “an integrated version” of the local result:

1. Put Ω(ε, x, R, L) =
{∣∣N(x, R/L, fL)/volB(R)− ν̄(x)

∣∣ > ε
}

By (loc), lim
R→∞

lim
L→∞

P(
Ω(ε, x, R, L

)
= 0.

Egorov’s theorem =⇒ ∀η > 0 ∃Xη ⊂ X with vol Xη ≥ (1− η) vol X s.t.

N(x, R/L, fL)/volB(R) → ν̄(x) as L →∞, uniformly in x ∈ Xη

2. Integral-geometric sandwich (R À 1, 0 < δ ¿ 1 are fixed, L →∞):

(1− δ)

∫

X

[N(x, R/L, fL)

vol B(R/L)
− ν̄(x)

]
d vol (x) ≤ N(fL)

≤ (1 + δ)

∫

X

[N∗(x, R/L, fL)

vol B(R/L)
− ν̄(x)

]
d vol (x)

To return from N∗ to N , we need to control the mean number of components

of diameter À R/L (using Kac-Rice bound).

3. We get L−mN(fL) ≈
∫

X

[N(x, R/L, fL)

vol B(R)
− ν̄(x)

]
d vol (x).

To treat the integrals over X \Xη, we need to control the mean number of

small components (volume of the corresponding nodal domain is ¿ L−m) ¤
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Part VI. Examples: 4 ensembles satisfying conditions of Theorem II

In these examples, the function KL(x, x) is constant, the limiting

translation-invariant kernel kx does not depend on x ∈ X, is real analytic, and

is not supported by a hyperplane.

The limiting spectral measure satisfies condition (∗) in Theorem I that yields

positivity of the limiting constant ν(ρ).

The scaled kernels Kx,L(u, v) converge to the limiting kernel k(u− v) with

partial derivatives of any order, and the convergence is uniform in x ∈ X. This

yields smoothness and non-degeneracy of the ensembles (fL).
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1. Trigonometric ensemble X = Tm (m-dim torus)

Hn,m ⊂ L2(Tm) subspace of trigonometric polynomials in m variables of degree

≤ n in each of the variables.

The repro-kernel is the product of m Dirichlet kernels

Kn,m(x, y) =

m∏
j=1

sin [π(2n + 1)(xj − yj)]

(2n + 1) sin [π(xj − yj)]
,

scaling parameter L = n (the degree)

After scaling, Kx,L(u, v) converges with partial derivatives of any order to

k(u− v), k(u) =

m∏
j=1

sin 2πuj

2πuj
.

Limiting function F : the Paley-Wiener wave.

Limiting spectral measure ρ = Lebesgue measure on the unit cube in Rm
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2. Arithmetic random waves X = Tm

Hλ is the subspace of L2(Tm) consisting of trigonometric polynomials of the

form

Re
∑

ν∈Zm : |ν|=λ

cνe2πi(ν·x) ,

dimHλ = the number of ways to represent the integer λ2 as a sum of squares of

integers. The repro-kernel is Kλ(x− y) where

Kλ(x) =
1

dimHλ

∑

ν∈Zm : |ν|=λ

cos(2πν · x) .

The scaling parameter equals λ.

For m ≥ 5, the limiting kernel k is the Fourier transform of the Lebesgue

measure on the unit sphere in Rm. The limiting function F is the Helmholtz

wave. For 2 ≤ m ≤ 4, this holds under additional arithmetic restrictions on λ.

It is curious that in the case m = 3, convergence to the limiting kernel follows

from the Linnik equidistribution theorem for the number of lattice points on

the three-dimensional sphere (cf. recent work of Bourgain-Rudnick)
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3. Spherical ensemble: X = Sm (m-dim sphere)

Hn,m ⊂ L2(Sm) subspace spanned by polynomials in m + 1 variables of degree

≤ n, restricted on Sm.

The repro-kernel:

Kn,m(x, y) = c(n, m)P
( m

2 , m
2 −1)

n (x · y), x, y ∈ Sm

where P
(α,β)
n are Jacobi polynomials of degree n and of index (α, β); i.e.,

polynomials orthogonal on [−1, 1] with the weight (1− x)α(1 + x)β .

Mehler-Heine asymptotics:

lim
n→∞

n−
m
2 P

( m
2 , m

2 −1)
n

(
cos

z

n

)
=

(z

2

)−m
2 J m

2
(z)

where J m
2

(z) is Bessel’s function, and the convergence is locally uniform in C.

Scaling parameter L = n (the degree)

Limiting spectral measure ρ = Lebesgue measure on the unit ball in Rm
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Nodal portraits created by Alex Barnett (“elliptic regularity in action”):

Gaussian spherical har-
monic of degree 40

Gaussian linear combina-
tion of spherical harmonic
of degrees ≤ 40
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4. Kostlan ensemble: Homogeneous polynomials of degree n in m + 1

variables restricted to X = Sm

The scalar product 〈f, g〉 =
∑

|J|=n

(
n

J

)−1

fJgJ , where

f(X) =
∑

|J|=n

fJXJ , g(X) =
∑

|J|=n

gJXJ , XJ = xj0
0 xj1

1 xj2
2 ... xjm

m ,

J = (j0, j1, j2, ... jm), |J | = j0 + j1 + j2 + ... + jm,
(

n
J

)
= n!

j0!j1!j2! ... jm!
.

Complexification: after continuation of the homogeneous polynomials f and g

to Cm+1, the scalar product coincides with the one in the Fock-Bargmann space

〈f, g〉 = cn,m

∫

Cm+1
f(Z)g(Z)e−|Z|

2
dvol(Z)

It is known that the complexified Kostlan ensemble is the only unitarily

invariant Gaussian ensemble of homogeneous polynomials.
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Kostlan ensemble (continuation):

In the homogeneous coordinates, the covariance kernel equals
(

X·Y
|X| |Y |

)n
.

In the chart x0 = y0 = 1, we get
( 1+(x·y)√

1+|x|2
√

1+|y|2
)n

.

The features:

• L =
√

n (square root of the degree, not the degree, as in previous examples)

• very rapid decay of the covariance away from the diagonal.

The limiting spectral measure is the Gaussian measure on Rm with the density

exp
[
(x · y)− 1

2
|x|2 − 1

2
|y|2]. The limiting function F is the Fock-Bargmann

wave.

Asymptotic distribution of of the number of components in Kostlan ensemble

was recently studied by D.Gayet and J-Y.Welschinger, and by P.Sarnak and

I.Wigman.
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Nodal lines of Kostlan ensemble of degree 56 on S2

Nodal portraits created by Maria Nastasescu
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Part VII. Another approach to the statistics of the number of
components of the zero set

Ensemble of spherical harmonics of large degree:

Hn RKHS of 2D spherical harmonics of degree n on the sphere S2

∆f + λnf = 0, λn = n(n + 1)

fn Gaussian random spherical harmonics of degree n

Repro-kernel Pn(cosΘ(x, y)), Pn Legendre poly of deg n, Pn(1) = 1

Θ(x, y) angle between x, y ∈ S2

Scaling coefficient L = n, the limiting kernel J0(|u− v|)
The limiting spectral measure: the Lebesgue measure on the circumference S1

The limiting translation-invariant Gaussian function: Helmholtz wave

In this case, we can prove much more:

Theorem III (F.Nazarov-M.S.): ∃ν > 0 ∀ε > 0 ∃C(ε), c(ε) > 0 s.t.

P{∣∣n−2N(fn)− ν
∣∣ > ε

}
< C(ε)e−c(ε)n
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Gaussian isoperimetry (Sudakov-Tsirelson, Chr. Borell)

Notation: K+ρ ρ-neighbourhood of the set K

γd standard Gaussian measure in Rd (normalized by E{|x|2} = 1)

Theorem: Σ ⊂ Rd Borel set, Π ⊂ Rd affine half-space with γd(Σ) = γd(Π).

Then ∀ρ > 0 we have γd(Σ+ρ) ≥ γd(Π+ρ)

Exercise: γd(Π+ρ) ≤ 3
4

=⇒ γd(Π) ≤ 2e−cρ2d.

Corollary (P.Levy’s concentration of Gaussian measure on Hn): G ⊂ Hn

Borel set s.t. P(G+ρ) ≤ 3
4

=⇒ P(G) ≤ 2e−cρ2n.
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Uniform lower semicontinuity of f 7→ N(fn)/n2

Fundamental Lemma: ∀ε > 0 ∃ρ > 0 and ∃En ⊂ Hn with

P(En) ≤ C(ε)e−c(ε)n s.t. ∀f ∈ Hn \ En and ∀g ∈ Hn satisfying ‖g‖L2(S2) ≤ ρ,

we have N(f + g) ≥ N(f)− εn2.

Together with Levy’s concentrarion this yields the exponential concentration of

the r.v. N(fn)/n2 around its median mn:

Let G =
{
f ∈ Hn : N(f)/n2 < mn − ε

}
. Then, by Lemma,

G+ρ ⊂
{
f ∈ Hn : N(f)/n2 < mn

} ⋃
En =⇒ P(G+ρ) < 1

2
+ P(En) < 3

4
.

Similarly, let G =
{
f ∈ Hn : N(f)/n2 > mn + ε

}
. Then, by Lemma,(

G \ En

)
+ρ
⊂ {

f ∈ Hn : N(f)/n2 > mn

}
=⇒ P(

(
G \ En

)
+ρ

) < 1
2
.

Now, Levy’s concentration yields P{∣∣n−2N(fn)−mn

∣∣> ε
}

< C(ε)e−c(ε)n. ¤

This yields Theorem III, since we already know (from Theorems II and I) that

mn tends to a positive constant ν. ¤
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More questions:

• Nothing is known about the number of connected components of the nodal set

for ‘randomly chosen’ high-energy Laplace eigenfunction fλ on an arbitrary

compact surface M without boundary endowed with a smooth Riemannian

metric g.

It’s tempting to expect that Theorem III models what is happening when M is

the two-dimensional sphere S2 endowed with a generic Riemannian metric g

that is sufficiently close to the constant one.

Instead of perturbing the ‘round metric’ on S2, one can add a small (random)

potential to the spherical Laplacian. The question remains just as hard.
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The End
^
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