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Goal: eigenfunction statistics for
billiards In rational polygons

We have seen that for ergodic systems, almost all stationary states (l.e.
eigenfunctions of the Laplacian) are uniformly distributed in phase space
(quantum ergodicity), and for negatively curved case expect no exceptional
subsequences (QUE).

For integrable systems this is not necessarily true. My goal is to expolre a
“pseudo-integrable” case — billiards in rational polygons.




Billiards: classical mechanlcs

planar billiards: motion-in-planar domain B

angle of reflection = angle of incidence
Phase space (description of a particle):

BxS! = { position x of point & direction vector v of motion}
position

Reduced phase space (Birkhoff):

only impacts matter! parametrize using boundary
coordinate ¢ and angle 0 of trajectory with tangent

Billiard map ((p,e)—>(<D Q)
BA Phase Diagram- Tangent E@E|

Invariant measure: sin6 do de
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Billiards in an ellipse
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Billiard map (¢,0)—(D,0)

The Billiards Simulation

Bryn Mawr



Regular vs. chaotic motion

Square billiard Bunimovich stadium
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Bunimovich stadium

Phase Diagram- Tangent




Rational polygons

A simply connected polygon is rational if all interior angles are rational multiples of ©

interior

More generally: A connected polygon is rational if the group I' € 0(2) generated
by reflections in the sides is finite

QD nx




Billiards in rational polygons &g
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tangent ale

boundary
Conserved quantity: I'-orbit of tangent angle 6

Extra constant of motion forces dynamics in phase space to be confined to

Invariant surfaces
D, = U D x y0

yel

Phase space S"D=DxS! is foliated by invariant surfaces



Genus of invariant surface

interior

Genus of invariant surface: - M
g =1+%Zm'—1 , N=lem(n.)[ / \
N,

Interior vertex angles =x m./n; . | = el
% 7
g=4

g=1 g=2
integrable



Directional flows

The restriction of the flow to the invariant surface is called the “directional flow™.

Kerckhoff, Masur & Smilie 1986: almost all directional flows are uniguely ergodic

- analogue of Weyl’s theorem on irrational rotations




Quantum billiards

Stationary states <> eigenfunctions of the Laplacian

with Dirichlet boundary conditions °

—Au=Eu, u|,=0 aN

What can we say about semiclassical measures for rational polygons?
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Eigenfunctions for rational polgons

It has been observed that many eigenfunctions have clear structures related

with periodic orbits — “superscars”?
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‘IG. 2 (color online). The top row shows examples of experi-
nentally obtained superscars in the barrier billiard. The color
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Bogomolny Deitz et al 2006
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FIG. 1. (a) Unfolded scar state for the simplest POC of the
right triangle with angle /8. (b) Schematic folding of this
state. Dashed lines indicate its maxima. Three solid lines show
a region near SD where the unfolded scar function tends to
zero. (c)—(e) Eigenfunctions with energy E close to the scar
energy E,, ,. (c) E=407.4; E5,, = 407.6. (d) E =1015.97;
Eq9 = 1016.12. (e) E = 1968.97; E\ 1, = 1969.15.

Bogomolny & Schmit 2004



Quantum ergodicity in configuration space

Thm (J. Marklof & ZR, 2012): For billiards in rational polygons, almost all
eigenfunctions are uniformly distributed in configuration space.

I.e. given any ONB of eigenfunctions u,,, there is a density one subsequence
so that for any subset A of the billiard table M,

f 24y — area(A)
nmﬂ“n(x)‘ . area(M)

Idea: Follow the (2"9) proof of Quantum
Ergodicity that we saw yesterday, stopping
before the last step.

“PULSING] POWERFULI BRILLIANTI



Quantum Ergodicity

For a billiard with ergodic geodesic flow, “most” eigenfunctions cover phase
space uniformly: If u.is an ONB of eigenfunctions then for any observable

- -
N(E) £

Schnirelman (1974),Zelditch (1987), Colin de Verdiere (1985), Gerard & Leichtnam (1993),
Zelditch-Zworski (1996).

NB: For rational billiard, dynamics is not ergodic!

(Op(a)u,,u,) - [a(p,q)dpda| ———>0




Isotropic observables

If we are only interested in distribution of eigenfunctions in configuration space,
can use observables which depend only on position, not on the momentum

a(x,0)=a,(x), a,eC_(D)

Claim: Let D be rational polygon. For isotropic observables, the average
along each invariant surface equals the whole phase space average!

ok
#T T area(D)

jad Hy = [a(x, y0)dx (x)dx = (a)

area(D) -[[aO

I.e. Lebesgue measure on the invariant surface in phase space projects to
Lebesgue measure in configuration space



Quantum vs. classical variance

Classical variance of time-averaged observable

C@T)= [fa), (x&)-o@)| du(x8)|  wfa)= [a

-
(a). ::% jaoCDt dt time average

Quantum variance

space average

V(a,E): _@ S l(op(au,,u,) - w(@)|

Penultimate step in proof of Quantum Ergodicity (for any billiard): For all T>0,

limsupV(a,E) <C(a,T)

E—ow

» For ergodic case, the classical variance vanishes as T—oo for all observables.

* We will show that for rational polygons, the classical variance vanishes for
Isotropic observables: a(x,0)=a,(x).




The classical variance for
ISotropic observables

Kerckhoff-Masur-Smilie: for almost all 6, and all x, the time average converges
to the space average:

(a)_(x,6) :=% jT a(® (%, 0)) dt———> j ady,

For isotropic observables, j
a

j a, (X)dx = w(a)

>, ~ area(D)

2

limC(a,T) = ‘nm S 0)= j [a-w(@) du, =
R S S°D Dy
= _Ha)(a)—a)(a)‘ dy, =0 ﬁ

s'D for almost all 0



conclusion
Since forall T IimSUpV(a, E) = C(a,T)

E—>w

and lim;_,_ C(a,T)=0 :> limV (a, E) =0

E—w

Hence there is a density one subsequence of eigenfunctions, s.t. for all a, € C(D)

. 2 1
lim i 2, ()|u, ()| dx — i) [j) a, (X)dx

L 2 area(A)
:> MPOJJU”(X)‘ e area(M) QED




Eigenvalue statistics : semi-Poisson?
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Fig. 13. The nearest-neighbour level-spacing distribution P(s) for even-parity states of im-rhombus. The broke
line inserted denotes the Poisson distribution.



Summary

 Billiards in rational polygons have pseudo-integrable dynamics
« Almost all eigenfunctions are uniformly distributed in configuration space

» Other problems — spectral statistics ?



Thank you for your attention!
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