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Goal: eigenfunction statistics for 

billiards in rational polygons 
We have seen that for ergodic systems, almost all stationary states (I.e. 

eigenfunctions of the Laplacian) are uniformly distributed in phase space 

(quantum ergodicity), and for negatively curved case expect no exceptional 

subsequences (QUE).  

For integrable systems this is not necessarily true. My goal is to expolre a 

“pseudo-integrable” case – billiards in rational polygons. 



Billiards: classical mechanics 
planar billiards: motion in planar domain B  

angle of reflection = angle of incidence 

Reduced phase space (Birkhoff):  

only impacts matter! parametrize using boundary 

coordinate φ and angle θ of trajectory with tangent 

Phase space (description of a particle):   

BxS1 = { position x of point & direction vector v of motion}  

Billiard map (φ,θ)→(Φ,Θ)  

Invariant measure: sinθ dθ dφ 



Billiards in an ellipse 

Billiard map (φ,θ)→(Φ,Θ) 

The Billiards Simulation 

Bryn Mawr 



Regular vs. chaotic motion 

Square billiard Bunimovich stadium 

Bunimovich stadium  



Rational polygons 

A simply connected polygon is rational if all interior angles are rational multiples of π 

More generally: A connected polygon is rational if the group Γ ⊆ 𝑂(2) generated 

by reflections in the sides is finite 



Billiards in rational polygons 

Conserved quantity:  Γ-orbit of tangent angle θ  
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Extra constant of motion forces dynamics in phase space to be  confined to 

invariant surfaces 

Phase space S*D=DxS1  is foliated by invariant surfaces   



Genus of invariant surface 

Genus of invariant surface: 

interior vertex angles =π mi/ni 

1
1 , ( )

2

i
i

i i

mN
g N lcm n

n


  

g=1 

integrable 

g=2 

g=4 



Directional flows 

Kerckhoff, Masur & Smilie 1986: almost all directional flows are uniquely ergodic  

 

- analogue of Weyl’s theorem on irrational rotations 

The restriction of the flow to the invariant surface is called the “directional flow”.  



Quantum billiards 

Stationary states ↔ eigenfunctions of the Laplacian 

with Dirichlet boundary conditions 
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What can we say about semiclassical measures for rational polygons? 

http://en.wikipedia.org/wiki/File:InfiniteSquareWellAnimation.gif


Eigenfunctions for rational polgons 

Bogomolny & Schmit 2004 

It has been observed that many eigenfunctions have clear structures related 

with periodic orbits – “superscars”? 

Bogomolny Deitz et al 2006 



Quantum ergodicity in configuration space 

Thm (J. Marklof & ZR, 2012): For  billiards in rational polygons, almost all 

eigenfunctions are uniformly distributed in configuration space. 

i.e. given any ONB of eigenfunctions 𝑢𝑛, there is a density one subsequence  

so that for any subset A of the billiard table M,  

2 ( )
lim ( )

( )
n

n
A

area A
u x dx

area M


Idea: Follow the (2nd)  proof of Quantum 

Ergodicity that we saw yesterday, stopping 

before the last step. 



Quantum Ergodicity   

For a billiard with ergodic geodesic flow, “most” eigenfunctions cover phase 

space uniformly: If un is an ONB of eigenfunctions then for any observable 
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Schnirelman (1974),Zelditch (1987), Colin de Verdiere (1985), Gerard & Leichtnam (1993), 

Zelditch-Zworski (1996).   

NB: For rational billiard, dynamics is not ergodic! 
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Isotropic observables 

If we are only interested in distribution of eigenfunctions in configuration space, 

can use observables which depend only on position, not on the momentum 
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Claim: Let D be rational polygon. For isotropic observables, the average 

along each invariant surface equals the whole phase space average! 
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i.e. Lebesgue measure on the invariant surface in phase space  projects to 

Lebesgue measure in configuration space   



Quantum vs. classical variance 
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Penultimate step in proof of Quantum Ergodicity  (for any billiard): For all T>0,  

Classical variance of time-averaged observable 

• For ergodic case, the classical variance vanishes as T→∞ for all observables.  

 

• We will show that for rational polygons, the classical variance vanishes for 

isotropic observables:  a(x,θ)=a0(x). 
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The classical variance for 

isotropic observables 

Kerckhoff-Masur-Smilie: for almost all θ, and all x, the time average converges 

to the space average:  

for almost all θ 

For isotropic observables, 
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conclusion 
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Hence there is a density one subsequence of eigenfunctions, s.t. for all  𝑎0 ∈ 𝐶(𝐷)  
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Eigenvalue statistics : semi-Poisson? 



Summary 

• Billiards in rational polygons have pseudo-integrable dynamics 

 

• Almost all eigenfunctions are uniformly distributed in configuration space 

 

• Other problems – spectral statistics ? 

 

 



Thank you for your attention! 
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