Summer school on Quantum Chaos Sponsored by IAMP, EMS & ESI Introduction: Zeev Rudnick

What is Quantum Chaos ?

- "Quantum chaos" = study of energy levels and stationary states of quantum systems in the semiclassical limit $\hbar \rightarrow 0$.
- This week we will explore some aspects of subject.

Models of classical mechanics

planar billiards:

angle of reflection = angle of incidence

Geodesic flow on a surface

Geodesic flow on negatively curved surface

Regularity vs. chaos in classical dynamics

see courses by Nonnenmacher, Riviere

Classification of (conservative, Hamiltonian) dynamical systems, e;g; planar billiards, geodesic flows on surfaces

Regular (integrable):

•A full set of constants of motion

•dynamics confined to **invariant tori** in phase space.

•Linear separation of trajectories

...mixed .

Chaotic:

•Typical orbits densely cover all of available phase space (ergodicity)

•Exponential divergence of nearby trajectories (hyperbolicity).

... pseudo-integrable

Quantum mechanics

A particle at time t is described by its wave function $\Psi(q,t)$

 $|\Psi(\mathbf{q},\mathbf{t})|^2$ = probability density of particle in state Ψ

<u>Time evolution</u> is described by **Schrödinger's equation** :

$$i\hbar \frac{\partial \Psi}{\partial t} = -\frac{\hbar^2}{2} \Delta \Psi \qquad \underline{\hbar} = 1.054 \times 10^{-34} \text{ J-s}$$
Stationary states: $\Psi(q,t) = \psi(q)e^{-itE/h}$ with $\psi(q)$ an eigenfunction of A

$$-\frac{\hbar^2}{2} \Delta w = \mathbf{F} w \qquad E = \text{energy level}$$

The semiclassical limit $h \rightarrow 0$ & the correspondence principle:

"classical mechanics is a special case of quantum mechanics".

If so, then:

How is the dichotomy "regular vs. chaotic" manifested in Quantum Mechanics?

Statistics of eigenfunctions

The semi-classical eigenfunction hypthesis of M.V. Berry and A. Voros (~ 1977):

"Each semi-classical eigenstate has a Wigner function concentrated on the region explored by a <u>typical</u> orbit over infinite times".

In particular, for chaotic systems, "The wave functions cover phase space uniformly" However....."scars" were found by Heller and by McDonald & Kauffman (1984-88)

Scars: Concentration of eigenfunctions on unstable periodic orbits (controversial)

E. Heller: Scarred stadium mode

A mathematical formulation see Hassel's course

For a particle with wave function ψ , the expectation values of its position coordinates q_1 , q_2 are given by

$$\langle q_1 \rangle_{\psi} \coloneqq \int q_1 |\psi(q_1, q_2)|^2 dq_1 dq_2$$

"Likewise", for any classical observable a(q,p) of position $q=(q_1, q_2)$ and momentum $p=(p_1, p_2)$, one can define a (pseudo-differential) operator Op(a) so that the expected value of the observable a "at the state ψ " is the diagonal matrix element $\langle Op(a)\psi,\psi\rangle$

A possible interpretation of the statement that "wave functions cover phase space uniformly" is that the matrix elements converge to the classical average of a:

$$\langle Op(a)\psi,\psi\rangle \longrightarrow \iint a(q,p)dpdq$$

Quantum Ergodicity (Schnirelman)

Schnirelman (1974): For a Riemannian manifold M with <u>ergodic</u> geodesic flow, "<u>most</u>" eigenfunctions cover phase space uniformly: if u_n is an ONB consisting of eigenfunctions of the Laplacian, then there is a subsequence of density one s.t. for all observables a(p,q)

$$\langle Op(a)u_n, u_n \rangle \xrightarrow[n \to \infty]{} \int a$$

Zelditch (1987), Colin de Verdiere (1985)

see Hassel's course

One interpretation of "Scars" is as possible exceptional subsequences

<u>ZR & Sarnak (1994)</u>: Conjecture that for <u>negatively curved</u> manifolds, <u>no</u> exceptional subsequence - **Quantum Unique Ergodicity** (QUE).

see Einsiedler's course

Bouncing ball modes in the stadium billiard

Hassel (2010): BBM exist for "most" stadia

Nodal lines of eigenfunctions

The **nodal line** of φ is the set $\varphi^{-1}(0) = \{x: \varphi(x)=0\}$.

Question: How do nodal lines of eigenfunctions vary as we increase the eigenvalue ?

see Zelditch's talk

Random wave models –used to predict features such as the statistics of the number of nodal domains of eigenfunctions

see Sodin's course

nodal lines of eigenfunctions on the flat torus

Statistics of the eigenvalues

A major insight of Quantum Chaos the <u>statistics</u> of the energy spectrum falls into a few <u>universality classes</u>, described by <u>simple statistical models</u>, depending on the coarse classification of the dynamics of the classical limit of the system.

One popular statistical measure is the level spacing distribution P(s) :=limiting distribution of the normalized gaps δ_i between adjacent levels

Statistical models: Poisson vs RMT

Statistics of the energy levels in the local regime can be can be compared to some simple probabilistic models:

a) Uncorrelated levels: Take the levels E_n to be independent, uniform in [0,1] (homogeneous Poisson process on the line with intensity 1).

Here the level spacing distribution P(s)=exp(-s)

b) E_n are the eigenvalues of a <u>random</u> symmetric matrix (GOE) NxN symmetric matrices $H=H^T$, matrix elements=independent real Gaussians P(s) was computed by Gaudin and Mehta (1960's)

see Keating's course

Integrable vs. chaotic: universality conjectures for the level spacing distribution P(s)

<u>rectangular</u> billiard, aspect ratio = $\sqrt{\pi/3}$

*="generically"

0.5

0

1.0

1.5

2.0

Have a good week!

