Quantum chaos with open systems

S. Nonnenmacher (CEA-Saclay)

ESI Summer school on Quantum Chaos, ESI Vienna, August 2012

Classical vs. quantum scattering

(X, g) Riemannian mfold of infinite volume, "nice geometry" near infinity. Possible "internal boundaries" (obstacles).
Classical scattering:

- geodesic flow on $S^{*} X \equiv$ Hamiltonian flow generated by $p(x, \xi)=\frac{\left|\xi^{2}\right| g}{2}$ on $T^{*} X$
- Hamiltonian flow, $p(x, \xi)=\frac{\left|\xi^{2}\right| g}{2}+V(x)$, with $V \in C_{c}^{\infty}(X)$.

Quantum scattering: Schrödinger eq. $i h \partial_{t} \psi=P(h) \psi$

- semiclassical Laplace-Beltrami operator $P(h)=-\frac{h^{2}}{2} \Delta_{X}$
- semiclassical Schrödinger operator $P(h)=-\frac{h^{2}}{2} \Delta_{X}+V(x)$

High frequencies for $\Delta_{X} \Longleftrightarrow P(h) \approx E$ fixed, semiclassical régime $h \rightarrow 0$.

Quantum resonances

For an energy $E>0$, the energy shell $p^{-1}(E)$ is unbounded $\Longrightarrow \operatorname{Spec} P(h)$ absol. continuous on \mathbb{R}^{+}.

Still, the (cutoff) resolvent $\chi(P-z)^{-1} \chi$ can be meromorphically continued from $\{\operatorname{Im} z>0\}$ to $\{\operatorname{Im} z<0\}$. In general it admits a discrete set of poles $\left\{z_{j}(h)\right\}$: quantum resonances.
$z_{j}(h) \leftrightarrow$ metastable state $u_{j}(h) \notin L^{2}$, with lifetime $\tau_{j}(h)=h\left(2\left|\operatorname{Im} z_{j}\right|\right)^{-1}$
\Longrightarrow (semiclassically) long living if $\operatorname{Im} z_{j}(h) \geq-C h$.

Quantum resonances: a nonselfadjoint spectral problem

To uncover the resonances, one may apply a complex deformation to $P(h)$ near infinity (where (X, g) is analytic) [Aguilar-Balslev-Combes,Simon,Helffer-Sjöstrand...] $P(h) \rightsquigarrow P_{\theta}(h), P_{\theta}(h)=-e^{-2 i \theta \frac{h^{2} \Delta}{2}}$ near infinity \Rightarrow discrete L^{2} spectrum in $\{0 \geq \arg z>-2 \theta\}$, equivalent with the resonances $\left\{z_{j}(h)\right\}$. The metastable states $u_{j} \rightsquigarrow u_{j, \theta} \in L^{2}$.

We are now facing a nonselfadjoint semiclassical spectral problem for $P_{\theta}(h)$.

Relevant questions in the semiclassical limit

- fixing $E>0$, what is the distribution of long-living resonances $z_{j}(h) \in D(E, C h)$ when $h \rightarrow 0$?
How dense are they? Is there a resonance free strip?
- uniform estimates for the cutoff resolvent for $z \approx E$?
- spatial structure of the metastable states? (semiclassical measures)
\rightsquigarrow PDE applications: resonance expansion for $e^{-i t P(h) / h} u$, local energy decay for $e^{i t \sqrt{\Delta_{X}}} u$

Semiclassical distribution of resonances - Trapped set

Main idea: the distribution of resonances in $D(E, C h)$ and of the corresp. metastable states is guided by the structure of the classical trapped set

$$
K_{E}=K_{E,+} \cap K_{E,-}, \quad K_{E, \pm}=\left\{\rho \in p^{-1}(E), \Phi^{t}(\rho) \nrightarrow \infty, t \rightarrow \mp \infty\right\}
$$

K_{E} compact subset of $p^{-1}(E)$, invariant through the Hamiltonian flow Φ^{t}.

- $K_{E}=\emptyset:$ all $\operatorname{Im} z_{j} \leq-C h \log h^{-1} \Longrightarrow$ no long-living state [Martinez'02].

- K_{E} contains an elliptic periodic orbit. \Rightarrow resonances with $\operatorname{Im} z=\mathcal{O}\left(h^{\infty}\right)$ (quasimodes).
$\#\{\operatorname{Res}(P(h)) \cap D(E, \gamma h)\} \sim C h^{-n+1}$, like for a closed system.
[Popov,Vodev,Stefanov]

Semiclassical distribution of resonances - 1 hyperb. orbit

- $d=2, K_{E}=$ single hyperbolic periodic orbit.

Resonances form a deformed half-lattice, with $\operatorname{Im} z_{j}=-h \lambda(1 / 2+n)+\mathcal{O}\left(h^{2}\right)$.
$\#\{\operatorname{Res}(P(h)) \cap D(E, \gamma h)\}=\mathcal{O}(1)$.
[Ikawa' 85 ,GÉrard-SJöstrand'87,GÉrard'88,...]

Chaotic scattering

Chaotic situation: K_{E} a fractal hyperbolic set.
Examples: $X_{0}=\Gamma \backslash \mathbb{H}^{\nvdash}$ hyperbolic surface of infinite volume. 3 convex obstacles in \mathbb{R}^{d} [IKAWA'88, Gaspard-Rice' $89, \ldots$]

Hyperbolicity: $\forall \rho \in K_{E}, T_{\rho} p^{-1}(E)=H_{p}(\rho) \oplus E_{\rho}^{+} \oplus E_{\rho}^{-}$unstable/stable subspaces The unstable Jacobian $J^{+}(\rho)=\left|\operatorname{det}\left(d \Phi_{\mid E_{\rho}^{+}}^{1}\right)\right|$ measures the degree of hyperbolicity.

Ex: 3 circular obstacles in \mathbb{R}^{2}.

Counting long-living resonances: Fractal Weyl upper bound

Theorem. • $P(h)=-\frac{h^{2} \Delta_{\mathbb{R}^{d}}}{2}+V(x)$ [SJöSTRAND'90,SJöSTRAND-ZWORSKI'07]

- $X=\Gamma \backslash \mathbb{H}^{d}$ Schottky quotient [Zworski'99,Guillopé-Lin-Zworski'04]
- $J \geq 3$ convex obstacles (no-eclipse condition) [N-SJöstrand-Zworski'11]

$$
\forall \gamma>0, \exists C_{\gamma}, \quad \#\{\operatorname{Res}(P(h)) \cap D(E, \gamma h)\} \leq C_{\gamma} h^{-\nu+0}
$$

Here $\nu=\frac{\operatorname{dim}\left(K_{E}\right)-1}{2}$ (upper Minkowski dimension).
Main idea: the long-living metastables "live" in an $h^{1 / 2}$-neighbourhood of K_{E}.
\rightsquigarrow count the number of "quantum boxes" (of volume h^{d-1}) in this nbhood.
Conjecture: the upper bound is sharp (at least at the level of the power ν): Fractal Weyl law [Guillopé-Zworski'99, Lin-Zworksi'02...]
Nonselfadjoint spectral problem \Rightarrow lower bounds difficult to obtain.

A classical criterion for a resonance gap

Hyperbolicity of $\Phi^{t} \upharpoonright_{K_{E}} \Longrightarrow$ a wavepacket will disperse fast through $e^{-i t P(h) / h}$. On the other hand, possible relocalization through constructive interferences. What criterion for a global decay?

Topological pressure of $\Phi^{t} \upharpoonright_{K_{E}}$: generalization of the topological entropy.
Choose a test function $f \in C\left(K_{E}\right)$. The pressure is obtained by summing over Bowen balls $B(x, \epsilon, T)$ weighted by $e^{f_{T}(x)}, f_{T}(x)=\int_{0}^{T} f \circ \Phi^{t}(x) d t$.
Equivalently, sum over weighted T-periodic orbits:

$$
\mathcal{P}_{E}(f) \stackrel{\text { def }}{=} \lim _{T \rightarrow \infty} \frac{1}{T} \log \sum_{\gamma: T-1 \leq T_{\gamma} \leq T} e^{f_{T}(\gamma)} \quad\left(\gamma=\text { periodic orbits on } K_{E}\right)
$$

$f \equiv 0$ leads to the topological entropy.

"Thin" trapped set and resonance gap (2)

Choose the test function $f=-s \log J^{u}, s \geq 0$, to test the hyperbolicity of the trajectories.
\rightsquigarrow balance between complexity and hyperbolicity of $\Phi^{t} \upharpoonright_{K_{E}}$:

$$
\mathcal{P}_{E}\left(-s \log J^{u}\right) \stackrel{\text { def }}{=} \lim _{T \rightarrow \infty} \frac{1}{T} \log \sum_{\gamma: T-1 \leq T_{\gamma} \leq T} J^{u}(\gamma)^{-s}
$$

Theorem. [Ikawa' 88 ,Gaspard-Rice' 89, N-Zworski'09]
Suppose the trapped set is such that $\mathcal{P}_{E}\left(-1 / 2 \log J^{u}\right)<0$.
Then, for any $0<g<\left|\mathcal{P}_{E}\left(-1 / 2 \log J^{u}\right)\right|$ and h small enough, the strip $[E-C h, E+C h]-i[0, g h]$ is free of resonances.
Remark: $\mathcal{P}(0)=H_{\text {top }}\left(\Phi \upharpoonright_{K_{E}}\right)>0 . \mathcal{P}\left(-\log J^{u}\right)=-\gamma_{c l}<0$ (classical escape rate).
$d=2: \mathcal{P}_{E}\left(-1 / 2 \log J^{u}\right)<0 \Longleftrightarrow \operatorname{dim} K_{E}<2$ ("thin" trapped set).

Phase space distribution of metastable states

Theorem. [Bony-Michel'04,Keatinget al.'06,N-Rubin'07,N-Zworski '09]
Consider a sequence of metastable states $\left(u_{h}\right)_{h \rightarrow 0}$ associated with $z_{h}=E+\mathcal{O}(h)$, normalized by $\left\|u_{h}\right\|_{L^{2}(\Omega)}=1$ for Ω a neighbourhood of $\pi\left(K_{E}\right)$.
Up to extracting a subsequence, we can assume that a semiclassical measure μ is associated with $\left(u_{h}\right)_{h \rightarrow 0}$:

$$
\forall f \in C_{c}^{\infty}\left(T^{*} X\right), \forall \chi \in C_{c}^{\infty}(X), \quad\left\langle\chi u_{h_{k}}, \mathrm{Op}_{h}(f) \chi u_{h_{k}}\right\rangle \rightarrow \int_{T^{*} X} f(\rho) d \mu(\rho)
$$

Then μ is supported on the outgoing set of K_{E} (unstable manifold), and there exists $\gamma \geq 0$ s.t.

$$
\frac{\operatorname{Im} z_{h_{k}}}{h_{k}} \rightarrow-\gamma / 2 \quad \text { and } \quad \mathcal{L}_{H_{p}} \mu=\gamma \mu
$$

μ is a Conditionally Invariant Measure for the flow. The proof mimics the proof of invariance of μ for closed systems.
Questions:

- which CIM can appear as semiclassical measures?
- is there a form of quantum ergodicity?

Partial answers for a solvable open quantum baker's map [Keatinget al.'08].

Poincaré section: reduction of the Hamiltonian flow

- $\boldsymbol{\Sigma}=\sqcup_{j=1}^{J} \Sigma_{j}$ hypersurfaces in $p^{-1}(E)$ transverse to the flow near $K_{E}(\operatorname{dim}=2 d-2)$. $\rightsquigarrow \Phi^{t}$ replaced by the Poincaré map $\kappa: \Sigma \rightarrow \Sigma$ and return time $\tau: \Sigma \rightarrow \mathbb{R}^{+}$.
- Can one quantize this reduction, namely study $P(h)$ or $e^{-i t P(h) / h}$ through a quantum propagator assoc. with κ, and depending on τ)?

Ex. of reduction: Euclidean obstacle scattering

J convex obstacles on $\mathbb{R}^{d}, P(h)=-\frac{h^{2} \Delta_{D}}{2}$.
Poisson operator $H_{j}(z): C^{\infty}\left(\partial O_{j}\right) \rightarrow C^{\infty}\left(\mathbb{R}^{n} \backslash O_{j}\right)$, for each obstacle $j=1, \ldots, J$.
Definition: $\quad u=H_{j}(z) v \quad$ satisfies $\quad(P(h)-z) u=0, \quad u \upharpoonright_{\partial O_{j}}=v, \quad u$ outgoing
$\rightsquigarrow J \times J$ matrix of boundary operators $\mathcal{M}_{i j}(z, h): C^{\infty}\left(\partial O_{j}\right) \rightarrow C^{\infty}\left(\partial O_{i}\right)$:

$$
\mathcal{M}_{i j}(z, h) v_{j} \stackrel{\text { def }}{=}\left(H_{j}(z) v_{j}\right) \upharpoonright_{\partial O_{i}} \quad \text { for } i \neq j, \quad \mathcal{M}_{j j}(z, h)=0 .
$$

FIO assoc.w. the boundary map $\kappa_{i j}: B^{*} \partial O_{j} \rightarrow B^{*} \partial O_{i}$.
Reduction: z resonance de $P(h) \Longleftrightarrow \quad z$ pole of $(I-\mathcal{M}(z, h))^{-1}$

Monodromy operator for smooth potential scattering

Case $P(h)=-\frac{h^{2} \Delta}{2}+V(x)$, with K_{E} hyperbolic repeller.

Theorem. [N-Sjöstrand-Zworski'10] Consider a Poincaré section $\boldsymbol{\Sigma}=\sqcup_{j=1}^{J} \Sigma_{j} \subset$ $p^{-1}(E)$, assume the reduced trapped set $\mathcal{K} \stackrel{\text { def }}{=} K_{E} \cap \boldsymbol{\Sigma}$ doesn't touch $\partial \boldsymbol{\Sigma}$. Then one can construct a quantum monodromy operator $M(z, h)$:

- $M(z, h)=\left(M(z, h)_{i j}\right): L^{2}\left(\mathbb{R}^{d-1}\right)^{J} \rightarrow L^{2}\left(\mathbb{R}^{d-1}\right)^{J}$ matrix of FIO assoc. w. $\kappa_{i j}$. Holomorphic in $z \in D(E, C h \log (1 / h)), M(z, h) \approx M(E, h) \operatorname{Op}_{h}\left(e^{i \frac{z-E}{h} \tau}\right)$
- $M(z, h)$ is microlocally supported near $K_{E} \cap \boldsymbol{\Sigma}$, rank $\asymp h^{-(d-1)}$.
- z resonance of $P(h) \Longleftrightarrow$ pole of $(I-M(z, h))^{-1} \Longleftrightarrow \operatorname{det}(I-M(z, h))=0$.

A similar reduction appeared in the physics literature [Bogomolny'92,DoronSmilansky'92, Prosen'95].

Proof of fractal Weyl upper bound from monodromy op.

Aim: prove a fractal Weyl upper bound for the solutions of $\operatorname{det}(I-M(z, h))=0$. Trick: $M(z, h)$ is conjugate with $\tilde{M}(z, h)$ microlocalized in $h^{1 / 2}$-nbhd of \mathcal{K}.

- use an appropriate escape function $G(x, \xi)$:

$$
M(z) \rightsquigarrow M_{G}(z)=e^{-\mathrm{Op}_{h}(G)} M(z) e^{\mathrm{Op}_{h}(G)} \stackrel{\text { Egorov }}{\approx} M(z) e^{\mathrm{Op}_{h}(G-G \circ \kappa)^{w}}
$$

We construct $G(x, \xi)$ s.th. $G \circ \kappa-G \geq C_{1} \gg 1$ outside this $h^{1 / 2}$ _nbhd (uses the hyperbolicity of K_{E}).

$$
\Longrightarrow \operatorname{symbol}\left(M_{G}(z)\right) \leq e^{-C_{1}} \ll 1 \quad \text { outside the } h^{1 / 2} \text {-nbhd }
$$

- \rightsquigarrow effective monodromy operator $\tilde{M}(z, h)$ microlocalized in this nbhd, with $\operatorname{rank}(\tilde{M}(z, h)) \asymp h^{-\nu+0}$.
$\tilde{M}(z, h)$ a "minimal matrix" encoding the long-living quantum dynamics near energy E. z-holomorphic $\stackrel{\text { Jensen }}{\rightsquigarrow} \#\{z \in D(E, C h), \operatorname{det}(1-\tilde{M}(z, h))=0\} \leq C^{\prime} \operatorname{rank}(\tilde{M})$.

Proof of resonance gap from monodromy op.

Strategy: long time iteration in order to bound the spectral radius of $M(z, h)$:

$$
\left[M(z, h)^{N}\right]_{i_{N} i_{0}}=\sum_{i_{N-1}, \ldots, i_{1}} M_{i_{N} i_{N-1}} M_{i_{N-1} i_{N-2}} \cdots M_{i_{1} i_{0}} \stackrel{\text { def }}{=} \sum_{\vec{i}} M_{\vec{i}}
$$

Hyperbolic dispersion estimate [Anantharaman'06,N-Zworski'09]: for each "path" \vec{i},

$$
\left\|M_{\vec{i}}(z)\right\| \leq h^{-(d-1) / 2} J_{\kappa, N}^{u}(\vec{i})^{-1 / 2} e^{-\zeta \tau_{N}(\vec{i})}, \quad \zeta \stackrel{\text { def }}{=} \operatorname{Im} z / h,
$$

valid for times $N \sim C \log (1 / h), C \gg 1$. Triangle \leq implies

$$
\left\|M(z, h)^{N}\right\| \lesssim \sum_{\vec{i} \text { admis. }} e^{N \epsilon} J_{\kappa, N}^{u}(\vec{i})^{-1 / 2} e^{-\zeta \tau_{N}(\vec{i})} \lesssim \exp \left\{N\left(\mathcal{P}_{\kappa}\left(-1 / 2 \log J_{\kappa}^{u}-\zeta \tau\right)+\epsilon\right)\right\}
$$

$\Longrightarrow r_{s p}(M(z, h)) \leq e^{\mathcal{P}_{k}\left(-1 / 2 \log J_{\kappa}^{u}-\zeta \tau\right)+\epsilon}$.
Relation between the topological pressures of $\kappa \upharpoonright_{\mathcal{K}}$ and $\Phi^{t} \upharpoonright_{K_{E}}$:

$$
\mathcal{P}_{\Phi}\left(-1 / 2 \log J^{u}\right)<\zeta \Longleftrightarrow \mathcal{P}_{\kappa}\left(-1 / 2 \log J_{\kappa}^{u}-\zeta \tau\right)<0,
$$

in which case $r_{s p}(M(z, h))<1 \Longrightarrow \operatorname{det}(I-M(z, h)) \neq 0$.

A toy model: open quantum maps

Toy model for Poincaré maps: open chaotic map.
Symplectic diffeom $\kappa: V \mapsto \kappa(V), V \Subset \mathbb{R}^{2(d-1)}$ with chaotic trapped set \mathcal{K}.
Ex: open baker's map (on \mathbb{T}^{2}). (Piecewise) smooth, simple dynamics.

Quantization of κ : family of subunitary matrices $(M(h))_{h \rightarrow 0}$ of ranks $\sim h^{-(d-1)}$. $M(h) \approx$ FIO associated with κ. Open quantum map. (baker's map: very explicit).

Open quantum (chaotic) map

$(M(h))_{h \rightarrow 0}$ subunitary propagagors assoc.w. κ, of ranks $\sim h^{-(d-1)}$.
Heuristics: $M(z, h) \stackrel{\text { def }}{=} M(h) e^{i z / h}$ resembles a quantum monodromy operator. Zeros of $\operatorname{det}(I-M(z, h))$ give the nonzero spectrum $\left\{\lambda_{j}=e^{-i z_{j} / h}\right\}$ of $M(h)$. \Longrightarrow long-living spectrum of $M(h)$ inside some annulus $\{|\lambda| \geq r>0\}$.
Easy to implement numerically.

Spectra of the quantum open baker's map for increasing values of h^{-1}.

Numerical tests of the Fractal Weyl law

Do we have $\#\{\operatorname{Res}(P(h)) \cap D(E, \gamma h)\} \geq c h^{-\nu}$ for $\gamma>0$ large enough?

- Numerics for 3 differents $P(h)$ seem to confirm the fractal Weyl law
[Lin'01, Lu-Sridhar-Zworski'03, Guillopé-Lin-Zworski'04].
- Easier numerics for open quantum maps hint at a more precise scaling [Schomerus-TworzydŁo'04, N-Zworski'05, N-Rubin'07. . .]
For an asymmetric open baker, we plot $\frac{\#\left\{\lambda_{j} \in \operatorname{Spec}(M(h)),\left|\lambda_{j}\right| \geq r\right\}}{h^{-\nu}} \approx F(r)$ for different values of h^{-1}.

Phase space distribution of metastable states

A few long-living metastable states for the open baker's map (Husimi density).

Numerical tests of the resonance gap

Spectral radii for two baker's maps (with same topological pressures).
Horizontal lines: $\mathcal{P}\left(-1 / 2 \log J^{u}\right)$ and $\mathcal{P}\left(-\log J^{u}\right) / 2$.

Quantum open baker ($\mathrm{D}=5$, columns 1-3)

\mathcal{K} away from discontinuities.

Quantum open baker ($\mathrm{D}=5$, columns $0-4$)

\mathcal{K} touches the discontinuities.

A solvable toy-of-the-toy model

One can quantize the open baker's maps in a nonstandard way (discrete Fourier transform on \rightsquigarrow Walsh-Fourier transform), s.th. the quantum map $M(h)$ can be analytically diagonalized.

- fractal Weyl upper bound OK. Fractal Weyl law generally OK, but possibility of "accidental" degeneracies of $\tilde{M}(h)$, such that

$$
\forall r<1, \quad \#\left\{\lambda_{j} \in \operatorname{Spec}(M(h)),\left|\lambda_{j}\right| \geq r\right\}=\mathcal{O}\left(h^{-\tilde{\nu}}\right) \quad \text { for some } \tilde{\nu}<\nu
$$

- spectral radius can take values in the range

$$
0 \leq r_{s p}(M(h)) \leq e^{\min \left(0, \mathcal{P}\left(-\log J^{u} / 2\right)\right)}
$$

One can add some randomness in the model to ensure fractal Weyl law.
\rightsquigarrow for a general system, does the fractal Weyl law only hold under some genericity condition?

