# Quantum chaos with open systems

S. Nonnenmacher (CEA-Saclay)

ESI Summer school on Quantum Chaos, ESI Vienna, August 2012



### Classical vs. quantum scattering



(X,g) Riemannian mfold of infinite volume, "nice geometry" near infinity. Possible "internal boundaries" (obstacles).

Classical scattering:

- geodesic flow on  $S^*X \equiv$  Hamiltonian flow generated by  $p(x,\xi) = \frac{|\xi^2|_g}{2}$  on  $T^*X$
- Hamiltonian flow,  $p(x,\xi) = \frac{|\xi^2|_g}{2} + V(x)$ , with  $V \in C_c^{\infty}(X)$ .

Quantum scattering: Schrödinger eq.  $ih\partial_t\psi = P(h)\psi$ 

- semiclassical Laplace-Beltrami operator  $P(h) = -\frac{h^2}{2}\Delta_X$
- semiclassical Schrödinger operator  $P(h) = -\frac{h^2}{2}\Delta_X + V(x)$

High frequencies for  $\Delta_X \iff P(h) \approx E$  fixed, semiclassical régime  $h \to 0$ .

### Quantum resonances



For an energy E > 0, the energy shell  $p^{-1}(E)$  is unbounded  $\Longrightarrow \operatorname{Spec} P(h)$  absol. continuous on  $\mathbb{R}^+$ .

Still, the (cutoff) resolvent  $\chi(P-z)^{-1}\chi$  can be meromorphically continued from  $\{\operatorname{Im} z > 0\}$  to  $\{\operatorname{Im} z < 0\}$ . In general it admits a discrete set of poles  $\{z_j(h)\}$ : quantum resonances.

 $z_j(h) \leftrightarrow$  metastable state  $u_j(h) \not\in L^2$ , with lifetime  $\tau_j(h) = h(2|\operatorname{Im} z_j|)^{-1}$ 

 $\implies$  (semiclassically) long living if  $\operatorname{Im} z_j(h) \ge -Ch$ .

### Quantum resonances: a nonselfadjoint spectral problem



To uncover the resonances, one may apply a complex deformation to P(h) near infinity (where (X, g) is analytic) [AGUILAR-BALSLEV-COMBES,SIMON,HELFFER-SJÖSTRAND...]  $P(h) \rightsquigarrow P_{\theta}(h), P_{\theta}(h) = -e^{-2i\theta}\frac{h^2\Delta}{2}$  near infinity  $\Rightarrow$  discrete  $L^2$  spectrum in  $\{0 \ge \arg z > -2\theta\}$ , equivalent with the resonances  $\{z_j(h)\}$ . The metastable states  $u_j \rightsquigarrow u_{j,\theta} \in L^2$ .

We are now facing a nonselfadjoint semiclassical spectral problem for  $P_{\theta}(h)$ .

# Relevant questions in the semiclassical limit



- fixing E > 0, what is the distribution of long-living resonances z<sub>j</sub>(h) ∈ D(E, Ch) when h → 0?
   How dense are they? Is there a resonance free strip?
- uniform estimates for the cutoff resolvent for  $z \approx E$ ?
- spatial structure of the metastable states? (semiclassical measures)
- $\rightsquigarrow$  PDE applications: resonance expansion for  $e^{-itP(h)/h}u$ , local energy decay for  $e^{it\sqrt{\Delta_X}}u$

# Semiclassical distribution of resonances - Trapped set

**Main idea**: the distribution of resonances in D(E, Ch) and of the corresp. metastable states is guided by the structure of the **classical trapped set** 

$$\underline{K}_{\underline{E}} = \underline{K}_{\underline{E},+} \cap K_{\underline{E},-}, \quad K_{\underline{E},\pm} = \{\rho \in p^{-1}(\underline{E}), \ \Phi^t(\rho) \not\to \infty, \ t \to \mp \infty\}$$

 $K_E$  compact subset of  $p^{-1}(E)$ , invariant through the Hamiltonian flow  $\Phi^t$ .

•  $K_E = \emptyset$ : all  $\operatorname{Im} z_j \leq -Ch \log h^{-1} \Longrightarrow$  no long-living state [MARTINEZ'02].



•  $K_E$  contains an elliptic periodic orbit.  $\Rightarrow$  resonances with  $\text{Im } z = \mathcal{O}(h^{\infty})$  (quasimodes).

 $\# \{ \operatorname{Res}(P(h)) \cap D(E, \gamma h) \} \sim C h^{-n+1}$ , like for a closed system.

[POPOV, VODEV, STEFANOV]

### Semiclassical distribution of resonances - 1 hyperb. orbit

• d = 2,  $K_E = \text{single hyperbolic periodic orbit.}$ 

Resonances form a deformed half-lattice, with  $\operatorname{Im} z_j = -h\lambda(1/2 + n) + \mathcal{O}(h^2)$ . # { $\operatorname{Res}(P(h)) \cap D(E, \gamma h)$ } =  $\mathcal{O}(1)$ .

[IKAWA'85,GÉRARD-SJÖSTRAND'87,GÉRARD'88,...]



# **Chaotic scattering**

#### **Chaotic situation**: $K_E$ a fractal hyperbolic set.

Examples:  $X_0 = \Gamma \setminus \mathbb{H}^{\nvDash}$  hyperbolic surface of infinite volume. 3 convex obstacles in  $\mathbb{R}^d$ [IKAWA'88, GASPARD-RICE'89,...]



Hyperbolicity:  $\forall \rho \in K_E$ ,  $T_{\rho}p^{-1}(E) = H_p(\rho) \oplus E_{\rho}^+ \oplus E_{\rho}^-$  unstable/stable subspaces The unstable Jacobian  $J^+(\rho) = |\det(d\Phi^1_{|E_{\rho}^+})|$  measures the degree of hyperbolicity.

#### Ex: 3 circular obstacles in $\mathbb{R}^2$ .







# Counting long-living resonances: Fractal Weyl upper bound



**Theorem.** •  $P(h) = -\frac{h^2 \Delta_{\mathbb{R}^d}}{2} + V(x)$  [Sjöstrand'90,Sjöstrand-Zworski'07] •  $X = \Gamma \setminus \mathbb{H}^d$  Schottky quotient [Zworski'99,Guillopé-Lin-Zworski'04]

•  $J \ge 3$  convex obstacles (no-eclipse condition) [N-SJÖSTRAND-ZWORSKI'11]

 $\forall \gamma > 0, \exists C_{\gamma}, \qquad \# \{ \operatorname{Res}(P(h)) \cap D(E, \gamma h) \} \le C_{\gamma} \, h^{-\nu+0} \, .$ 

Here  $\nu = \frac{\dim(K_E) - 1}{2}$  (upper Minkowski dimension).

**Main idea**: the long-living metastables "live" in an  $h^{1/2}$ -neighbourhood of  $K_E$ .  $\rightsquigarrow$  count the number of "quantum boxes" (of volume  $h^{d-1}$ ) in this nbhood.

Conjecture: the upper bound is sharp (at least at the level of the power  $\nu$ ): Fractal Weyl law [GUILLOPÉ-ZWORSKI'99, LIN-ZWORKSI'02...]

Nonselfadjoint spectral problem  $\Rightarrow$  lower bounds difficult to obtain.

### A classical criterion for a resonance gap



Hyperbolicity of  $\Phi^t \upharpoonright_{K_E} \Longrightarrow$  a wavepacket will disperse fast through  $e^{-itP(h)/h}$ . On the other hand, possible relocalization through constructive interferences. What criterion for a global decay?

Topological pressure of  $\Phi^t \upharpoonright_{K_E}$ : generalization of the topological entropy. Choose a test function  $f \in C(K_E)$ . The pressure is obtained by summing over Bowen balls  $B(x, \epsilon, T)$  weighted by  $e^{f_T(x)}$ ,  $f_T(x) = \int_0^T f \circ \Phi^t(x) dt$ . Equivalently, sum over weighted T-periodic orbits:

$$\mathcal{P}_E(f) \stackrel{\text{def}}{=} \lim_{T \to \infty} \frac{1}{T} \log \sum_{\gamma: T-1 \le T_{\gamma} \le T} e^{f_T(\gamma)} \qquad (\gamma = \text{ periodic orbits on } K_E)$$

 $f \equiv 0$  leads to the topological entropy.

# "Thin" trapped set and resonance gap (2)



Choose the test function  $f = -s \log J^u$ ,  $s \ge 0$ , to test the hyperbolicity of the trajectories.

 $\rightsquigarrow$  balance between complexity and hyperbolicity of  $\Phi^t \upharpoonright_{K_E}$ :

$$\mathcal{P}_{E}(-s\log J^{u}) \stackrel{\text{def}}{=} \lim_{T \to \infty} \frac{1}{T} \log \sum_{\gamma: T-1 \le T_{\gamma} \le T} J^{u}(\gamma)^{-s}$$

**Theorem.** [IKAWA'88,GASPARD-RICE'89,N-ZWORSKI'09] Suppose the trapped set is such that  $\mathcal{P}_E(-1/2\log J^u) < 0$ . Then, for any  $0 < g < |\mathcal{P}_E(-1/2\log J^u)|$  and h small enough, the strip [E - Ch, E + Ch] - i[0, gh] is free of resonances. **Remark**:  $\mathcal{P}(0) = H_{top}(\Phi \upharpoonright_{K_E}) > 0$ .  $\mathcal{P}(-\log J^u) = -\gamma_{cl} < 0$  (classical escape rate). d = 2:  $\mathcal{P}_E(-1/2\log J^u) < 0 \iff \dim K_E < 2$  ("thin" trapped set).

# Phase space distribution of metastable states

**Theorem.** [BONY-MICHEL'04, KEATING *et al.*'06, N-RUBIN'07, N-ZWORSKI '09] Consider a sequence of metastable states  $(u_h)_{h\to 0}$  associated with  $z_h = E + O(h)$ , normalized by  $||u_h||_{L^2(\Omega)} = 1$  for  $\Omega$  a neighbourhood of  $\pi(K_E)$ . Up to extracting a subsequence, we can assume that a semiclassical measure  $\mu$  is associated with  $(u_h)_{h\to 0}$ :

$$\forall f \in C_c^{\infty}(T^*X), \ \forall \chi \in C_c^{\infty}(X), \qquad \langle \chi u_{h_k}, \operatorname{Op}_h(f) \chi u_{h_k} \rangle \to \int_{T^*X} f(\rho) \, d\mu(\rho) \, .$$

^

Then  $\mu$  is supported on the outgoing set of  $K_E$  (unstable manifold), and there exists  $\gamma \ge 0$  s.t.

$$rac{\mathrm{Im}\, z_{h_k}}{h_k} 
ightarrow -\gamma/2 \qquad ext{and} \qquad \mathcal{L}_{H_p}\, \mu = \gamma \mu \,.$$

 $\mu$  is a Conditionally Invariant Measure for the flow. The proof mimics the proof of invariance of  $\mu$  for closed systems.

Questions:

- which CIM can appear as semiclassical measures?
- is there a form of *quantum ergodicity*?

Partial answers for a *solvable* open quantum baker's map [KEATING*et al.*'08].

### Poincaré section: reduction of the Hamiltonian flow



•  $\Sigma = \bigsqcup_{j=1}^{J} \Sigma_j$  hypersurfaces in  $p^{-1}(E)$  transverse to the flow near  $K_E$  (dim = 2d - 2).  $\rightsquigarrow \Phi^t$  replaced by the Poincaré map  $\kappa : \Sigma \to \Sigma$  and return time  $\tau : \Sigma \to \mathbb{R}^+$ .

• Can one quantize this reduction, namely study P(h) or  $e^{-itP(h)/h}$  through a quantum propagator assoc. with  $\kappa$ , and depending on  $\tau$ )?

### Ex. of reduction: Euclidean obstacle scattering



J convex obstacles on  $\mathbb{R}^d$ ,  $P(h) = -\frac{h^2 \Delta_D}{2}$ . Poisson operator  $H_j(z) : C^{\infty}(\partial O_j) \to C^{\infty}(\mathbb{R}^n \setminus O_j)$ , for each obstacle  $j = 1, \ldots, J$ .

 $\text{Definition:} \quad u = H_j(z)v \quad \text{satisfies} \quad (P(h)-z)u = 0, \quad u \upharpoonright_{\partial O_j} = v, \quad u \text{ outgoing}$ 

 $\rightsquigarrow J \times J$  matrix of boundary operators  $\mathcal{M}_{ij}(z,h) : C^{\infty}(\partial O_j) \to C^{\infty}(\partial O_i)$ :

$$\mathcal{M}_{ij}(z,h)v_j \stackrel{\text{def}}{=} \left(H_j(z)v_j\right) \upharpoonright_{\partial O_i} \quad \text{for } i \neq j, \qquad \mathcal{M}_{jj}(z,h) = 0.$$

FIO assoc.w. the boundary map  $\kappa_{ij}: B^* \partial O_j \to B^* \partial O_i$ .

Reduction: z resonance de  $P(h) \iff z$  pole of  $(I - \mathcal{M}(z, h))^{-1}$ 

#### Monodromy operator for smooth potential scattering

Case  $P(h) = -\frac{h^2 \Delta}{2} + V(x)$ , with  $K_E$  hyperbolic repeller.



**Theorem.** [N-SJÖSTRAND-ZWORSKI'10] Consider a Poincaré section  $\Sigma = \bigsqcup_{j=1}^{J} \Sigma_j \subset p^{-1}(E)$ , assume the reduced trapped set  $\mathcal{K} \stackrel{\text{def}}{=} K_E \cap \Sigma$  doesn't touch  $\partial \Sigma$ . Then one can construct a quantum monodromy operator M(z,h):

- $M(z,h) = (M(z,h)_{ij}) : L^2(\mathbb{R}^{d-1})^J \to L^2(\mathbb{R}^{d-1})^J$  matrix of FIO assoc. w.  $\kappa_{ij}$ . Holomorphic in  $z \in D(E, Ch \log(1/h)), M(z,h) \approx M(E,h) \operatorname{Op}_h(e^{i\frac{z-E}{h}\tau})$
- M(z,h) is microlocally supported near  $K_E \cap \Sigma$ , rank  $\simeq h^{-(d-1)}$ .
- z resonance of  $P(h) \iff$  pole of  $(I M(z, h))^{-1} \iff \det(I M(z, h)) = 0.$

A similar reduction appeared in the physics literature [BOGOMOLNY'92,DORON-SMILANSKY'92,PROSEN'95].

#### Proof of fractal Weyl upper bound from monodromy op.

Aim: prove a fractal Weyl upper bound for the solutions of det(I - M(z, h)) = 0. Trick: M(z, h) is conjugate with  $\tilde{M}(z, h)$  microlocalized in  $h^{1/2}$ -nbhd of  $\mathcal{K}$ . • use an appropriate escape function  $G(x, \xi)$ :

$$M(z) \rightsquigarrow M_G(z) = e^{-\operatorname{Op}_h(G)} M(z) e^{\operatorname{Op}_h(G)} \stackrel{\operatorname{Egorov}}{\approx} M(z) e^{\operatorname{Op}_h(G - G \circ \kappa)^w}$$

We construct  $G(x,\xi)$  s.th.  $G \circ \kappa - G \geq C_1 \gg 1$  outside this  $h^{1/2}$ -nbhd (uses the hyperbolicity of  $K_E$ ).

 $\implies$  symbol $(M_G(z)) \le e^{-C_1} \ll 1$  outside the  $h^{1/2}$ -nbhd.

•  $\rightsquigarrow$  effective monodromy operator  $\tilde{M}(z,h)$  microlocalized in this nbhd, with  $\operatorname{rank}(\tilde{M}(z,h)) \asymp h^{-\nu+0}$ .  $\tilde{M}(z,h)$  a "minimal matrix" encoding the long-living quantum dynamics near energy E. z-holomorphic  $\stackrel{\text{Jensen}}{\rightsquigarrow} \#\{z \in D(E,Ch), \det(1-\tilde{M}(z,h))=0\} \leq C' \operatorname{rank}(\tilde{M})$ .  $\Box$ 

#### Proof of resonance gap from monodromy op.

Strategy: long time iteration in order to bound the spectral radius of M(z,h):

Hyperbolic dispersion estimate [ANANTHARAMAN'06,N-ZWORSKI'09]: for each "path"  $\vec{i}$ ,

$$||M_{\vec{i}}(z)|| \leq h^{-(d-1)/2} J^u_{\kappa,N}(\vec{i})^{-1/2} e^{-\zeta \tau_N(\vec{i})}, \quad \zeta \stackrel{\text{def}}{=} \operatorname{Im} z/h,$$

valid for times  $N \sim C \log(1/h)$ ,  $C \gg 1$ . Triangle  $\leq$  implies

$$\|M(z,h)^N\| \lesssim \sum_{\vec{i} \text{ admis.}} e^{N\epsilon} J^u_{\kappa,N}(\vec{i})^{-1/2} e^{-\zeta\tau_N(\vec{i})} \lesssim \exp\left\{N\left(\mathcal{P}_\kappa(-1/2\log J^u_\kappa - \zeta\tau) + \epsilon\right)\right\}$$

 $\implies r_{sp}(M(z,h)) \leq e^{\mathcal{P}_{\kappa}(-1/2\log J_{\kappa}^{u}-\zeta\tau)+\epsilon}.$ Relation between the topological pressures of  $\kappa \upharpoonright_{\mathcal{K}}$  and  $\Phi^{t} \upharpoonright_{K_{E}}$ :

$$\mathcal{P}_{\Phi}(-1/2\log J^u) < \zeta \iff \mathcal{P}_{\kappa}(-1/2\log J^u_{\kappa} - \zeta\tau) < 0,$$

in which case  $r_{sp}(M(z,h)) < 1 \Longrightarrow \det(I - M(z,h)) \neq 0.$ 

### A toy model: open quantum maps

**Toy model** for Poincaré maps: open chaotic map. Symplectic diffeom  $\kappa : V \mapsto \kappa(V)$ ,  $V \Subset \mathbb{R}^{2(d-1)}$  with chaotic trapped set  $\mathcal{K}$ . Ex: open baker's map (on  $\mathbb{T}^2$ ). (Piecewise) smooth, simple dynamics.



<u>Quantization of  $\kappa$ </u>: family of **subunitary** matrices  $(M(h))_{h\to 0}$  of ranks  $\sim h^{-(d-1)}$ .  $M(h) \approx \text{FIO}$  associated with  $\kappa$ . Open quantum map. (baker's map: very explicit).

# Open quantum (chaotic) map

 $(M(h))_{h\to 0}$  subunitary propagagors assoc.w.  $\kappa$ , of ranks  $\sim h^{-(d-1)}$ . <u>Heuristics</u>:  $M(z,h) \stackrel{\text{def}}{=} M(h)e^{iz/h}$  resembles a quantum monodromy operator. Zeros of  $\det(I - M(z,h))$  give the nonzero spectrum  $\{\lambda_j = e^{-iz_j/h}\}$  of M(h).  $\implies$  long-living spectrum of M(h) inside some annulus  $\{|\lambda| \ge r > 0\}$ . Easy to implement numerically.



Spectra of the quantum open baker's map for increasing values of  $h^{-1}$ .

### Numerical tests of the Fractal Weyl law

Do we have  $\#\{\operatorname{Res}(P(h)) \cap D(E,\gamma h)\} \ge c h^{-\nu}$  for  $\gamma > 0$  large enough?

- Numerics for 3 differents P(h) seem to confirm the fractal Weyl law [LIN'01, LU-SRIDHAR-ZWORSKI'03, GUILLOPÉ-LIN-ZWORSKI'04].
- Easier numerics for open quantum maps hint at a more precise scaling [SCHOMERUS-TWORZYDŁO'04, N-ZWORSKI'05, N-RUBIN'07...]

For an asymmetric open baker, we plot  $\frac{\#\{\lambda_j \in \operatorname{Spec}(M(h)), |\lambda_j| \ge r\}}{h^{-\nu}} \approx F(r)$  for different values of  $h^{-1}$ .



#### Phase space distribution of metastable states



A few long-living metastable states for the open baker's map (Husimi density).

#### Numerical tests of the resonance gap

Spectral radii for two baker's maps (with same topological pressures).

Horizontal lines:  $\mathcal{P}(-1/2\log J^u)$  and  $\mathcal{P}(-\log J^u)/2$ .



# A solvable toy-of-the-toy model

One can quantize the open baker's maps in a nonstandard way (discrete Fourier transform on  $\rightsquigarrow$  Walsh-Fourier transform), s.th. the quantum map M(h) can be analytically diagonalized.

• fractal Weyl upper bound OK. Fractal Weyl law generally OK, but possibility of "accidental" degeneracies of  $\tilde{M}(h)$ , such that

$$\forall r < 1, \quad \#\{\lambda_j \in \operatorname{Spec}(M(h)), \, |\lambda_j| \ge r\} = \mathcal{O}(h^{-\tilde{\nu}}) \quad \text{for some} \quad \tilde{\nu} < \nu.$$

• spectral radius can take values in the range

$$0 \le r_{sp}(M(h)) \le e^{\min(0,\mathcal{P}(-\log J^u/2))}.$$

One can add some *randomness* in the model to ensure fractal Weyl law.

 $\rightsquigarrow$  for a general system, does the fractal Weyl law only hold under some genericity condition?