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Orbit correlations

Example (Sieber & Richter 2001):

Realistic picture:



Orbit correlations

Example (Sieber & Richter 2001):

encounters
= regions where parts of an orbit come close to each other (up to
time reversal)
can switch connections to get different (but very similar) orbits
present example requires time reversal invariance



Underlying mechanism

Phase space directions in hyperbolic systems:
stable direction:
deviations shrink asymptotically like e−λt

(λ=Lyapunov exponent)
unstable direction:
deviations grow for t →∞ and shrink for t → −∞ like eλt

⇒ sensitive dependence on initial conditions
Construction of partner orbit:
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Generalisation

orbits can differ in arbitrarily many encounters where arbitrarily
many stretches come close

for time reversal invariant systems: stretches may be almost
mutually time reversed

Periodic orbits in chaotic systems come in bunches.
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Spectral correlations

2-point correlation function R2(x):
how many pairs of levels with distance x?

here: spectral form factor= Fourier transform of R2(x)− 1

d(E) =
∑

j

δ(E − Ej) = d̄(E) + dosc(E)

K (τ) =
1
d̄2

〈∫ ∞
−∞

dosc

(
E +

x
2d̄

)
dosc

(
E − x

2d̄

)
e2πixτdx

〉



Predictions from Random Matrix Theory

no symmetries: H Hermitian, Gaussian Unitary Ensemble

K (τ) =

{
τ (τ < 1)

1 (τ > 1)

systems with time reversal invariance:
H real symmetric, Gaussian Orthogonal Ensemble

K (τ)=


2τ − τ ln(1 + 2τ)

= 2τ−2τ2+2τ3− 8
3τ

4+...

(τ < 1)

2− ln 2τ+1
2τ−1 (τ > 1)

τ > 1 terms connected to oscillatory terms in

R2(x) = Re
∑

n

(cn + dne2πix )
1
xn



Predictions from Random Matrix Theory
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systems with time reversal invariance:
H real symmetric, Gaussian Orthogonal Ensemble
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Bohigas, Giannoni, Schmit: Spectral statistics of individual (generic)
chaotic systems are faithful to these predictions for large energies.

Why?



Semiclassical approach



Weyl term

average level density approximated by

d̄(E) ∼ Ω(E)

(2π~)f

Ω(E) = volume of energy shell
f = #degrees of freedom (e.g. 2)



Gutzwiller trace formula

dosc(E) ∼ 1
π~

Re
∑

periodic orbits γ
AγeiSγ/~

here:

Sγ = classical action
Aγ = stability amplitude

(incorporates factore−iµγ π
2 , µγ ∈ N)

Valid if actions� ~, i.e., for large energies.



Spectral form factor



Spectral form factor

K (τ) ∼ 1
TH

∑
γ,γ′

〈
AγA∗γ′e

i(Sγ−Sγ′ )/~δ

(
τTH −

Tγ + T ′γ
2

)〉

relevant periods of order

Heisenberg timeTH = 2π~d̄ ∼ Ω

2π~
→∞

Need pairs of orbits with small action difference!



Diagonal approximation

(Berry, Hannay/Ozorio de Almeida)

for systems without time reversal invariance: take γ′ = γ

Kdiag(τ) =
1

TH

〈∑
γ

|Aγ |2δ(τTH − Tγ)

〉
∼ τ

sum over orbits evaluated using ergodicity

time reversal invariant systems: γ′ = γ or time reversed of γ

Kdiag(τ) = 2τ



Sieber/Richter pairs

Decompose separation between encounter stretches into unstable
component u and stable component s. These determine:

action difference
Sγ − Sγ′ ∼ us

duration of the encounter (defined by |s|, |u| < c)

tenc(u, s) ∼ 1
λ

ln
c
|u|

+
1
λ

ln
c
|s|

=
1
λ

ln
c2

|us|
relevant encounters of order

TEhrenfest =
1
λ

ln
c2

~
� THeisenberg =

Ω

2π~

(Spehner 2003; Turek/Richter 2003; Heusler, S.M., Braun, Haake 2003)



Sieber/Richter pairs

probability of encounters with given separations

wT (u, s) ∼ T (T−2tenc(u, s))

Ωtenc(u, s)

determined using
ergodicity
orbits must leave encounter before reentering

⇒ Contribution to form factor

KSR(τ) ∼

〈∑
γ

|Aγ |2δ(τTH − Tγ)

∫
du
∫

ds wτTH (u, s)eius/~

〉
= −2τ2

agrees with GOE ,



τ3

orbit pairs in systems without time reversal invariance

⇒ contributions cancel, agreement with GUE

additional pairs requiring time reversal invariance

⇒ 2τ3, agreement with GOE

(Heusler, S.M., Braun, Haake 2003)



All orders in τ

need arbitrarily many encounters with arbitrarily many stretches

contribution of each “diagram” proportional to

τ#stretches−#encounters+1

sum over infinitely many diagrams!

Result:

K (τ) =

{
τ without reversal invariance
2τ − τ ln(1 + 2τ) with reversal invariance

(S.M., Heusler, Braun, Haake, Altland, PRL 2004 + PRE 2005)



τ > 1



τ > 1

Need improved semiclassical approximation (Berry, Keating 1990)

d(E) = − 1
2π

Im
∂

∂E ′
det(E − H)

det(E ′ − H)

∣∣
E ′=E

det(E − H) = e−iπd̄E︸ ︷︷ ︸× ∑
Γ AΓeiSΓ(E)/~︸ ︷︷ ︸

sum over sets of classical periodic
orbits shorter than TH/2

+ c.c.

This incorporates more QM (det(E − H) ∈ R).
Now orbits may decompose:

⇒ Full agreement with random matrix theory
Heusler, S.M., Altland, Braun, Haake, PRL 06; Keating, S.M., Proc. R. Soc. 07; S.M., Heusler, Altland, Braun, Haake, NJP 09



Conclusions

periodic orbits of chaotic systems come in bunches

bunching explains universal spectral statistics

for τ > 1 need improved semiclassical approximation

examples for further applications:

symmetries: geometric, many particle, arithmetic
mesoscopic quantum transport

see also S.M. & Martin Sieber, Quantum Chaos and Quantum Graphs,
The Oxford Handbook of Random Matrix Theory (2011)



Appendix



All orders in τ

sum over infinitely many diagrams!
describe diagrams by permutations,
derive recursion between coefficients in K (τ)

similarity to Feynman diagrams:

establish 1-to-1 relation to diagrams in RMT



Conditions for universality

existence of bunches requires hyperbolicity

universal contribution obtained using

ergodicity, mixing

semiclassical limit

no other orbit correlations
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