Spectral vs periodic orbit correlations

joint work with:
Alexander Altland (Cologne),
Petr Braun \& Fritz Haake (Duisburg-Essen),
Stefan Heusler (Münster),
Jon Keating (Bristol)

EMS-IAMP Summer school on Quantum Chaos

Sebastian Müller

Orbit correlations

Orbit correlations

Example (Sieber \& Richter 2001):

Realistic picture:

Orbit correlations

Example (Sieber \& Richter 2001):

- encounters
= regions where parts of an orbit come close to each other (up to time reversal)
- can switch connections to get different (but very similar) orbits
- present example requires time reversal invariance

Underlying mechanism

Phase space directions in hyperbolic systems:

- stable direction: deviations shrink asymptotically like $e^{-\lambda t}$ ($\lambda=$ Lyapunov exponent)
- unstable direction:
deviations grow for $t \rightarrow \infty$ and shrink for $t \rightarrow-\infty$ like $e^{\lambda t}$ \Rightarrow sensitive dependence on initial conditions
Construction of partner orbit:

Underlying mechanism

Phase space directions in hyperbolic systems:

- stable direction: deviations shrink asymptotically like $e^{-\lambda t}$ ($\lambda=$ Lyapunov exponent)
- unstable direction:
deviations grow for $t \rightarrow \infty$ and shrink for $t \rightarrow-\infty$ like $e^{\lambda t}$ \Rightarrow sensitive dependence on initial conditions
Construction of partner orbit:

Underlying mechanism

Phase space directions in hyperbolic systems:

- stable direction: deviations shrink asymptotically like $e^{-\lambda t}$ ($\lambda=$ Lyapunov exponent)
- unstable direction:
deviations grow for $t \rightarrow \infty$ and shrink for $t \rightarrow-\infty$ like $e^{\lambda t}$ \Rightarrow sensitive dependence on initial conditions
Construction of partner orbit:
deviation (mostly) along stable direction

deviation (mostly) along unstable direction

Generalisation

- orbits can differ in arbitrarily many encounters where arbitrarily many stretches come close

- for time reversal invariant systems: stretches may be almost mutually time reversed

Periodic orbits in chaotic systems come in bunches.

Spectral correlations

Spectral correlations

2-point correlation function $R_{2}(x)$: how many pairs of levels with distance x ?
here: spectral form factor= Fourier transform of $R_{2}(x)-1$

$$
\begin{aligned}
d(E) & =\sum_{j} \delta\left(E-E_{j}\right)=\bar{d}(E)+d_{\mathrm{osc}}(E) \\
K(\tau) & =\frac{1}{\bar{d}^{2}}\left\langle\int_{-\infty}^{\infty} d_{\mathrm{osc}}\left(E+\frac{x}{2 \bar{d}}\right) d_{\mathrm{osc}}\left(E-\frac{x}{2 \bar{d}}\right) e^{2 \pi i x \tau} d x\right\rangle
\end{aligned}
$$

Predictions from Random Matrix Theory

- no symmetries: H Hermitian, Gaussian Unitary Ensemble

$$
K(\tau)= \begin{cases}\tau & (\tau<1) \\ 1 & (\tau>1)\end{cases}
$$

- systems with time reversal invariance:

H real symmetric, Gaussian Orthogonal Ensemble

$$
K(\tau)=\left\{\begin{array}{l}
2 \tau-\tau \ln (1+2 \tau) \\
=2 \tau-2 \tau^{2}+2 \tau^{3}-\frac{8}{3} \tau^{4}+\ldots \\
\quad(\tau<1) \\
2-\ln \frac{2 \tau+1}{2 \tau-1} \quad(\tau>1)
\end{array}\right.
$$

$\tau>1$ terms connected to oscillatory terms in

$$
R_{2}(x)=\operatorname{Re} \sum_{n}\left(c_{n}+d_{n} e^{2 \pi i x}\right) \frac{1}{x^{n}}
$$

Predictions from Random Matrix Theory

- no symmetries: H Hermitian, Gaussian Unitary Ensemble $K(\tau)$

$$
K(\tau)= \begin{cases}\tau & (\tau<1) \\ 1 & (\tau>1)\end{cases}
$$

- systems with time reversal invariance:

H real symmetric, Gaussian Orthogonal Ensemble

$$
K(\tau)=\left\{\begin{array}{l}
2 \tau-\tau \ln (1+2 \tau) \\
=2 \tau-2 \tau^{2}+2 \tau^{3}-\frac{8}{3} \tau^{4}+\ldots \\
\quad(\tau<1) \\
2-\ln \frac{2 \tau+1}{2 \tau-1} \quad(\tau>1)
\end{array}\right.
$$

Bohigas, Giannoni, Schmit: Spectral statistics of individual (generic) chaotic systems are faithful to these predictions for large energies.

Semiclassical approach

Weyl term

average level density approximated by

$$
\bar{d}(E) \sim \frac{\Omega(E)}{(2 \pi \hbar)^{f}}
$$

$\Omega(E)=$ volume of energy shell
$f=$ \#degrees of freedom (e.g. 2)

Gutzwiller trace formula

$$
d_{\mathrm{osc}}(E) \sim \frac{1}{\pi \hbar} \operatorname{Re} \sum_{\text {periodic orbits } \gamma} A_{\gamma} e^{i S_{\gamma} / \hbar}
$$

here:
$S_{\gamma}=$ classical action
$A_{\gamma}=$ stability amplitude
(incorporates factore ${ }^{-i \mu_{\gamma} \frac{\pi}{2}}, \mu_{\gamma} \in \mathbb{N}$)
Valid if actions $\gg \hbar$, i.e., for large energies.

Spectral form factor

Spectral form factor

$$
K(\tau) \sim \frac{1}{T_{H}} \sum_{\gamma, \gamma^{\prime}}\left\langle A_{\gamma} A_{\gamma^{\prime}}^{*} e^{i\left(S_{\gamma}-S_{\gamma^{\prime}}\right) / \hbar} \delta\left(\tau T_{H}-\frac{T_{\gamma}+T_{\gamma}^{\prime}}{2}\right)\right\rangle
$$

- relevant periods of order

$$
\text { Heisenberg time } T_{H}=2 \pi \hbar \bar{d} \sim \frac{\Omega}{2 \pi \hbar} \rightarrow \infty
$$

- Need pairs of orbits with small action difference!

Diagonal approximation

(Berry, Hannay/Ozorio de Almeida)

- for systems without time reversal invariance: take $\gamma^{\prime}=\gamma$

$$
\left.K_{\text {diag }}(\tau)=\left.\frac{1}{T_{H}}\left\langle\sum_{\gamma}\right| A_{\gamma}\right|^{2} \delta\left(\tau T_{H}-T_{\gamma}\right)\right\rangle \sim \tau
$$

sum over orbits evaluated using ergodicity

- time reversal invariant systems: $\gamma^{\prime}=\gamma$ or time reversed of γ

$$
K_{\text {diag }}(\tau)=2 \tau
$$

Sieber/Richter pairs

Decompose separation between encounter stretches into unstable component u and stable component s. These determine:

- action difference

$$
S_{\gamma}-S_{\gamma^{\prime}} \sim u s
$$

- duration of the encounter (defined by $|s|,|u|<c$)

$$
t_{\text {enc }}(u, s) \sim \frac{1}{\lambda} \ln \frac{c}{|u|}+\frac{1}{\lambda} \ln \frac{c}{|s|}=\frac{1}{\lambda} \ln \frac{c^{2}}{|u s|}
$$

relevant encounters of order

$$
T_{\text {Ehrenfest }}=\frac{1}{\lambda} \ln \frac{c^{2}}{\hbar} \ll T_{\text {Heisenberg }}=\frac{\Omega}{2 \pi \hbar}
$$

(Spehner 2003; Turek/Richter 2003; Heusler, S.M., Braun, Haake 2003)

Sieber/Richter pairs

- probability of encounters with given separations

$$
w_{T}(u, s) \sim \frac{T\left(T-2 t_{\mathrm{enc}}(u, s)\right)}{\Omega t_{\mathrm{enc}}(u, s)}
$$

determined using

- ergodicity
- orbits must leave encounter before reentering

\Rightarrow Contribution to form factor

$$
\left.\left.K_{\mathrm{SR}}(\tau) \sim\left\langle\sum_{\gamma}\right| A_{\gamma}\right|^{2} \delta\left(\tau T_{H}-T_{\gamma}\right) \int d u \int d s w_{\tau} T_{H}(u, s) e^{i u s / \hbar}\right\rangle=-2 \tau^{2}
$$

agrees with GOE ©

- orbit pairs in systems without time reversal invariance

\Rightarrow contributions cancel, agreement with GUE
- additional pairs requiring time reversal invariance

$\Rightarrow 2 \tau^{3}$, agreement with GOE

All orders in τ

need arbitrarily many encounters with arbitrarily many stretches

contribution of each "diagram" proportional to

$$
\tau \text { \#stretches-\#encounters+1 }
$$

sum over infinitely many diagrams!
Result:

$$
K(\tau)= \begin{cases}\tau & \text { without reversal invariance } \\ 2 \tau-\tau \ln (1+2 \tau) & \text { with reversal invariance }\end{cases}
$$

(S.M., Heusler, Braun, Haake, Altland, PRL 2004 + PRE 2005)
$\tau>1$

Need improved semiclassical approximation (Berry, Keating 1990)

$$
\begin{aligned}
d(E) & =-\left.\frac{1}{2 \pi} \operatorname{Im} \frac{\partial}{\partial E^{\prime}} \frac{\operatorname{det}(E-H)}{\operatorname{det}\left(E^{\prime}-H\right)}\right|_{E^{\prime}=E} \\
\operatorname{det}(E-H) & =e^{-i \pi \bar{d} E} \times \quad \sum_{\Gamma} A_{\Gamma} e^{i S_{\Gamma}(E) / \hbar}+\text { c.c. }
\end{aligned}
$$

sum over sets of classical periodic orbits shorter than $T_{H} / 2$

This incorporates more QM $(\operatorname{det}(E-H) \in \mathbb{R})$. Now orbits may decompose:

\Rightarrow Full agreement with random matrix theory
Heusler, S.M., Altland, Braun, Haake, PRL 06; Keating, S.M., Proc. R. Soc. 07; S.M., Heusler, Altland, Braun, Haake, NJP 09

Conclusions

- periodic orbits of chaotic systems come in bunches
- bunching explains universal spectral statistics
- for $\tau>1$ need improved semiclassical approximation
- examples for further applications:
- symmetries: geometric, many particle, arithmetic
- mesoscopic quantum transport
see also S.M. \& Martin Sieber, Quantum Chaos and Quantum Graphs, The Oxford Handbook of Random Matrix Theory (2011)

Appendix

All orders in τ

sum over infinitely many diagrams!

- describe diagrams by permutations, derive recursion between coefficients in $K(\tau)$
- similarity to Feynman diagrams:

establish 1-to-1 relation to diagrams in RMT

Conditions for universality

- existence of bunches requires hyperbolicity
- universal contribution obtained using
- ergodicity, mixing
- semiclassical limit
- no other orbit correlations

