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Lecture 1



Introduction

Quantum chaos is about the behaviour of eigenfunctions and
eigenvalues of elliptic operators (such as the Laplacian on a
compact Riemannian manifold) in the limit as the eigenvalue tends
to infinity.



Figure: An eigenfunction on the Barnett stadium.



Figure: Eigenfunctions on the stadium; the second last is a ‘bouncing ball
mode’ and is not equidistributed.



We will be interested in answers to the following sorts of questions:

• What is the typical behaviour of eigenfunctions at very high
energies (eigenvalues)?
• Do they spread out evenly (equidistribute) over the manifold, or
do some eigenfunctions concentrate in some regions?
• How are they related to classical dynamical properties of the
Riemannian manifold, such as complete integrability, ergodicity, or
chaos?



Examples to build intuition.

• On some special domains, such as spheres, tori, etc, we can
write down explicit eigenfunctions in terms of special functions.
However, such domains are completely integrable and give little or
no insight into the ergodic or chaotic case.
• On hyperbolic manifolds there are methods using group theory
or (in arithmetic settings) number theory.
• There are numerical studies of simple domains such as
piecewise analytic plane domains.
• Toy models such as the ‘cat map’.



Semiclassical pseudodifferential operators

Two main reasons to introduce pseudodifferential operators:
• a very useful extension of the class of differential operators —
big enough to include the inverses of positive elliptic operators.
• useful as a localization tool (this will hopefully become clearer
soon).



Semiclassical differential operators look like the following. Let h > 0
be a small parameter; we will be interested in the limit h ↓ 0. Given
a differential operator

P =
∑
α

aα(x)Dα
x , Di =

(
− i

∂

∂xi

)
,

α = (α1, . . . , αn) |α| = α1 + · · ·+ αn, Dα
x =

n∏
i=1

∂αi

∂xαi
i
,

its semiclassical version Ph is obtained by including a factor of h for
every differentiation:

Ph =
∑
α

aα(x)(hDx)α =
∑
α

aα(x)h|α|Dα
x .



This is motivated by the form of the time-dependent Schrödinger
equation in physics,

ih
∂ψ

∂t
=

h2

2m
∆ψ + V (x)ψ, ψ = ψ(x , t), ∆ = −

∑
j

∂2

∂x2
j

We can write a semiclassical differential operator, Ph say on Rn,
using the Fourier transform as follows:

(Phf )(x) = (2π)−n
∫

R2n
ei(x−y)·ξ

∑
aα(x)(hξ)αf (y) dy dξ

= (2πh)−n
∫

R2n
ei(x−y)·ξ/h

∑
aα(x)ξαf (y) dy dξ.



The symbol of this differential operator, written σ(Ph), is∑
aα(x)ξα, a polynomial in ξ with smooth coefficients.

• If you compose two semiclassical differential operators Ph, Qh,
then

σ(Ph ◦Qh) = σ(Ph)σ(Qh) + O(h).

• Idea leading to pseudo differential operators: given Ph, look for
an operator Qh so that the product of the symbols of Ph and Qh is 1,
which is the symbol of the identity operator. Then Qh would be an
inverse of Ph, up to an O(h) error, hopefully negligible as h → 0.



The idea of pseudodifferential operators is to allow the symbol to
range over a larger class of functions. We define the class of
semiclassical symbols of order k , Sk ,0(R2n), to be those smooth
functions a(x , ξ,h), depending parametrically on h ≥ 0, satisfying∣∣∣∂αx ∂βξ a(x , ξ,h)

∣∣∣ ≤ Cα,β〈ξ〉k−|β|. (1)

• Here, k can be any real number.
• Note that the estimate in (1) is uniform as h → 0.
• The gain in growth through differentiation is important to ensure
invariance of Sk ,m(R2n) w.r.t. coordinate changes (see next lecture).

More generally we define “symbols of semiclassical order m and
differential order k ” to be symbols of the form h−ma, where
a ∈ Sk ,0(R2n). We will write this class Sk ,m(R2n). Notice that the
symbols get ‘more singular’ as either k or m increases.



Corresponding to each semiclassical symbol a ∈ Sk ,m(R2n) is a
semiclassical pseudodifferential operator, (really a family of
operators parametrized by h > 0), with Schwartz kernel

Oph(a)(x , y) = (2πh)−n
∫

Rn
ei(x−y)·ξ/ha(x , ξ,h) dξ. (2)

That is, Oph(a) (also denoted by a(x ,hD)) acts on a function f ∈ S

according to

(
Oph(a)f

)
(x) = (2πh)−n

∫
R2n

ei(x−y)·ξ/ha(x , ξ,h)f (y) dy dξ. (3)

This is the “standard quantization”. There is also the more
symmetric Weyl quantization

Opw
h (a)(x , y) = (2πh)−n

∫
Rn

ei(x−y)·ξ/ha(
x + y

2
, ξ,h) dξ. (4)

• This makes sense as a Lebesgue integral provided that the
differential order of a is < −n.



• If the differential order is larger, then it is defined as follows: we
choose M > 0 so that a(1 + |ξ|2)−M has order ≤ −n, and then we
define(

Oph(a)f
)
(x) =

(2πh)−n
∫

R2n
ei(x−y)·ξ/ha(x , ξ,h)(1+|ξ|2)−M

(
(1+h2∆)M f (y)

)
dy dξ

where ∆ =
∑

i D2
i is the (positive) Laplacian.

The class of pseudo differential operators with symbols in the class
Sk ,m(R2n) is denoted Ψk ,m

h (Rn) (this is independent of quantization).



Basic properties:

• The Schwartz kernel of Oph(a) is smooth and O(h∞) away from
the diagonal. On the diagonal, the kernel is not smooth (except for
operators of differential order −∞).
• Oph(a) is a differential operator iff it is supported on the diagonal.
• If a is real, then Opw

h (a) is formally self-adjoint.



Example: consider a frequency cutoff. Let η : Rn → R be smooth,
with η(ξ) = 1 for |ξ| ≤ 1, η(ξ) = 0 for |ξ| ≥ 2. Then the operator

f (x) 7→ F−1η(ξ/R)(Ff )

cuts off f to frequencies ≤ 2R. (Here F is the Fourier transform.)
Let h = 1/R. We can write the Schwartz kernel of the operator as

(2π)−n
∫

Rn
ei(x−y)·ξ̃η(

ξ̃

R
) d ξ̃

= (2πh)−n
∫

Rn
ei(x−y)·ξ/hη(ξ) dξ, ξ = hξ̃

which is manifestly a semiclassical pseudo differential operator of
semiclassical order 0 and differential order −∞. We see from this
example that the semiclassical frequency ξ represents ‘true’
frequency ξ/h, which tends to infinity as h → 0. For this reason the
semiclassical calculus is the perfect tool for investigating high
frequency phenomena, such as quantum chaos.



Some properties of pseudo differential operators:
• Pseudodifferential operators map Schwartz functions to
Schwartz functions.
• The class of pseudo differential operators forms an algebra:

Ψk ,m
h (Rn) ◦Ψk ′,m′

h (Rn) ⊂ Ψk+k ′,m+m′

h (Rn).

Moreover, there is an asymptotic formula for the symbol of the
product (see next page).
• Pseudos of order (0,0) are bounded on L2(Rn), uniformly in h.
Moreover, if |a(x , ξ,h)| ≤ C, then

‖Oph(a)‖L2→L2 ≤ C + O(h). (5)

• Elliptic pseudos are invertible modulo Ψ−∞,−∞
h (Rn) (a symbol

a ∈ Sk ,0(R2n) is elliptic if |a(x , ξ)| ≥ C〈ξ〉k ). In fact, smooth
symbolic functions of elliptic pseudos are also pseudodifferential.



The asymptotic formula for the symbol of a composition of PDOs is
as follows:

σw (AB)(x , ξ,h) = eihσ(Dx ,Dξ;Dy ,Dη)/2σw (A)(x , ξ,h)σw (B)(y , η,h)
∣∣∣
x=y ,ξ=η

=
N−1∑
j=0

(
ihσ(Dx ,Dξ; Dy ,Dη)

)j

2j j!
σw (A)(x , ξ,h)σw (B)(y , η,h)

∣∣∣
x=y ,ξ=η

modulo Sk+k ′−N,m+m′−N(R2n),

σ(Dx ,Dξ; Dy ,Dη) = Dy · Dξ − Dx · Dη.
(6)

There are similar formulae for changing quantizations, and for the
adjoint of a pseudo. They are proved using the stationary phase
lemma (see section on FIOs).



Next we define the Bargmann transform or FBI transform to
introduce the idea that pseudodifferential operators ‘localize in
phase space’. The Bargmann transform of a function f ∈ L2(Rn) is
a function Whf in R2n, defined by

Whf (x , ξ) = 2−n/2(πh)−3n/4
∫

Rn
e(i(x−y)·ξ/h−|x−y |2/2h)f (y) dy

The kernel first localizes the function in a
√

h neighbourhood
around x , then takes the semiclassical Fourier transform at the
(h-scaled) frequency ξ. Heuristically, the Husimi density
|Whf (x , ξ)|2 measures the ‘amount’ of semiclassical frequency ξ
present in the frequency decomposition of f near x .
Notice that Whf (x , ξ) is the L2 scalar product between f and the
Gaussian coherent state ψx ,ξ.

Theorem
If f ∈ L2(Rn) and a ∈ S0,0(R2n), then

Wh

(
Oph(a)f )

)
(x , ξ) = a ·Whf + OL2(h). (7)



This result allows us to interpret Oph(a) as a localising operator.
That is, if either Whf or a is (esssentially) supported on a small
open set U, then Wh(Oph(a)f ) will also be (essentially) supported
on U (up to a remainder OL2(h)).
• In the next lecture, we will introduce the related notion of
semiclassical measure, using pseudodifferential operators directly.
It is based on the intuition from (7) that a pseudodifferential operator
‘localizes a function in phase space’ to the support of its symbol.
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Pseudodifferential operators on manifolds

Our classes of pseudodifferential operators are coordinate
invariant: if A ∈ Ψk ,m(Rn), say with kernel supported in U × U, and
if κ : U → V is a diffeomorphism from the open set U to the open
set V , then (κ−1)∗ ◦ A ◦ κ∗ ∈ Ψk ,m(Rn). It follows that
pseudodifferential operators can be defined on manifolds.

Definition
Let M be a closed manifold (i.e. compact, no boundary). We say a
linear operator A from C∞(M) to C∞(M), depending on a
parameter h > 0, is a pseudodifferential operator in Ψk ,m(M) if
• its Schwartz kernel is C∞ on M ×M away from the diagonal,
such that its Ck -norm on any set K1 × K2, where Ki are disjoint
closed sets in M, is O(h∞);
• for each m ∈ M there are local coordinates x defined in a
neighbourhood U of m and a smooth function φ supported in U with
φ(m) 6= 0, such that φAφ is a pseudodifferential operator on Rn

x of
order (k ,m).



The symbol of a PDO on a manifold is no longer canonically
well-defined. However, the symbol of A ∈ Ψk ,m(M) is well-defined
modulo symbols of order (k − 1,m − 1); the representative of the
symbol in the quotient space Sm,k/Sk−1,m−1 is called the principal
symbol, denoted σpr (A).

Also, the standard or Weyl quantizations are no longer canonically
defined. One has to specify an open cover by coordinate charts Ui ,
a partition of unity φi subordinate to this open cover, etc; then one
can define a Weyl quantization a 7→ Opw

h (a) depending on these
choices. The principal symbol of Opw

h (a) is independent of these
choices.



A very important aspect of pseudodifferential equations on
manifolds is that the symbol naturally takes values on the
cotangent bundle. To see why this should be true, consider a
differential operator of order 1; that is, a vector field, or a section of
the tangent bundle. Any point in the tangent bundle TmM may be
viewed as a linear function on the cotangent space T ∗

mM. By taking
products of such functions, we see that a differential operator of
degree k on M determines a polynomial of degree k on each fibre
of the cotangent space, modulo polynomials of degree k − 1. We
write Sk ,m(T ∗M) for symbols of order (k ,m) on T ∗M.

Example: if (M,g) is a Riemannian manifold, and ∆ = ∆g is the
Laplacian associated to g, then the principal symbol of h2∆g is |ξ|2g ,
the squared norm on the cotangent bundle determined by g
(actually its dual metric on T ∗M).



The importance of this is that the cotangent bundle is, in a
canonical way, a symplectic manifold. The symplectic form plays a
key role in the study of pseudodifferential operators, especially in
the relationship between classical and quantum dynamics.
One way in which symplectic geometry shows up can be seen from
(6); from this we see that if A ∈ Ψk ,m

h (Rn), B ∈ Ψk ′,m′

h (Rn) then
[A,B] ∈ Ψk+k ′−1,m+m′−1

h (Rn) and

σpr
( i

h
[A,B]

)
= {σpr (A), σpr (B)} = Hσpr (A)(σpr (B)) (8)

where {·, ·} denotes the Poisson bracket, and Ha the Hamiltonian
vector field associated with the function a.

• Therefore, the Hamilton flow of the Hamiltonian |ξ|2g , a.k.a.
geodesic flow, will naturally arise in the study of the semiclasical
Laplacian on Riemannian manifolds.



Local Weyl Law

Quantum chaos aims at studying the behaviour of individual
eigenfunctions. But before we do this it is useful to have some
results about average behaviour of eigenfunctions. In particular an
important result for us is the local Weyl law (LWL). Our setting is
now that (M,g) is a closed Riemannian manifold, and uj = uhj are
the normalized eigenfunctions of the Laplacian ∆, i.e. satisfying
(h2

j ∆− 1)uj = 0. We start with the following result:

Lemma
Suppose that Ah is a PDO of order (k ,0) where k < −n. Then Ah is
trace class, and

tr Ah = (2πh)−n
∫

T∗M
σpr (A)(x , ξ) dx dξ + O(h1−n), h → 0.

See for example Dimassi-Sjöstrand.



Next, using this we show that we have an asymptotic formula for the
sum of expectation values 〈Ahj uj ,uj〉. Let χ(t) be a smooth function
equal to 1 for t ≤ 1 and 0 for t ≥ 2. Then we have

Theorem (Local Weyl Law)
Let Ah be a semiclassical pseudo of semiclassical order 0. Then

∞∑
j=1

〈Ahj uj ,uj〉χ
( h

hj

)
= (2πh)−n

∫
S∗M

σpr (A)

∫ ∞

0
tn−1χ(t) dt +O(h1−n)

(9)
and

lim
j→∞

N(h)−1
∑
hj≥h

〈Ahj uj ,uj〉 = |S∗M|−1
∫

S∗M
σpr (A) (10)

where N(h) is the number of j such that hj ≥ h (eigenvalue counting
function).



Proof: we only prove (9); (10) follows from this by taking a
sequence of χ approximating the characteristic function of [0,1].
We first claim that the result essentially only dependent of the
symbol of Ah inside {|ξ|g ≤ 2}. This follows from the proof of the
support theorem for semiclassical measures, below.
Next, by density of polynomials in continuous functions on
{|ξ|g ≤ 2}, it suffices to prove this for polynomial symbols, i.e. for
differential operators Ah.
By linearity it suffices to treat monomials. So suppose that
Qh = a(x)(hDx)α is a monomial, with |α| = k . Then with
χ̃(t2) = χ(t), we have〈

Qhj uj ,uj
〉
χ
( h

hj

)
=
( h

hj

)−k〈Qhuj , χ̃(h2∆)uj
〉

=
〈
(h2∆)−k/2Qhuj , χ̃(h2∆)uj

〉
.

So
∞∑

j=1

〈
Qhj uj ,uj

〉
χ
( h

hj

)
= tr χ̃(h2∆)(h2∆)−k/2Qh.



Using our theorem on traces this is

(2πh)−n
∫

T∗M
|ξ|−k

g q(x , ξ)χ(|ξ|g) dx dξ + O(h1−n)

and since q is homogeneous of degree k , this is equal to

(2πh)−n
∫

S∗M
q(x , ξ) ·

∫ ∞

0
tn−1χ(t) dt + O(h1−n).

• Note that (9) implies that N(h) admits the asymptotics

N(h) ∼ (2πh)−n|B∗M| (Weyl Law).

Further work provides an error estimate O(h1−n). This shows that
the eigenvalues λj = h−1

j of
√

∆ are quite evenly distributed in
intervals [λ, λ+ C] for large enough C. The uncertainty principle
suggests that going beyond this point is rather difficult, and
drastically depends on the characteristics of the geodesic flow.



Semiclassical measures

From now on M always denotes a closed manifold. We can use
pseudodifferential operators on M to discuss the distribution of
functions on M ‘in phase space’. (Recall the Bargmann transform.)
Consider a sequence of functions uhj ∈ L2(M), defined for at least a
sequence of hj ↓ 0. We shall assume that uj = uhj is normalized:
‖uj‖L2(M) = 1. The usual example is that uj is a solution of

(h2
j ∆− 1)uh = 0, i.e. u is an eigenfunction with eigenvalue h−2

j .

From this sequence we can produce a measure on T ∗M as follows
(following Zworski’s book):
• We first choose a sequence of smooth functions al ∈ C∞

c (T ∗M),
dense in the Banach space C0(T ∗M).
• We quantize these to semiclassical PDOs Al ∈ Ψ−∞,0

h (M).



• We observe that for each fixed l , the sequence 〈Al(hj)uj ,uj〉 is
uniformly bounded in j (using uniform boundedness of Ψ0,0

h (M) on
L2(M)). Therefore, we can extract a subsequence h1

j such that

〈A1(h1
j )u(h1

j ),u(h1
j )〉 → α1.

• Iteratively, we select a subsequence hl
j of hl−1

j such that〈
Al(hl

j )u(hl
j ),u(hl

j )
〉
→ αl .

Then using the diagonal subsequence hj
j , we find that〈

Al(h
j
j )u(hj

j ),u(hj
j )
〉
→ αl for all l .

Now we define a map Ψ : C0(T ∗M) → C by

Ψ(al) = αl .



Notice that Ψ is uniformly continuous; in fact,∣∣∣Ψ(al)−Ψ(am)
∣∣∣ ≤ ‖al − am‖L∞ ,

using (5). It follows that it extends to a continuous function on
C0(T ∗M), which is easily checked to be linear. Consequently, by
the Riesz Representation theorem, Ψ is given by a Borel measure µ
on T ∗M:

lim
j→∞

〈
Al(h

j
j )u(hj

j ),u(hj
j )
〉

= µ(al).

The measure µ is called a semiclassical measure associated to
the sequence of functions u(hj

j ). Our argument shows that there
exists a semiclassical measure for every sequence uj of
L2-normalized functions; be aware that it is only rarely unique.



• In effect, the semiclassical PDO is acting as a localizer in phase
space (depending on the support of the symbol).
• For an arbitrary sequence uj , the measure µ could be trivial, or
have mass < 1. (escape of mass to infinity)
• Assume µ(T ∗M) = 1. Replacing Oph(a) by multiplication
operators, we see that if a subsequence of functions uh is
associated to the semiclassical measure µ, then the spatial
probability measure

|uh|2(x) dx → π∗µ in the weak-∗ topology of measures , (11)

where π : T ∗M → M is the natural projection.



Examples:
• uh(x) = (πh)−n/4e−|x |

2/2h is associated to a unique semiclassical
measure which is the delta function δ(x)δ(ξ).
• Consider eigenfunctions on the flat torus S1

2π × S1
2π. These take

the form (2π)−1eix ·k , where k = (k1, k2) is a wave vector with
integer entries. Given k 6= 0 we write k̂ = k/|k | and h = 1/|k |. Then
the eigenfunctions can be written

uk (x) = (2π)−1eix ·k̂/h.

Here k̂ is a unit vector in R2, pointing in the direction of an integer
lattice point. For any unit vector ω we can find a sequence of kj

such that k̂j → ω, as hj = 1/|kj | → 0. For such a sequence, there is
an associated semiclassical measure which is

(2π)−2δω(ξ) = (2π)−21(x)δω(ξ).



• On S2, the sectoral harmonics Y l
l (θ, ϕ) are given by

Y l
±l(θ, ϕ) = cle±ilϕ(sin θ)l , cl ∼ cl1/4.

There is a unique semiclassical measure associated with these
spherical harmonics, namely

1(ϕ)δ(θ − π/2)δ(σ)δ(τ ∓ 1)

where (σ, τ) are the dual variables to (θ, ϕ).
In fact, the geodesic flow on S2 is completely integrable. For each
of the two Lagrangian tori in T ∗S2 projecting to the region
{α ≤ θ ≤ π − α}, there is a semiclassical measure supported on
that torus, associated to any sequence of spherical harmonics
Y l

m(θ, ϕ) such that m/l → ± sinα.



Now consider the case where uh satisfies

‖uh‖L2(M) = 1, ‖Phuh‖L2(M) = o(1), h → 0, (12)

for some semiclassical PDO Ph ∈ Ψk ,0
h (M) which is elliptic for |ξ|

large, say |ξ| ≥ R, that is, its principal symbol p = σpr (Ph) satisfies

|p(x , ξ)| ≥ C〈ξ〉k for |ξ| ≥ R.

For example, Ph = h2∆g − 1, where ∆g is the positive Laplacian
with respect to a Riemannian metric g, and uh is an approximate
eigenfunction with eigenvalue h−2.
Then we have the following result:



Theorem (Support of semiclassical measure)
Let Ph be as above, and suppose that uhj is an L2-normalized family
of functions satisfying (12). Then any semiclassical measure µ
associated to the uhj is a probability measure supported in the set
{(x , ξ), p(x , ξ) = 0} (“classical energy shell”).

Proof.
It suffices to show that if a is a smooth, compactly supported
function supported where p ≥ ε > 0, and Ah = Oph(a), then
Ahuh = oL2(1). Let b = a/p. Then b is a symbol in S−∞,0(T ∗M); let
Bh = Oph(b). Then Ah = BhPh + Eh, where Eh ∈ Ψ−∞,−1(M) and
hence Eh = OL2(M)→L2(M)(h). Hence

‖Ahuh‖L2(M) = ‖BhPhuh‖L2(M) + ‖Ehuh‖L2(M) = o(1),

using (12) and the uniform L2(M) → L2(M) boundedness of Bh.



The importance of semiclassical measures is that the measure lives
on phase space, which is the setting for the classical dynamics,
making it easier to formulate (potential) connections between
high-energy behaviour of eigenfunctions and the classical
dynamics. Moreover, localization statements in phase space are
much finer than localization in physical space only, and in particular
imply such statements by integrating in the fibre directions (cf. (11)).

We can now reformulate the main questions of quantum chaos:
• What is the typical behaviour of semiclassical measures
associated to sequences of eigenfunctions?
• Does their support spread out evenly (equidistribute) over
{p = 0}, or can their support be concentrated in small regions?
• How are they related to classical dynamical properties of the
Hamiltonian flow generated by p, such as complete integrability,
ergodicity, or chaos?
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Fourier Integral Operators and WKB expansions

In the previous lecture we defined semiclassical PDOs and recalled
their main properties. Here we introduce a more general class of
operators, semiclassical Fourier Integral Operators or FIOs, which
are similar inasmuch as they are given by oscillatory integrals, but
with a more general class of phase functions.
In fact, their Schwartz kernels will take the form

(2πh)−k+N/2−n/2
∫

RN
eiψ(x ,y ,θ)/ha(x , y , θ,h) dθ

where the phase function ψ has the following property:
• The functions ∂ψ/∂θi have linearly independent differentials on
the set

Cψ := {(x , y , θ) | dθψ(x , y , θ) = 0} ⊂ Rn × Rn × RN .



• a(x , y , θ,h) satisfies symbol estimates for some k ∈ R:∣∣∣Dα
x Dβ

y Dγ
θ a(x , y , θ,h)

∣∣∣ ≤ C〈θ〉k−|γ|.

In fact, for the purposes of these lectures, I will always assume that
a is compactly supported in θ, for simplicity. Thus the condition is
that a is smooth in (x , y , θ), uniformly in h.



Remark: the Schwartz kernel of an FIO is a so-called Lagrangian
distribution. We will not define these in generality here, but remark
that the set{

(x , y , ξ, η) | ∃θ such that dθψ(x , y , θ) = 0, dx ,yψ(x , y , θ) = (ξ, η)
}

is a Lagrangian submanifold of T ∗(R2n
x ,y ).

Like PDOs, FIOs have a principal symbol which is a function on the
Lagrangian (more precisely, a half-density with values in the Maslov
bundle). An FIO is determined to leading order by
(i) the Lagrangian submanifold
(ii) its principal symbol.



An example of an FIO is the operator e−it
√

∆ on Rn. This can be
understood as a Fourier multiplier

f 7→ F−1e−it |ξ|Ff .

It has a Schwartz kernel given by an oscillatory integral

(2π)−n
∫

ei(x−y)·ξe−it |ξ| dξ = (2πh)−n
∫

ei
(
(x−y)·ξ−t |ξ|

)
/h dξ

where the second expression uses semiclassical frequency. The
associated Lagrangian submanifold is

{(x , y , ξ, η) | x − y = t ξ̂, η = −ξ}.

In other words, (x , ξ) is the image of (y ,−η) through the geodesic
flow at time t .



More generally, consider the following situation. Suppose we have a
pseudodifferential operator Ah of order (−∞,0) on M. The solution
to the Schrödinger equation

hDtu(x , t ,h) + Ahu(x , t ,h) = 0, u(x ,0) = u0 ∈ L2(M)

is
u(·, t ,h) = Uh(t)u0 := e−itAh/hu0.

It is thus of interest to have an expression for the Schwartz kernel of
the ‘propagator’ e−itAh/h. We can find a WKB expansion for this
Schwartz kernel, from which we get that Uh(t) is a semiclassical
FIO.
First, we recall the stationary phase lemma.



Lemma (Stationary phase lemma)
Let Q be a nondegenerate real quadratic form on Rn, and let
f (x) ∈ S(Rn). Then there is an asymptotic expansion of∫

Rn
eiQ(x)/2h f (x) dx

of the form

|det Q|−1/2eiπ sgn Q/4(2πh)n/2
∞∑

j=0

hjaj , (13)

where

aj =
1
j!

(−i
∑

kl Q−1
klDkDl

2

)j
f (0) =

1
j!

(−i〈D,Q−1D〉
2

)j
f (0)

In particular, a0 = f (0), a1 = i
2〈∂,Q

−1∂〉f (0).



Now we show that Uh(t) is a semiclassical FIO. To do this, we write
an operator equation for Uh(t):

(hDt + Ah)Uh(t) = 0, Uh(0) = Id . (14)

We write (locally) a coordinate expression for Uh(0):

(2πh)−n
∫

ei(x−z)·η/hφi(z) dη = (2πh)−n
∫

eix ·η/he−iz·η/hφi(z) dη.

Here I have taken a partition of unity φi subordinate to a covering of
M by coordinate charts, and decomposed
Id = Uh(0) =

∑
i Uh(0)φi =

∑
i φi . The term I wrote above is just

the i th term in this sum (which I do not indicate in further notation).



The key to the WKB construction is the following Ansatz:

Uh(t)(x , z) = (2πh)−n
∫

eiψ(x ,η,t)/he−iz·η/h
∞∑

j=0

hjbj(x , η, t)φi(z) dη.

That is, we allow the phase function x · η to evolve in time, as well
as allowing an expansion in powers of h for the symbol. Now we
apply the operator equation (Ah + hDt)Ut = 0 (for simplicity we
assume that the symbol of Ah is independent of h):

0 = (2πh)−2n
∫

ei(x−y)·ξ/heiψ(y ,η,t)/he−iz·η/h

×
∞∑

j=0

hja((x + y)/2, ξ)bj(y , η, t)φi(z) dy dξ dη

+(2πh)−n
∫

eiψ(x ,η,t)/he−iz·η/h
∞∑

j=0

hj(ψt + hDt
)
bj(x , η, t)φi(z) dη.

(15)



We will equate the left and right hand sides of this expression
pointwise in η. Thus we require that

1
(2πh)n

∫
ei(x−y)·ξ/ha(

x + y
2

, ξ) eiψ(y ,η,t)/h
∞∑

j=0

hjbj(y , η, t) dy dξ

+ eiψ(x ,η,t)/h
∞∑

j=0

hj(ψt + hDt
)
bj(x , η, t) = 0.

(16)
I thus want to write the first term as

eiψ(x ,η,t)/h
∞∑

j=0

hjcj(x , η, t).



This requires

(2πh)n
∞∑

j=0

hj cj =

∞∑
j=0

hj
∫

e−iψ(x ,η,t)/hei(x−y)·ξ/heiψ(y ,η,t)/h a(
x + y

2
, ξ)bj(y , η, t) dy dξ.

(17)
We use the stationary phase lemma. The phase function here is
stationary where ξ = ∂yψ and x = y . To use our version of
stationary phase with a quadratic phase function, we shift the
integration variables to y = y − x , ξ = ξ − ψx , where
ψx = ∂xψ(x , η, t). We Taylor expand ψ to second order:

ψ(y , η, t)− ψ(x , η, t) = 〈y , ψx〉+
1
2
〈y , ψxx y〉+ C(y), C = O(|y |3) .



Each term in the right hand side of (17) can be written∫
eiQ(y ,ξ)/2h

(
eiC(y)/ha(x + y/2, ψx + ξ)bj(x + y , η, t)

)
dy dξ ,

with the quadratic phase Q(y , ξ) = −2〈y , ξ〉+ 〈y , ψxxy〉.
The leading term in the stationary phase expansion (13) gives

(2πh)n a(x , ψx(x , η, t))bj(x , η, t).

The next term takes the form

(2πh)n(ih)
(
〈∂ξ, ∂y 〉+1/2〈∂ξ, ψxx∂ξ〉

)
a(x+y/2, ψx+ξ) bj(x+y)

∣∣∣
y=ξ=0

(note that the cubic phase eiC(y)/h does not contribute until
O((2πh)nh2)).



Now we can write the equality (16) in a more amenable form:

eiψ(x ,η,t)/h

( ∞∑
j=0

hj
{

a bj

+ih
(
〈∂ξa, ∂xbj〉+

1
2

bj (〈∂x , ∂ξ〉+ 〈∂ξ, ψxx∂ξ〉)a
)

+ O(h2)(a,bj)

+
(
ψt + hDt

)
bj

})
= 0,

(18)
where the function a (resp. bj ) and its derivatives are taken at the
point (x , ψx(x , η, t)) (resp. (x , η, t)).



We rewrite this expression as

∞∑
j=0

hj
(
ψt(x , η, t)− a(x , ψx(x , η, t))

)
bj(x , η, t)

+
∞∑

j=0

ihj+1
(
− ∂t +

∑
k

aξk (x , ψx(x , η, t))∂xk

+
1
2
∂xk [aξk (x , ψx(x , η, t))]

)
bj(x , η, t)

=
∞∑

j=1

hj+1Fj(ψ,a,b0, . . . ,bj−1) ,

(19)

with initial conditions at t = 0

ψ(x , η,0) = x · η, b0(x , η,0) = 1, bj(x , η,0) = 0, j ≥ 1. (20)



Now we iteratively set each coefficient of hj to zero, for j = 0,1, . . . .
If we look at the j = 0 term, we must have (due to the nonvanishing
of b0, at least for small t)

ψt(x , η, t)− a(x , ψx(x , η, t)) = 0.

This is called the eikonal equation. It is a first order nonlinear
equation for ψ, of a type known as a Hamilton-Jacobi equation.
For the given initial condition at t = 0, it has a unique solution (at
least for small t).



Once the eikonal equation has been solved, the first term vanishes
identically and we next have the h1 equation:(
−∂t+

∑
k

aξk (x , ψx(x , η, t))∂xk +
1
2
∂xk aξk (x , ψx(x , η, t))

)
b0(x , η, t) = 0

This is a linear first order transport equation for b0 with known
coefficients (since ψ is determined by the eikonal equation), and
therefore has a unique solution given an initial condition at t = 0.
We notice that aξk is the x-component of the Hamiltonian vector
field (taken on the Lagrangian submanifold generated by ψ(·, η, t)).
The last term can be interpreted by the fact that we are transporting
a half-density b0(x) |dx |1/2.

Assuming inductively that the equations for h1, . . . ,hj determine
b0, . . . ,bj−1 uniquely, the hj+1 equation is an inhomogeneous
transport equation for bj with known inhomogeneous term (it
depends only on b0, . . . ,bj−1 and ψ).

Remark: this structure (eikonal equation, then a sequence of
transport equations) is common to all WKB constructions.



Egorov theorem

Our next major result is the Egorov theorem. This tells us that the
conjugation of a pseudodifferential operator by certain sorts of FIOs
is another pseudodifferential operator, but with symbol obtained
from the original pseudo by a symplectic transformation determined
by the FIO. It is a key result enabling us to link quantum
phenomena (high-energy eigenfunctions) with classical phenomena
(geodesic flow).



Theorem (Egorov Theorem)
Let Bh be a semiclassical pseudo on M of order (k ,m), and let
Fh = e−iAh/h where Ah is a pseudo of order (1,0) on M with real
principal symbol. Then Ch := F−1

h BhFh = eiAh/hBhe−iAh/h is a
pseudo of order (k ,m) and the principal symbol of Ch is equal to

σpr (C) = (Φ)∗σpr (B) = σpr (B) ◦ Φ,

where Φ is the time-one Hamiltonian flow on T ∗M generated by
σpr (A).



Proof: For simplicity we assume that (k ,m) = (0,0). Let
B(t) = eitAh/hBhe−itAh/h. Then B(0) = Bh and B(1) = Ch. If we
differentiate in t we find that

B′(t) =
i
h

eitA/h(AB − BA)e−itA/h =
i
h

[A,B(t)].

So we are seeking the solution to the operator equation

B′(t) =
i
h

[A,B(t)], B(0) = B. (21)

Now assume that B(t) is a pseudo, with symbol b(t). By our
formula for the commutator of pseudos, (21) would imply

b′(t) = {a,b(t)} = Ha(b(t)), b(0) = b

where {·, ·} denotes Poisson bracket and Ha is the Hamilton vector
field of a. The solution to this first order ODE is b(t) = b ◦ Φt = Φ∗t b
where Φt is the time t flow generated by Ha.



Now define B0(t) to be a quantization of b(t). We have

σpr

(
B′

0(t)−
i
h

[A,B0(t)]
)

= 0 =⇒ B′
0(t)−

i
h

[A,B0(t)] = hE1

where E1 has semiclassical order 0. Now we try to solve away the
error E1. We try a solution of the form B1(t) = B0(t) + hT1(t). We
want

B′
1(t) =

i
h

[A,B1(t)] + h2E2(t)

where E2(t) has semiclassical order 0. This gives an equation for
the principal symbol t1(t) of T1(t):

t ′1(t)− Ha(t1(t)) = e1(t), t1(0) = 0,

which has a unique solution

t1(t) =

∫ t

0
Φ∗t−se1(s) ds.



By iterating in this way, we find a solution to

B̃′(t) =
i
h

[B̃(t),A] + R

where R is a ‘semiclassically trivial’ operator, i.e. is of order O(h∞)
with a smooth kernel. The solution is then

B(t) = B̃(t) +

∫ t

0
e−i(t−s)Ah/hR(s)ei(t−s)Ah/h ds,

where the second term is O(h∞) with a smooth kernel, hence a
‘trivial’ pseudodifferential operator of order (−∞,−∞).



Remark: one can give an estimate of the form

Theorem
Let Ah(t) and Φt be as above, and let b ∈ S0,0

h (M). Then we have
an estimate∥∥∥eitAh/h Opw

h (b)e−itAh/h −Opw
h (b ◦ Φt)

∥∥∥
L2(M)→L2(M)

≤ C1h eC2t

where C1,C2 do not depend on t.
The best constant C2 in this estimate is often an important quantity,
directly related to the dynamics on T ∗M. This theorem shows that
the Egorov theorem is a useful result for a time interval of length
∼ C−1

2 log(1/h), a upper limit known as the Ehrenfest time.



Lecture 4



Invariance of semiclassical measures

Suppose that we have a closed Riemannian manifold M, consider
the operator Ph = h2∆− 1 and approximate eigenfunctions uh for
some sequence hj ↓ 0, satisfying

‖uh‖L2(M) = 1, Ph uh = oL2(h), h → 0. (22)

Let µ be a semiclassical measure associated to (uh). Recall that we
have already shown, just under the assumption that Phuh = oL2(1),
that µ is supported on the set {σpr (Ph) = 0}, that is, on the unit
cosphere bundle S∗X . Under the stronger assumption (22) we
have:

Theorem (Invariance of semiclassical measures)
Let Ph be as above, and suppose that uhj satisfy (22). Then any
semiclassical measure µ associated to the uhj is invariant under the
Hamilton flow generated by σpr (Ph) (i.e. geodesic flow). That is, if
Φt : T ∗M → T ∗M is the geodesic flow, then (Φt)∗µ = µ.



Proof: we prove under the assumption that the uhj are exact
eigenfunctions. We need to show that

〈µ,a〉 = 〈µ,Φ∗t a〉 (23)

for all continuous functions a supported near S∗M. By density it is
enough to show it for smooth a. Choose a quantization Ah of a; the
left hand side of (23) is

lim
h1

j →0

〈
A(h1

j )u(h1
j ),u(h1

j )
〉
.

Here h1
j is a subsequence of the hj leading to µ. Next we use a

result mentioned in the previous lecture: Sh =
√

h2∆ is a
semiclassical pseudo of order (1,0), and e−itSh/h = e−it

√
∆;

therefore, we have by Egorov’s theorem

eit
√

∆Ae−it
√

∆ = A(t)

where A(t) is a pseudo with principal symbol Φ∗t a.



Therefore, the RHS of (23) is

lim
hj→0

〈
eit
√

∆A(hj)e−it
√

∆u(hj),u(hj)
〉

= lim
hj→0

〈
A(hj)e−it

√
∆u(hj),e−it

√
∆u(hj)

〉
(writing hj from now on, for brevity). Now if u(hj) are exact
eigenfunctions, we have e−it

√
∆u(hj) = eit/hj uj , the factors eit/hj

cancel, and we find that this is equal to the left hand side of (23), as
desired. In fact this remains so if uj are only o(hj)-quasimodes of
Ph (exercise).



Quantum ergodicity theorem

We now come to the main theorem of these lectures: the quantum
ergodicity theorem (QET) of Shnirelman-Zelditch-Colin de Verdière.
The setting is as above: we have a closed Riemannian manifold
(M,g) with Laplacian ∆ = ∆g and we consider the eigenfunction
equation on M

(h2∆− 1)uh = 0,

for which we know there is a discrete sequence of eigenvalues h−2
j

and L2-normalized eigenfunctions uj , j = 1,2, . . . . We consider
semiclassical measures associated to the uj .
We begin with two definitions:

Definition
We say that ∆ is quantum unique ergodic (QUE) if there is a unique
semiclassical measure µ.



This is an extremely strong condition: it means that the full
sequence of eigenfunctions equidistributes in phase space.
Example: the unit circle. Eigenfunctions are un = (2π)−1/2einθ, for
n ∈ Z. Let Ah be a pseudo on the circle; we may assume without
loss of generality that its kernel is supported where |θ − θ′| is small.
Let χ(t) be a function equal to 1 for |t | < ε and 0 for |t | ≥ 2ε. Then
Ah has a representation

(2πh)−1
∫

R
ei(θ−θ′)ξ/hχ(θ − θ′)a(θ, ξ) dξ.

For h = 1/n we can take a limit along the full sequence of
eigenfunctions with n > 0:

lim
n→+∞

〈
A1/nun,un

〉
=

1
2πh

∫
S1×S1×R

ein(θ−θ′)ξχ(θ − θ′)a(θ, ξ)
einθ′e−inθ

2π
dξ dθ dθ′.



The phase function is quadratic in (θ′, ξ); applying stationary phase,
we find that the limit is equal to

1
2π

∫
S1

a(θ,1) dθ.

Similarly, taking the limit n → −∞, we get the limit

1
2π

∫
S1

a(θ,−1) dθ.

Thus in this case there are two semiclassical measures, the uniform
distribution on the sets {ξ = ±1}, so the unit circle is not QUE
(though it almost is!)
Exercise: show that the Laplacian on the interval [0,2π], with
Dirichlet boundary conditions, is QUE.



Rudnick-Sarnak (1995) conjectured that compact hyperbolic
manifolds are QUE. This has been verified in the case of arithmetic
surfaces, but is otherwise wide open.

Since the QUE condition is rarely satisfied, we introduce a weaker
notion.

Definition
We say that ∆ is quantum ergodic (QE) if there exists a density one
subset J of natural numbers of density one such that the
subsequence (uj) : j ∈ J has a unique semiclassical measure.
Here, to say J has density one means that

lim
N→∞

#J ∩ {1,2, . . . ,N}
N

= 1.

That is, J fails to contain only a negligible proportion of the natural
numbers.



Remark: if the Laplacian on (M,g) is either QE or QUE, then the
distinguished semiclassical measure is necessarily Liouville
measure on S∗M. This follows from the Local Weyl Law (10).

Finally, we come to the main theorem of these lectures:

Theorem (Quantum Ergodicity Theorem (QET))
Suppose that the geodesic flow on S∗M is ergodic. Then ∆ is
quantum ergodic.



Proof of the QE theorem:
Step 1. It suffices to show that, for each pseudo Ah of order (0,0)
with symbol supported in {|ξ|g ≤ 2}, we have

lim
j→∞

N(h)−1
∑
hj≥h

∣∣∣〈Ahj uj ,uj〉 − ω(Ah)
∣∣∣2 = 0 (24)

where
ω(Ah) := |S∗M|−1

∫
S∗M

σpr (A) = µL(σpr (A))

is the action of Liouville measure µL on the symbol of A. Using this
it is not hard to show that for each Ah there is a density one subset
J of natural numbers depending on Ah for which we have

lim
j∈J
〈Ahj uj ,uj〉 → ω(A).

A density + diagonal argument, shows that we can find a density
one subsequence that works for all Ah simultaneously.



Step 2. We write U(t) = e−it
√

∆ and define

〈Ah〉T =
1

2T

∫ T

−T
U(−t)AhU(t) dt .

Notice that for every T ∈ R,〈
〈Ahj 〉T uj ,uj

〉
=
〈
Ahj uj ,uj

〉
.

Therefore we can write

lim sup
j→∞

N(h)−1
∑
hj≥h

∣∣∣〈Ahj uj ,uj
〉
− ω(Ah)

∣∣∣2
= lim sup

j→∞
N(h)−1

∑
hj≥h

∣∣∣〈(〈Ahj 〉T − ω(Ah)
)
uj ,uj

〉∣∣∣2.



Step 3. Using Cauchy-Schwarz we then bound the RHS by

lim sup
j→∞

N(h)−1
∑
hj≥h

〈
(〈Ahj 〉T − ω(A))∗(〈Ahj 〉T − ω(A))uj ,uj

〉
. (25)

Notice that the absolute values have disappeared, as the
expectation value is automatically positive. We can now apply the
Local Weyl Law, which tells us that the limit of (25) exists and is
equal to ∫

S∗M

∣∣∣σpr
(
〈Ahj 〉T − ω(A)

)∣∣∣2. (26)



Step 4. Next we use Egorov’s theorem. This tells us that the
principal symbol of 〈Ahj 〉T − ω(A) is equal to

1
2T

∫ T

−T
a(Φt(x , ξ))− ω(A) dt

where a = σpr (A) and Φt is geodesic flow. Finally we use the
ergodicity hypothesis, in the form that almost every trajectory is
equidistributed. In particular this implies that

lim
T→∞

σpr
(
〈Ahj 〉T − ω(A)

)
(x , ξ) = 0 almost everywhere.

Moreover, for each T , the principal symbol of 〈Ahj 〉T − ω(A) is
bounded by the sup norm of a. The dominated convergence
theorem implies that the limit of (26) is zero as T →∞, proving
(24).



Extensions of the Quantum Ergodicity theorem

The quantum ergodicity theorem is the foundation of quantum
chaos. For this reason it has been generalized and extended in
many different settings, for example
• QE for manifolds with boundary;
• QE for boundary values of eigenfunctions;
• QER: restrictions of eigenfunctions to hypersurfaces.



Manifolds with boundary: Here the theorem works as stated, say
for either Dirichlet or Neumann boundary conditions. The theorem
is a little more delicate to prove on account of the complicated
nature of geodesic flow near rays tangent to the boundary. As this
occurs on a set of measure zero, it ends up not affecting the QE
statement.

Boundary values of eigenfunctions: Here there are a couple of
new features. First is the dependence on the boundary condition,
and second is the fact that one gets equidistribution according to
certain measures on the ball bundle B∗(∂M) at the boundary. This
theorem is due to Gérard-Leichtnam, Hassell-Zelditch, Burq:



Theorem
Let (M,g) be a compact Riemannian manifold with piecewise
smooth boundary and ergodic geodesic flow. Let uD

j , resp. uN
j

denote the normalized eigenfunctions of the Laplacian on M with
Dirichlet, resp. Neumann boundary conditions. Let ψj , resp. vj
denote the restriction of hjdνuD

j , resp. uN
j to ∂M. Then there is a

density one subset J of N such that for every Ah ∈ Ψ0,0(∂M),

lim
j∈J→∞

〈
Ahjψj , ψj

〉
=

4
|S∗M|

∫
B∗∂M

σpr (A)(y , η)(1− |η|2g)+1/2 dy dη

lim
j∈J→∞

〈
Ahj vj , vj

〉
=

4
|S∗M|

∫
B∗∂M

σpr (A)(y , η)(1− |η|2g)−1/2 dy dη,



Restrictions of eigenfunctions to a hypersurface: The following
result was proved recently by Toth and Zelditch (see also
Dyatlov-Zworski):

Theorem
Let (M,g) be a compact Riemannian manifold with ergodic
geodesic flow, and let H ⊂ M be a hypersurface. Let wj be the
restriction of normalized eigenfunctions of ∆ to H. If H is
‘asymmetric’ with respect to the geodesic flow, then there is a
density one subset J of N such that for every Ah ∈ Ψ0,0(H),

lim
j∈J→∞

〈
Ahj wj ,wj

〉
=

2
|S∗M|

∫
B∗∂M

σpr (A)(y , η)(1− |η|2g)−1/2 dy dη.
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