The Standard model Higgs boson as the inflaton

F. Bezrukov M. Shaposhnikov

EPFL, Lausanne, Suisse
Institute for Nuclear Research, Moscow, Russia

PONT d’Avignon’08
23 May 2008
[arXiv:0710.3755 [hep-th]]
Outline

1. Inflation—virtues and problems
 - Cosmological requirements
 - “Standard” chaotic inflation
 - Problems with using the SM Higgs for inflation

2. SM with non-minimal coupling to gravity
 - The action
 - Conformal transformation
 - Inflation in the model
 - Radiative corrections—no danger

3. Predictions and expectations
 - CMB parameters—spectrum and tensor modes
 - Higgs mass

4. Conclusions
Outline

1. Inflation—virtues and problems
 - Cosmological requirements
 - “Standard” chaotic inflation
 - Problems with using the SM Higgs for inflation

2. SM with non-minimal coupling to gravity
 - The action
 - Conformal transformation
 - Inflation in the model
 - Radiative corrections—no danger

3. Predictions and expectations
 - CMB parameters—spectrum and tensor modes
 - Higgs mass

4. Conclusions
Cosmological implications

Problems in cosmology

- Flatness problem (at $T \sim M_P$ density was tuned $|\Omega - 1| \lesssim 10^{-59}$)
- Entropy of the Universe $S \sim 10^{87}$
- Size of the Universe (at $T \sim M_P$ size was $10^{29} M_P^{-1}$)
- Horizon problem

Solution

Inflation!
Cosmological implications

Problems in cosmology

- **Flatness problem** (at $T \sim M_P$ density was tuned $|\Omega - 1| \lesssim 10^{-59}$)
- **Entropy of the Universe** $S \sim 10^{87}$
- **Size of the Universe** (at $T \sim M_P$ size was $10^{29} M_P^{-1}$)
- **Horizon problem**

Solution

Inflation!
CMB

Temperature fluctuations

Polarization

CMB spectrum

Angular Scale

\[l(l+1)C_l/2\pi [\mu K^2] \]

- TT
- TE

Multipole moment \(l \)

F. Bezrukov, M. Shaposhnikov (EPFL&INR) The Standard model Higgs boson as the inflaton
“Standard” chaotic inflation

Usually required for inflation

Scalar field
- quartic coupling constant $\lambda \sim 10^{-13}$
- mass $m \sim 10^{13}$ GeV

Present in the Standard Model

The Higgs boson
- $\lambda \sim 1$
- $m_H \sim 100$ GeV

Even if one writes a potential that flattens at large field values:
- Radiative corrections from t, W generate $\delta V_{rad} \sim # h^4 \log h$

Solution: Non-minimal coupling to gravity
Scalar fields present in the SM

Usually required for inflation

Scalar field
- quartic coupling constant $\lambda \sim 10^{-13}$
- mass $m \sim 10^{13}$ GeV,

![Potential](image)

Present in the Standard Model

The Higgs boson
- $\lambda \sim 1$
- $m_H \sim 100$ GeV

Even if one writes a potential that flattens at large field values:
- Radiative corrections from t, W generate $\delta V_{rad} \sim \# h^4 \log h$

Solution: Non-minimal coupling to gravity
Scalar fields present in the SM

Usually required for inflation

Scalar field
- quartic coupling constant $\lambda \sim 10^{-13}$
- mass $m \sim 10^{13}$ GeV,

Present in the Standard Model

The Higgs boson
- $\lambda \sim 1$
- $m_H \sim 100\text{GeV}$

Even if one writes a potential that flattens at large field values:
- Radiative corrections from t, W generate $\delta V_{rad} \sim \# h^4 \log h$

Solution: **Non-minimal coupling to gravity**
Outline

1. Inflation—virtues and problems
 - Cosmological requirements
 - “Standard” chaotic inflation
 - Problems with using the SM Higgs for inflation

2. SM with non-minimal coupling to gravity
 - The action
 - Conformal transformation
 - Inflation in the model
 - Radiative corrections—no danger

3. Predictions and expectations
 - CMB parameters—spectrum and tensor modes
 - Higgs mass

4. Conclusions
Possible operators in the SM (+gravity)

- Dimension ≤ 4
- No new degrees of freedom (no higher derivatives)

\[
S = \int d^4x \sqrt{-g} \left[\right.
\right.
\]

SM\{
\[
\text{Tr}(F_{\mu\nu}F^{\mu\nu}) + \frac{|D_\mu H|^2}{2} - V(H) + \bar{\psi} \slashed{D} \psi + YH \bar{\psi}_L \psi_R + m \bar{N}_c N
\]

- \[
- \frac{M_P^2}{2} R
\]

- \[
- \xi H^\dagger H R
\]

+ \[
R^2 + R_{\mu\nu} R^{\mu\nu} + R_{\mu\nu\lambda\rho} R^{\mu\nu\lambda\rho} + \square R
\]

\]
Possible operators in the SM (+gravity)

- Dimension ≤ 4
- No new degrees of freedom (no higher derivatives)

$$S = \int d^4x \sqrt{-g} \left[\right.$$

$$\text{SM}\left\{ \right.$$

$$\text{Tr}(F_{\mu \nu} F^{\mu \nu}) + \frac{|D_\mu H|^2}{2} - V(H) + \bar{\psi} \phi \psi + Y H \bar{\psi}_L \psi_R + m \bar{N}^c N$$

$$- \frac{M_P^2}{2} R$$

$$- \xi H^\dagger H R$$

$$+ R^2 + R_{\mu \nu} R^{\mu \nu} + R_{\mu \nu \lambda \rho} R^{\mu \nu \lambda \rho} + \Box R \right\}$$
Possible operators in the SM (+gravity)

- Dimension ≤ 4
- No new degrees of freedom (no higher derivatives)

$$S = \int d^4x \sqrt{-g} \left[\right.$$

$$\text{SM} \left\{ \begin{array}{l}
\text{Tr}(F_{\mu\nu} F^{\mu\nu}) + \frac{|D_\mu H|^2}{2} - V(H) + \bar{\psi} \phi \psi + Y H \bar{\psi}_L \psi_R + m N^c \bar{N} \\
- \frac{M_P^2}{2} R \\
- \xi H^\dagger H R \\
+ R^2 + R_{\mu\nu} R^{\mu\nu} + R_{\mu\nu\lambda\rho} R^{\mu\nu\lambda\rho} + \Box R
\end{array} \right. \]$$
Non-minimally coupled scalar field— inflation

Quite an old idea

Add $\phi^2 R$ term to/instead of the usual $M_P R$ term in the gravitational action

- A.Zee’78, L.Smolin’79, B.Spokoiny’84
- D.Salopek J.Bond J.Bardeen’89

\[S_J = \int d^4x \sqrt{-g} \left\{ -\frac{M^2 + \xi h^2}{2} R + g_{\mu\nu} \frac{\partial^\mu h \partial^\nu h}{2} - \frac{\lambda}{4} (h^2 - v^2)^2 \right\} \]

- h is the Higgs field
- $M \gg v \sqrt{\xi}$ so $M \simeq M_P = \frac{1}{\sqrt{8\pi G_N}} = 2.4 \times 10^{18}$ GeV
Non-minimally coupled scalar field— inflation

Quite an old idea

Add $\phi^2 R$ term to/instead of the usual $M_P R$ term in the gravitational action

- A.Zee’78, L.Smolin’79, B.Spokoiny’84
- D.Salopek J.Bond J.Bardeen’89

$$S_J = \int d^4x \sqrt{-g} \left\{ -\frac{M^2 + \xi h^2}{2} R + g_{\mu\nu} \frac{\partial^\mu h \partial^\nu h}{2} - \frac{\lambda}{4} (h^2 - v^2)^2 \right\}$$

- h is the Higgs field
- $M \gg v \sqrt{\xi}$ so $M \simeq M_P = \frac{1}{\sqrt{8\pi G_N}} = 2.4 \times 10^{18}$ GeV
Conformal transformation

It is possible to get rid of the non-minimal coupling by the conformal transformation (field redefinition)

\[\hat{g}_{\mu\nu} = \Omega^2 g_{\mu\nu}, \quad \Omega^2 = 1 + \frac{\xi h^2}{M_P^2} \]

and also redefinition of the Higgs field to make canonical kinetic term

\[\frac{d'\chi}{dh} = \sqrt{\frac{\Omega^2 + 6\xi^2 h^2 / M_P^2}{\Omega^4}} \quad \Rightarrow \quad \begin{cases} h \approx \chi & \text{for } h < M_P / \xi \\ \Omega^2 \approx \exp \left(\frac{2\chi}{\sqrt{6}M_P} \right) & \text{for } h > M_P / \xi \end{cases} \]

Resulting action (Einstein frame action)

\[S_E = \int d^4x \sqrt{-\hat{g}} \left\{ -\frac{M_P^2}{2} \hat{R} + \frac{\partial_\mu \chi \partial^\mu \chi}{2} - \frac{1}{\Omega(\chi)^4} \frac{\lambda}{4} \left(h(\chi)^2 - v^2 \right)^2 \right\} \]
Inflationary potential

\[U(\chi) \approx \frac{\lambda M_P^4}{4\xi^2} \left(1 - \exp \left(-\frac{2\chi}{\sqrt{6}M_P} \right) \right)^2 \]

For \(\chi \gtrsim M_P \):
Slow roll stage

\[\varepsilon = \frac{M_P^2}{2} \left(\frac{dU/d\chi}{U} \right)^2 \approx \frac{4}{3} \exp \left(-\frac{4\chi}{\sqrt{6}M_P} \right) \]

\[\eta = M_P^2 \frac{d^2U/d\chi^2}{U} \approx -\frac{4}{3} \exp \left(-\frac{2\chi}{\sqrt{6}M_P} \right) \]

Slow roll ends at \(\chi_{\text{end}} \approx M_P \)

Number of e-folds of inflation at the moment \(h_N \) is \(N \approx \frac{6}{8} \frac{h_N^2 - h_{\text{end}}^2}{M_P^2/\xi} \)

\(\chi_{60} \approx 5M_P \)

COBE normalization \(U/\varepsilon = (0.027M_P)^4 \) gives

\[\xi \approx \sqrt{\frac{\lambda}{3}} \frac{N_{\text{COBE}}}{0.027^2} \approx 49000\sqrt{\lambda} = 49000 \frac{m_H}{\sqrt{2}v} \]

Connection of the parameter \(\xi \) and the Higgs mass!
After inflation—reheating

\[\frac{\lambda M^4}{\xi^2/4} \]

Reheating

\[\frac{\lambda M^4}{\xi^2/16} \]

\[\frac{M_P}{\xi} < \chi < M_P : \quad U(\chi) \simeq \frac{\lambda M_P^4}{4\xi^2} \left(1 - \exp\left(-\frac{2\chi}{\sqrt{6}M_P}\right)\right)^2 \]

F. Bezrukov, M. Shaposhnikov (EPFL&INR) The Standard model Higgs boson as the inflaton
After inflation—reheating

\[\frac{\lambda M^4}{\xi^2/4} \]

\[\frac{\lambda M^4}{\xi^2/16} \]

\[U(\chi) \]

\[\chi_{\text{end}} \]

\[\chi_{\text{COBE}} \]

\[\lambda M^4/\xi^2/4 \]

\[\lambda M^4/\xi^2/16 \]

\[\frac{M_p}{\xi} < \chi < M_p : \quad U \approx \frac{\lambda M_p^2}{6\xi^2} \chi^2, \quad \Omega \approx 1, \quad \chi \approx \sqrt{\frac{3}{2}} \frac{\xi h^2}{M_p}, \quad T_{\text{reh}} \gtrsim 10^{13} \text{GeV} \]
After inflation—back to the SM

For $\chi \lesssim M_P/\xi$: the Standard Model
Radiative corrections

Could be a problem

In the ordinary situation effective potential is generated

\[\Delta U(h) \sim \frac{m^4(h)}{64\pi^2} \log \frac{m^2(h)}{\mu^2} + A\Lambda^2 + B\Lambda^4 \]

We suppose that quadratic divergences are dealt with (eg. in dimensional regularization)
Radiative corrections

Could be a problem

In the ordinary situation effective potential is generated

\[\Delta U(h) \sim \frac{m^4(h)}{64\pi^2} \log \frac{m^2(h)}{\mu^2} \]

standard Yukawa interaction \(m = y \cdot h \)

\[\Delta U \propto -y^4 h^4 \log \frac{h^2}{\mu^2} \]

Spoils flatness of the potential (for top quark \(y \sim 1 \) !)
Radiative corrections

This is also cured by non-minimal coupling!

Effective potential is still generated

\[
\Delta U(\chi) \sim \frac{m^4(\chi)}{64\pi^2} \log \frac{m^2(\chi)}{\mu^2}
\]

Conformal transformation: fermions

\[
S_J = \int d^4x \sqrt{-g} \left\{ \bar{\psi} \partial \psi + yh \bar{\psi} \psi \right\}
\]

\[
\hat{\psi} = \Omega^{-3/2} \psi
\]

\[
S_E = \int d^4x \sqrt{-\hat{g}} \left\{ \bar{\hat{\psi}} \partial \hat{\psi} + y \frac{h(\chi)}{\Omega(\chi)} \bar{\hat{\psi}} \hat{\psi} \right\}
\]
Radiative corrections

This is also cured by non-minimal coupling!

Effective potential is still generated

\[\Delta U(\chi) \sim \frac{m^4(\chi)}{64\pi^2} \log \frac{m^2(\chi)}{\mu^2} \]

The interactions are suppressed now!

\[m(\chi) = y \frac{h(\chi)}{\Omega(\chi)} \xrightarrow{\chi \to \infty} \text{const} \]

(where \(\Omega(\chi) \propto h(\chi) \) for large \(\chi \))

\[\implies \Delta U(\chi) \to y^4 \frac{M_P^4}{\xi^2} \left(1 - e^{-\frac{2\chi}{\sqrt{6}M_P}}\right)^2 \log \left(\frac{m^2(\chi)}{\mu^2}\right) \to \text{const} \]
Radiative corrections

This is also cured by non-minimal coupling!

Effective potential is still generated

\[\Delta U(\chi) \sim \frac{m^4(\chi)}{64\pi^2} \log \frac{m^2(\chi)}{\mu^2} \]

The same for self interactions

\[m^2(\chi) = U''(\chi) = \frac{\lambda M_P^2}{3\xi^2} \left(2e^{-\frac{2\chi}{\sqrt{6}M_P}} - 1\right)e^{-\frac{2\chi}{\sqrt{6}M_P}} \xrightarrow{\chi \to \infty} 0 \]

\[\implies \Delta U(\chi) \to 0 \]
Outline

1. Inflation—virtues and problems
 - Cosmological requirements
 - “Standard” chaotic inflation
 - Problems with using the SM Higgs for inflation

2. SM with non-minimal coupling to gravity
 - The action
 - Conformal transformation
 - Inflation in the model
 - Radiative corrections—no danger

3. Predictions and expectations
 - CMB parameters—spectrum and tensor modes
 - Higgs mass

4. Conclusions
\[n = 1 - 6\varepsilon + 2\eta \approx 1 - \frac{8(4N + 9)}{(4N + 3)^2} \approx 0.97 \]

\[r = 16\varepsilon \approx \frac{192}{(4N + 3)^2} \approx 0.0033 \]
Expected window for the Higgs mass

Standard Model should remain applicable up to

\[M_P / \xi \simeq 10^{14} \text{ GeV} \]

We expect the Higgs mass

\[130 \text{ GeV} < M_H < 190 \text{ GeV} \]

Discovery of the Higgs with different mass will close the model!
Outline

1. Inflation—virtues and problems
 - Cosmological requirements
 - “Standard” chaotic inflation
 - Problems with using the SM Higgs for inflation

2. SM with non-minimal coupling to gravity
 - The action
 - Conformal transformation
 - Inflation in the model
 - Radiative corrections—no danger

3. Predictions and expectations
 - CMB parameters—spectrum and tensor modes
 - Higgs mass

4. Conclusions
Conclusions

- Adding non-minimal coupling $\xi H^\dagger HR$ of the Higgs field to the gravity makes inflation possible without introduction of new fields
 - The new parameter of the model, non-minimal coupling ξ, relates the normalization of CMB fluctuations and the Higgs mass $\xi \simeq 49000 m_H / \sqrt{2} v$
- Predicted for CMB
 - $n_s \simeq 0.97$
 - $r \simeq 0.0033$
- Expected for LHC
 - Higgs mass $130 \text{ GeV} < M_H < 190 \text{ GeV}$
Appendix Outline
Note about fourth family

Disallowed by vacuum metastability or strong coupling before M_P.

Pirogov, Zenin, 98