Inhomogeneous Cosmology, Swiss-Cheese, Voids: can it mimic Dark Energy?

Alessio Notari

CERN

Apr. 2008, PONT d’Avignon

1 In collaboration with: Tirthabir Biswas, Stephon Alexander, Deepak Vaid (Penn State U.), Reza Mansouri (Sharif U., Iran)
Motivations and Goals
- Evidence for Dark Energy
- Inhomogeneities?

Backreaction
- 2^{nd} order
- Higher orders

Light propagation

Exact models
- Constructing the models
- Geodesics
- Results

Local Void
- SNIa fit
- CMB fit

Conclusions
Motivations and Goals

Evidence for Dark Energy

Inhomogeneities?

Backreaction

2nd order

Higher orders

Light propagation

Exact models

Constructing the models

Geodesics

Results

Local Void

SN1a fit

CMB fit

Conclusions
In Standard Cosmology we use the Friedmann-Lemaître-Robertson-Walker model.
In Standard Cosmology we use the Friedmann-Lemaître-Robertson-Walker model.

We compute D_L (or D_A) and z
In Standard Cosmology we use the Friedmann-Lemaître-Robertson-Walker model.

We compute D_L (or D_A) and z

We use this to interpret several observations (SNIa, Hubble constant, CMB, Baryon Acoustic Oscillations,...)
In Standard Cosmology we use the Friedmann-Lemaître-Robertson-Walker model.

We compute D_L (or D_A) and z

We use this to interpret several observations (SNIa, Hubble constant, CMB, Baryon Acoustic Oscillations,...)

To fit the observations we need a $p < 0$ term ("Dark Energy").
In Standard Cosmology we use the Friedmann-Lemaître-Robertson-Walker model.

We compute D_L (or D_A) and z

We use this to interpret several observations (SNIa, Hubble constant, CMB, Baryon Acoustic Oscillations,...)

To fit the observations we need a $p < 0$ term ("Dark Energy").

Problem: We do not understand

- the amount (why of the same amount as Matter today)?
- its nature (is it vacuum energy?)
Is there any alternative?

- Look for some interesting critical point of view and other logical possibilities
Is there any alternative?

- Look for some interesting critical point of view and other logical possibilities

- What happens to observations when we have departure from a *homogeneous* model?
Is there any alternative?

- Look for some interesting critical point of view and other logical possibilities

- What happens to observations when we have departure from a *homogeneous* model?

- Can we accommodate for this evidence if we relax (to some degree) homogeneity?
Motivations and Goals

- Evidence for Dark Energy
- Inhomogeneities?

Backreaction

- 2nd order
- Higher orders

Light propagation

Exact models

- Constructing the models
- Geodesics
- Results

Local Void

- SNIa fit
- CMB fit
At \(z \gg 1 \) (CMB epoch, for example) tiny density fluctuations on all observed scales.
Homogenous Universe: a good approximation?

- At $z \gg 1$ (CMB epoch, for example) tiny density fluctuations on all observed scales.

- It is a good approximation
Homogenous Universe: a good approximation?

- At $z \gg 1$ (CMB epoch, for example) tiny density fluctuations on all observed scales.

- It is a good approximation

- \textit{at late times} $\delta \equiv \frac{\delta \rho}{\rho} > 1$ for all scales $L \lesssim \mathcal{O}(10)/h\text{Mpc}$ (1% of Hubble radius)
At $z \gg 1$ (CMB epoch, for example) tiny density fluctuations on all observed scales.

It is a good approximation

..at late times $\delta \equiv \frac{\delta \rho}{\rho} > 1$ for all scales $L \lesssim \mathcal{O}(10)/h \text{Mpc}$ (1% of Hubble radius)

Superclusters upto few hundreds of Mpc (10% of Hubble radius), nonlinear objects ("cosmic web")
SDSS data ("The cosmic web")
Inhomogeneous Universe and Dark Energy

Motivations and Goals
Evidence for Dark Energy
Inhomogeneities?

Backreaction
2nd order
Higher orders

Light propagation

Exact models
Constructing the models
Geodesics
Results

Local Void
SNIa fit
CMB fit

Conclusions

SDSS data
Three physical effects of inhomogeneities

In general:

- Backreaction
Three physical effects of inhomogeneities

In general:

- **Backreaction** perturbations affect the background
Three physical effects of inhomogeneities

In general:

- **Backreaction**

 perturbations affect the background (see S.Rasanen's talk)
Three physical effects of inhomogeneities

In general:

- **Backreaction**
 perturbations affect the background (see S. Rasanen's talk)

- **Light propagation**
Three physical effects of inhomogeneities

In general:

- **Backreaction**

 Perturbations affect the background (see S. Rasanen’s talk)

- **Light propagation**

 Light meets voids and structures. Do they compensate?
In general:

- **Backreaction**

 Perturbations affect the background (see S. Rasanen’s talk)

- **Light propagation**

 Light meets voids and structures. Do they compensate?

- **Large local fluctuation**
Three physical effects of inhomogeneities

In general:

- **Backreaction**
 - Perturbations affect the background (see S. Rasanen's talk)

- **Light propagation**
 - Light meets voids and structures. Do they compensate?

- **Large local fluctuation**
 - What if we live in a local void?
A few words on backreaction

Averaging of Einstein’s Equations (Buchert ’95)
Nonlinearity \Rightarrow extra terms in Friedmann equations\(^2\)

A few words on backreaction

- Averaging of Einstein’s Equations (Buchert ’95)
 Nonlinearity ⇒ extra terms in Friedmann equations\(^2\)
 Consider a comoving inhomogeneous metric (p=0)
 \[ds^2 = -dt^2 + a^2(t)dx^i dx^j h_{ij}(t, \mathbf{x}) \]

A few words on backreaction

- Averaging of Einstein’s Equations (Buchert ’95)
 Nonlinearity \(\Rightarrow\) extra terms in Friedmann equations\(^2\)
 \(\) Consider a comoving inhomogeneous metric \((p=0)\)

\[
ds^2 = -dt^2 + a^2(t)dx^i dx^j h_{ij}(t, x)\]

- For a comoving domain \(D\):

\[
V_D = \int_D \sqrt{h} \, d^3x, \quad a_D(t) \equiv \left(\frac{V_D}{V_{D_0}} \right)^{1/3};
\]

A few words on backreaction

- Averaging of Einstein’s Equations (Buchert ’95)
 Nonlinearity ⇒ extra terms in Friedmann equations\(^2\)
- Consider a comoving inhomogeneous metric \((p=0)\)
 \[ds^2 = -dt^2 + a^2(t)dx^i dx^j h_{ij}(t, x)\]

- For a comoving domain \(D\):
 \[V_D = \int_D \sqrt{h} d^3x, \quad a_D(t) \equiv \left(\frac{V_D}{V_{D_0}}\right)^{1/3};\]
 \[
 \frac{\ddot{a}_D}{a_D} = -\frac{4\pi G}{3} \left(\rho_{\text{eff}} + 3P_{\text{eff}}\right),
 \]
 \[
 \left(\frac{\dot{a}_D}{a_D}\right)^2 = \frac{8\pi G}{3} \rho_{\text{eff}},
 \]

The extra terms

Where

\[\rho_{\text{eff}} = \langle \rho \rangle_D - \frac{Q_D}{16\pi G} - \frac{\langle R \rangle_D}{16\pi G} \]

\[P_{\text{eff}} = -\frac{Q_D}{16\pi G} + \frac{\langle R \rangle_D}{48\pi G}, \]
The extra terms

Where

\[\rho_{\text{eff}} = \langle \rho \rangle_D - \frac{Q_D}{16\pi G} - \frac{\langle R \rangle_D}{16\pi G} \]

\[P_{\text{eff}} = -\frac{Q_D}{16\pi G} + \frac{\langle R \rangle_D}{48\pi G}, \]

\(Q_D \) can have effective “negative pressure”
The extra terms

Where

\[\rho_{\text{eff}} = \langle \rho \rangle_D - \frac{Q_D}{16\pi G} - \frac{\langle R \rangle_D}{16\pi G} \]

\[P_{\text{eff}} = -\frac{Q_D}{16\pi G} + \frac{\langle R \rangle_D}{48\pi G}, \]

- \(Q_D \) can have effective “negative pressure”
- The \textit{real} question: how large is it?
The extra terms

Where

\[\rho_{\text{eff}} = \langle \rho \rangle_D - \frac{Q_D}{16\pi G} - \frac{\langle R \rangle_D}{16\pi G} \]

\[P_{\text{eff}} = -\frac{Q_D}{16\pi G} + \frac{\langle R \rangle_D}{48\pi G}, \]

- \(Q_D \) can have effective “negative pressure”
- The real question: how large is it?
On a large Domain the dominant term has the form3:

$$\frac{H_D - H}{H} = \frac{25}{54} \frac{1}{a^2 H^2} \langle \varphi \nabla^2 \varphi \rangle$$

3L. Hui-U. Seljak ‘95, S. Rasanen’03, E. W. Kolb-S. Matarrese-A. N. -A. Riotto ’04...
Perturbatively: 2nd order

On a large Domain the dominant term has the form\(^3\):

\[
\frac{H_D - H}{H} = \frac{25}{54} \frac{1}{a^2 H^2} \langle \varphi \nabla^2 \varphi \rangle
\]

\[
= A^2 \frac{a}{a_0} \left(\frac{h \Gamma \text{Mpc}^{-1}}{H_0} \right)^2 \int_0^\infty dq \ q \ T^2(q)
\]

where \(A \sim 10^{-5}, \Gamma = \Omega_M he^{-\Omega_B - \sqrt{2}h\Omega_B / \Omega_M} \).

\(^3\) L. Hui-U. Seljak '95, S. Rasanen'03, E. W. Kolb-S. Matarrese-A. N.-A. Riotto '04...
On a large Domain the dominant term has the form\(^3\):

\[
\frac{H_D - H}{H} = \frac{25}{54} \frac{1}{a^2H^2} \left\langle \varphi \nabla^2 \varphi \right\rangle
\]

\[
= A^2 \frac{a}{a_0} \left(\frac{h \Gamma \text{Mpc}^{-1}}{H_0} \right)^2 \int_0^\infty dq \ q \ T^2(q)
\]

where \(A \sim 10^{-5}, \Gamma = \Omega_M h e^{-\Omega_B - \sqrt{2} h \Omega_B / \Omega_M} \).

Largest contribution from \(\mathcal{O}(10-50)\text{Mpc}/h\)

\(^3\) L. Hui-U. Seljak '95, S. Rasanen'03, E. W. Kolb-S. Matarrese-A. N.-A. Riotto '04...
Perturbatively: 2^{nd} order

- On a large Domain the dominant term has the form\(^3\):

\[
\frac{H_D - H}{H} = \frac{25}{54} \frac{1}{a^2 H^2} \langle \phi \nabla^2 \phi \rangle
\]

\[
= A^2 \frac{a}{a_0} \left(\frac{h \Gamma \text{Mpc}^{-1}}{H_0} \right)^2 \int_0^\infty dq \ q \ T^2(q)
\]

where $A \sim 10^{-5}$, $\Gamma = \Omega_M h e^{-\Omega_B - \sqrt{2} h \Omega_B / \Omega_M}$.

- Largest contribution from $\mathcal{O}(10-50) \text{Mpc}/h$

\[
\frac{H_D - H}{H} \approx 10^{-5}
\]

\(^3\) L. Hui-U. Seljak ‘95, S. Rasanen’03, E. W. Kolb-S. Matarrese-A. N.-A. Riotto ’04...
Perturbatively: 2^{nd} order

- On a large Domain the dominant term has the form:

$$\frac{H_D - H}{H} = \frac{25}{54} \frac{1}{a^2 H^2} \left\langle \phi \nabla^2 \phi \right\rangle$$

$$= A^2 \frac{a}{a_0} \left(\frac{h \Gamma \text{Mpc}^{-1}}{H_0} \right)^2 \int_0^{\infty} dq \ q T^2(q)$$

where $A \sim 10^{-5}$, $\Gamma = \Omega_M h e^{-\Omega_B - \sqrt{2} h \Omega_B / \Omega_M}$.

- Largest contribution from $O(10 - 50) \text{Mpc}/h$

$$\frac{H_D - H}{H} \sim 10^{-5}$$

- Small,

3. L. Hui-U. Seljak '95, S. Rasanen'03, E. W. Kolb-S. Matarrese-A. N.-A. Riotto '04...
Perturbatively: 2nd order

- On a large Domain the dominant term has the form\(^3\):

\[
\frac{H_D - H}{H} = \frac{25}{54} \frac{1}{a^2 H^2} \langle \varphi \nabla^2 \varphi \rangle
\]

\[
= A^2 \frac{a}{a_0} \left(\frac{h \Gamma \text{Mpc}^{-1}}{H_0} \right)^2 \int_{0}^{\infty} dq \, q \, T^2(q)
\]

where \(A \sim 10^{-5}\), \(\Gamma = \Omega_M h e^{-\Omega_B - \sqrt{2} h \Omega_B / \Omega_M}\).

- Largest contribution from \(O(10 - 50)\text{Mpc}/h\)

\[
\frac{H_D - H}{H} \approx 10^{-5}
\]

- Small, but not \(10^{-10}\)!

\(^3\) L. Hui-U. Seljak '95, S. Rasanen'03, E. W. Kolb-S. Matarrese-A. N.-A. Riotto '04...
On a large Domain the dominant term has the form:

\[
\frac{H_D - H}{H} = 25 \frac{1}{54} \frac{1}{a^2 H^2} \langle \varphi \nabla^2 \varphi \rangle
\]

\[
= A^2 \frac{a}{a_0} \left(\frac{h \Gamma \text{Mpc}^{-1}}{H_0} \right)^2 \int_0^\infty dq \, q \, T^2(q)
\]

where \(A \sim 10^{-5}, \Gamma = \Omega_M h e^{-\Omega_B - \sqrt{2} h \Omega_B / \Omega_M} \).

Largest contribution from \(\mathcal{O}(10 - 50) \text{Mpc}/h \)

\[
\frac{H_D - H}{H} \approx 10^{-5}
\]

Small, but not \(10^{-10}! \) Enhanced by \((k_{EQ}/H_0)^2\)
Outline

1. Motivations and Goals
 - Evidence for Dark Energy
 - Inhomogeneities?

2. Backreaction
 - 2nd order
 - Higher orders

3. Light propagation

4. Exact models
 - Constructing the models
 - Geodesics
 - Results

5. Local Void
 - SNIa fit
 - CMB fit

Conclusions
What about higher (n^{th}) orders 4?
Power counting

- What about higher \((n^{\text{th}}) \) orders\(^4\)?
- They go as

\[
\langle \varphi (\nabla^2 \varphi)^{n-1} \rangle
\]
What about higher \((n^{th}) \) orders \(^4\)?

They go as

\[
\langle \varphi (\nabla^2 \varphi)^{n-1} \rangle
\]

We can write the \(n^{th} \) order as

\[
10^{-5} \epsilon^{n-1}
\]

\(^4\) A. N. ’06
What about higher (n^{th}) orders? They go as

$$\langle \varphi (\nabla^2 \varphi)^{n-1} \rangle$$

We can write the n^{th} order as

$$10^{-5} \epsilon^{n-1}$$

where roughly

$$\epsilon \equiv \frac{A}{1 + z} \left(\frac{h \Gamma \text{Mpc}^{-1}}{H_0} \right)^2 \times \text{Int}$$

with

$$\text{Int} = \int dq T^2(q) \approx 0.02$$
Higher orders

\[\epsilon = \mathcal{O}(1) \text{ today} \]
Inhomogeneous Universe and Dark Energy

Motivations and Goals
Evidence for Dark Energy
Inhomogeneities?

Backreaction
2nd order
Higher orders

Light propagation

Exact models
Constructing the models
Geodesics
Results

Local Void
SNIa fit
CMB fit

Conclusions

Higher orders

- $\epsilon = \mathcal{O}(1)$ today

- ...each term in the series is of $\mathcal{O}(10^{-5})$!
Higher orders

- $\epsilon = \mathcal{O}(1)$ today
- ...each term in the series is of $\mathcal{O}(10^{-5})$!
- Do they sum up to 10^{-5} or more??
Higher orders

- $\epsilon = \mathcal{O}(1)$ today

- ...each term in the series is of $\mathcal{O}(10^{-5})$!

- Do they sum up to 10^{-5} or more??

- Need non-perturbative treatment
Higher orders

- $\epsilon = \mathcal{O}(1)$ today

- ...each term in the series is of $\mathcal{O}(10^{-5})$!

- Do they sum up to 10^{-5} or more??

- Need non-perturbative treatment

- It could be studied in exact toy models
Higher orders

- $\epsilon = \mathcal{O}(1)$ today
- ...each term in the series is of $\mathcal{O}(10^{-5})$!
- Do they sum up to 10^{-5} or more??
- Need non-perturbative treatment
- It could be studied in exact toy models
- Note: $\epsilon \ll 1$ at high z
Figure: Grey dashed line: central value, Red solid lines: 2σ ranges (We used the growth factor as in matter domination. For comparison, green dotted line: $\Omega_M = 1$).
Photons in inhomogeneous metric

- Even in absence of average effect on $H(z)$
Photons in inhomogeneous metric

- Even in absence of average effect on $H(z)$: corrections to photon trajectories
Photons in inhomogeneous metric

- Even in absence of average effect on $H(z)$: corrections to photon trajectories
- In fact, actually we measure distances D and redshifts z
Photons in inhomogeneous metric

- Even in absence of average effect on $H(z)$: corrections to photon trajectories
- In fact, actually we measure distances D and redshifts z
- All information from expansion comes from plots $D - z$
Photons in inhomogeneous metric

- Even in absence of average effect on $H(z)$: corrections to photon trajectories
- In fact, actually we measure distances D and redshifts z
- All information from expansion comes from plots $D - z$
- Cannot disentangle this from backreaction
Photons in inhomogeneous metric

- Even in absence of average effect on $H(z)$: corrections to photon trajectories

- In fact, actually we measure distances D and redshifts z

- All information from expansion comes from plots $D - z$

- Cannot disentangle this from backreaction

- Compute $\frac{\Delta z}{1+z}$ and $\frac{\Delta D}{D}$ in the presence of structures
Consider Lemaître-Tolman-Bondi exact solutions of E.E. (with \(p = 0 \)) which is
LTB exact solutions

- Consider Lemaître-Tolman-Bondi exact solutions of E.E. (with $p = 0$) which is
 - inhomogeneous
Consider Lemaître-Tolman-Bondi exact solutions of E.E. (with $p = 0$) which is

- inhomogeneous
- nonlinear
Consider Lemaître-Tolman-Bondi exact solutions of E.E. (with $p = 0$) which is

- inhomogeneous
- nonlinear
- Spherically symmetric
Consider Lemaître-Tolman-Bondi exact solutions of E.E. (with $p = 0$) which is

- inhomogeneous
- nonlinear
- Spherically symmetric

We consider two configurations:
Consider Lemaître-Tolman-Bondi exact solutions of E.E. (with $p = 0$) which is

- inhomogeneous
- nonlinear
- Spherically symmetric

We consider two configurations:

- LTB spheres embedded in FLRW ("Swiss-Cheese")
LTB exact solutions

Consider Lemaître-Tolman-Bondi exact solutions of E.E. (with \(p = 0 \)) which is

- inhomogeneous
- nonlinear
- Spherically symmetric

We consider two configurations:

- LTB spheres embedded in FLRW ("Swiss-Cheese")
- LTB with shells of periodically varying density ("Onion")
LTB exact solutions

- Consider Lemaître-Tolman-Bondi exact solutions of E.E. (with $p = 0$) which is
 - inhomogeneous
 - nonlinear
 - Spherically symmetric

- We consider two configurations:
 - LTB spheres embedded in FLRW ("Swiss-Cheese")
 - LTB with shells of periodically varying density ("Onion")

- We study null geodesics in this metric
Motivations and Goals
- Evidence for Dark Energy
- Inhomogeneities?

Backreaction
- 2^{nd} order
- Higher orders

Light propagation

Exact models
- Constructing the models
- Geodesics
- Results

Local Void
- SNIa fit
- CMB fit

Conclusions
Inhomogeneous Universe and Dark Energy

Motivations and Goals
Evidence for Dark Energy
Inhomogeneities?

Backreaction
2nd order
Higher orders

Light propagation

Exact models
Constructing the models
Geodesics
Results

Local Void
SNIa fit
CMB fit

Conclusions

LTB metrics

\[ds^2 = -dt^2 + \frac{R'^2(r, t)}{1 + 2r^2k(r)} dr^2 + R^2(r, t)(d\theta^2 + \sin^2 \theta d\phi^2) \]
LTB metrics

\[ds^2 = -dt^2 + \frac{R'(r, t)}{1 + 2r^2 k(r)} dr^2 + R^2(r, t)(d\theta^2 + \sin^2 \theta d\phi^2) \]

It has the solutions:

- For \(k(r) > 0 \) (\(k(r) < 0 \)),

\[R = \frac{GM(r)}{2r^2 |k(r)|} [\cos h(u) - 1], \quad (4.1) \]

\[t - t_b(r) = \frac{GM(r)}{[2r^2 |k(r)|]^{3/2}} [\sin h(u) - u]. \]

- \(k(r) = 0 \),

\[R(r, t) = \left[\frac{9GM(r)}{2} \right]^{1/3} [t - t_b(r)]^{2/3}. \]
Choosing the functions

- There are 3 free functions of r
Choosing the functions

- There are 3 free functions of r
- Get rid of 1 gauge mode and 1 decaying mode
Choosing the functions

- There are 3 free functions of r
- Get rid of 1 gauge mode and 1 decaying mode
- One function, $k(r)$, contains all the physical information about the profile.
Choosing the functions

- There are 3 free functions of \(r \)
- Get rid of 1 gauge mode and 1 decaying mode
- One function, \(k(r) \), contains all the physical information about the profile.
- \(k = 0 \) flat FLRW, \(k = \pm 1 \) open/closed FLRW.
Choosing the functions

- There are 3 free functions of r
- Get rid of 1 gauge mode and 1 decaying mode
- One function, $k(r)$, contains all the physical information about the profile.
- $k = 0$ flat FLRW, $k = \pm 1$ open/closed FLRW.
- The idea is to describe structure formation (start with $\delta(r, t_I) \ll 1$ and end up with $\delta(r, t_{\text{now}}) \gg 1$)
Choosing the functions

- There are 3 free functions of r
- Get rid of 1 gauge mode and 1 decaying mode
- One function, $k(r)$, contains all the physical information about the profile.
- $k = 0$ flat FLRW, $k = \pm 1$ open/closed FLRW.
- The idea is to describe structure formation (start with $\delta(r, t_I) \ll 1$ and end up with $\delta(r, t_{\text{now}}) \gg 1$)
- We play with $k(r)$ to describe $\delta(r, t_I)$.
Onion profile

Motivations and Goals
Evidence for Dark Energy
Inhomogeneities?

Backreaction
2nd order
Higher orders

Light propagation

Exact models
Constructing the models
Geodesics
Results

Local Void
SNIa fit
CMB fit

Conclusions
Matching of an LTB sphere (of radius L) to FLRW:

$$k'(0) = k'(L) = 0,$$

$$k(L) = \frac{4\pi}{3} \Omega_k, \quad \text{for } |\Omega_k| \ll 1,$$
Matching of an LTB sphere (of radius L) to FLRW:

\[
\begin{align*}
k'(0) &= k'(L) = 0, \\
k(L) &= \frac{4\pi}{3} \Omega_k, \quad \text{for } |\Omega_k| \ll 1,
\end{align*}
\]

We use:

\[
k(r) = k_{\max} \left[\left(\frac{r}{L} \right)^4 - 1 \right]^2 \quad \text{(for } r < L)\]

\[
k(r) = 0 \text{ (flat)} \quad \text{(for } r > L)\]
Matching of an LTB sphere (of radius L) to FLRW:

\[
k'(0) = k'(L) = 0,
\]

\[
k(L) = \frac{4\pi}{3} \Omega_k, \quad \text{for } |\Omega_k| \ll 1,
\]

We use:

\[
k(r) = k_{\text{max}} \left[\left(\frac{r}{L} \right)^4 - 1 \right]^2 \quad \text{(for } r < L)\]

\[
k(r) = 0 \quad \text{(flat)} \quad \text{(for } r > L)\]

Two parameters, size L and amplitude k_{max}.
The hole in the cheese
Motivations and Goals
- Evidence for Dark Energy
- Inhomogeneities?

Backreaction
- 2^{nd} order
- Higher orders

Light propagation

Exact models
- Constructing the models
 - Geodesics
- Results

Local Void
- SNIa fit
- CMB fit

Conclusions
Redshift

\[\text{Solve } ds^2 = 0 \Rightarrow \text{get } t(r) \]
Redshift

- Solve $ds^2 = 0 \Rightarrow \text{get } t(r)$

- Then solve for

$$\frac{dz(r)}{dr} = \frac{(1 + z(r))\dot{R}'(r, t(r))}{\sqrt{1 + 2r^2k(r)}}.$$
Redshift

- Solve $ds^2 = 0 \Rightarrow$ get $t(r)$

- Then solve for

$$\frac{dz(r)}{dr} = \frac{(1 + z(r))\dot{R}'(r, t(r))}{\sqrt{1 + 2r^2k(r)}}.$$

- The result $z(r)$ can be found numerically
Redshift

- Solve $ds^2 = 0 \Rightarrow$ get $t(r)$

- Then solve for

\[
dz(r) \over dr = \frac{(1 + z(r)) \dot{R}'(r, t(r))}{\sqrt{1 + 2r^2k(r)}}.
\]

- The result $z(r)$ can be found numerically

- We also have some very good analytical approximations
Redshift

- Solve $ds^2 = 0 \Rightarrow$ get $t(r)$

- Then solve for

$$
\frac{dz(r)}{dr} = \frac{(1 + z(r)) \dot{R}'(r, t(r))}{\sqrt{1 + 2r^2 k(r)}}.
$$

- The result $z(r)$ can be found numerically

- We also have some very good analytical approximations

- (Numerically also non-radial trajectories)
Luminosity (Angular) Distance

Always in GR, luminosity distance and angular distance:

\[D_L = D_A(1 + z)^2. \]
Inhomogeneous Universe and Dark Energy

Motivations and Goals
Evidence for Dark Energy
Inhomogeneities?
Backreaction
2nd order
Higher orders
Light propagation
Exact models
Constructing the models
Geodesics
Results
Local Void
SNIa fit
CMB fit
Conclusions

Luminosity (Angular) Distance

Always in GR, luminosity distance and angular distance:

\[D_L = D_A (1 + z)^2. \]

\[D_A^2 \equiv \frac{dA}{d\Omega} = \frac{d\theta_S d\phi_S \sqrt{g_{\theta\theta} g_{\phi\phi}}}{d\theta_O d\phi_O} \]
Luminosity (Angular) Distance

- Always in GR, luminosity distance and angular distance:
 \[D_L = D_A (1 + z)^2. \]

\[
D_A^2 \equiv \frac{dA}{d\Omega} = \frac{d\theta_S d\phi_S \sqrt{g_{\theta\theta} g_{\phi\phi}}}{d\theta_O d\phi_O} = \frac{d\theta_S d\phi_S}{d\theta_O d\phi_O} R^2 | s,
\]
Luminosity (Angular) Distance

- Always in GR, luminosity distance and angular distance:
 \[D_L = D_A(1 + z)^2. \]

- \[D_A^2 \equiv \frac{dA}{d\Omega} = \frac{d\theta_S d\phi_S \sqrt{g_{\theta\theta} g_{\phi\phi}}}{d\theta_O d\phi_O} = \frac{d\theta_S d\phi_S}{d\theta_O d\phi_O} R^2 |_S, \]

- If observer in the center:
 \[D_A^2 = R^2 |_S. \]
Luminosity (Angular) Distance

- Always in GR, luminosity distance and angular distance:
 \[D_L = D_A(1 + z)^2. \]

\[
D_A^2 \equiv \frac{dA}{d\Omega} = \frac{d\theta_S d\phi_S \sqrt{g_{\theta\theta} g_{\phi\phi}}}{d\theta_O d\phi_O} = \frac{d\theta_S d\phi_S}{d\theta_O d\phi_O} R^2|_S,
\]

- If observer in the center:
 \[D_A^2 = R^2|_S. \]

- For generic observer (but radial trajectory):
 \[
 D_A = R_S \left(R_O \int_{r_O}^{r_S} \frac{R'(r, t(r))}{(1 + 2E(r))(1 + z(r)) R(r, t(r))^2} \, dr \right),
 \]
Outline

1. Motivations and Goals
 - Evidence for Dark Energy
 - Inhomogeneities?

2. Backreaction
 - 2nd order
 - Higher orders

3. Light propagation

4. Exact models
 - Constructing the models
 - Geodesics
 - Results

5. Local Void
 - SNIa fit
 - CMB fit

Conclusions
Redshift

Net effect from one hole:\[\frac{\Delta z}{1+z} \approx \left(\frac{L}{r_H}\right)^3 f(\delta) \]
Redshift

- Net effect from one hole\(^5\): \(\frac{\Delta z}{1+z} \approx (L/r_H)^3 f(\delta) \)

- At 2\(^{nd}\) order usual Rees-Sciama effect \((L/r_H)^3 \delta^2 \)

\(^5\) T. Biswas-A. N. '06-'07
Net effect from one hole5 : \(\frac{\Delta z}{1+z} \approx (L/r_H)^3 f(\delta) \)

At 2nd order usual Rees-Sciama effect \((L/r_H)^3 \delta^2\)

\(f(\delta) \) does \textit{not} compensate the suppression for \(\delta \gg 1 \)

5 T. Biswas-A. N. '06-'07
Redshift

- Net effect from one hole\(^5\): \(\frac{\Delta z}{1+z} \approx (L/r_H)^3 f(\delta)\)

- At 2\(^{\text{nd}}\) order usual Rees-Sciama effect \((L/r_H)^3 \delta^2\)

- \(f(\delta)\) does not compensate the suppression for \(\delta \gg 1\)

- Tight packing

\(^5\) T. Biswas-A. N. '06-'07
Inhomogeneous Universe and Dark Energy

Motivations and Goals
Evidence for Dark Energy
Inhomogeneities?

Backreaction
2nd order
Higher orders

Light propagation

Exact models
Constructing the models
Geodesics
Results

Local Void
SNIa fit
CMB fit

Conclusions

Redshift

Net effect from one hole5: $\frac{\Delta z}{1+z} \approx (L/r_H)^3 f(\delta)$

At 2nd order usual Rees-Sciama effect $(L/r_H)^3 \delta^2$

$f(\delta)$ does not compensate the suppression for $\delta \gg 1$

Tight packing: $N_{\text{holes}} \times \mathcal{O}(L/r_H)^3$

5 T. Biswas-A. N. '06-'07
Net effect from one hole\(^5\) : \(\frac{\Delta z}{1+z} \approx \left(\frac{L}{r_H}\right)^3 f(\delta)\)

At 2\(^{\text{nd}}\) order usual Rees-Sciama effect \(\left(\frac{L}{r_H}\right)^3 \delta^2\)

\(f(\delta)\) does \textit{not} compensate the suppression for \(\delta \gg 1\)

Tight packing : \(N_{\text{holes}} \times \mathcal{O} \left(\frac{L}{r_H}\right)^3 \sim \mathcal{O} \left(\frac{L}{r_H}\right)^2\)
Net effect from one hole\(^5\) : \(\frac{\Delta z}{1+z} \approx (L/r_H)^3 f(\delta)\)

At 2\(^{nd}\) order usual Rees-Sciama effect \((L/r_H)^3 \delta^2\)

\(f(\delta)\) does not compensate the suppression for \(\delta \gg 1\)

Tight packing : \(N_{\text{holes}} \times \mathcal{O}(L/r_H)^3 \sim \mathcal{O}(L/r_H)^2\)

Still small (for late acceleration)

\(^5\) T. Biswas-A. N. '06-'07
Inhomogeneous Universe and Dark Energy

Motivations and Goals
Evidence for Dark Energy
Inhomogeneities?

Backreaction
2nd order
Higher orders

Light propagation

Exact models
Constructing the models
Geodesics
Results

Local Void
SNIa fit
CMB fit
Conclusions

Redshift

- Net effect from one hole\(^5\): \(\frac{\Delta z}{1+z} \approx (L/r_H)^3 f(\delta) \)

- At 2\(^{nd}\) order usual Rees-Sciama effect \((L/r_H)^3 \delta^2\)

- \(f(\delta)\) does *not* compensate the suppression for \(\delta \gg 1\)

- Tight packing: \(N_{\text{holes}} \times \mathcal{O}(L/r_H)^3 \sim \mathcal{O}(L/r_H)^2\)

- Still small (for late acceleration)

- Interesting in the CMB, as a Rees-Sciama effect.

\(^5\) T. Biswas-A. N. '06-'07
Net effect scales as $\frac{\Delta z}{1+z} \approx \left(\frac{L}{r_H}\right)^2 f(\delta)^6$
Distance

- Net effect scales as \(\frac{\Delta z}{1+z} \approx \left(\frac{L}{r_H} \right)^2 f(\delta) \)^6

- \(f(\delta) \) does not compensate the suppression for \(\delta \gg 1 \)

6 Brouzakis-Tetradis-Tzavara ’06, Kolb-Matarrese-Riotto ’07, T. Biswas-A. N. ’07
7 S. Weinberg ’76, Brouzakis et al. ’06-’07
Net effect scales as \(\frac{\Delta z}{1+z} \approx (L/r_H)^2 f(\delta)^6 \)

\(f(\delta) \) does not compensate the suppression for \(\delta \gg 1 \)

Tight packing: \(N_{\text{holes}} \mathcal{O}(L/r_H)^3 = \mathcal{O}(L/r_H) \)

6 Brouzakis-Tetradis-Tzavara '06, Kolb-Matarrese-Riotto '07, T. Biswas-A. N. '07

7 S. Weinberg '76, Brouzakis et al. '06-'07
Net effect scales as $\frac{\Delta z}{1+z} \approx (L/r_H)^2 f(\delta)^6$

$f(\delta)$ does not compensate the suppression for $\delta \gg 1$

Tight packing: $N_{\text{holes}} O(L/r_H)^3 = O(L/r_H)$

Not so small...

6 Brouzakis-Tetradis-Tzavara ’06, Kolb-Matarrese-Riotto ’07, T. Biswas-A. N. ’07
7 S. Weinberg ’76, Brouzakis et al. ’06-’07
Distance

- Net effect scales as $\frac{\Delta z}{1+z} \approx (L/r_H)^2 f(\delta)$ \(^6\)

- $f(\delta)$ does *not* compensate the suppression for $\delta \gg 1$

- Tight packing: $N_{\text{holes}} \mathcal{O}(L/r_H)^3 = \mathcal{O}(L/r_H)$

- Not so small...

- But it should have zero angular average (unlike z) \(^7\)

\(^6\) Brouzakis-Tetrads-Tzavara '06, Kolb-Matarrese-Riotto '07, T. Biswas-A. N. '07

\(^7\) S. Weinberg '76, Brouzakis et al. '06-'07
Reliable result or limited by the symmetries of the model?
Beyond LTB?

- Reliable result or limited by the symmetries of the model?
- LTB model swiss-cheese: special case
Beyond LTB?

- Reliable result or limited by the symmetries of the model?
- LTB model swiss-cheese: special case
- The cheese feels *no backreaction* by construction
Beyond LTB?

- Reliable result or limited by the symmetries of the model?
- LTB model swiss-cheese: special case
- The cheese feels *no backreaction* by construction
- What happens without spherical symmetry?
Reliable result or limited by the symmetries of the model?

- LTB model swiss-cheese: special case
- The cheese feels *no backreaction* by construction
- What happens without spherical symmetry?
- Szekeres swiss-cheese model with asymmetric holes (Bolejko '08)
Beyond LTB?

- Reliable result or limited by the symmetries of the model?
- LTB model swiss-cheese: special case
- The cheese feels *no backreaction* by construction
- What happens without spherical symmetry?
- Szekeres swiss-cheese model with asymmetric holes
 (Bolejko '08) *Effects of similar size*
Beyond LTB?

- Reliable result or limited by the symmetries of the model?
- LTB model swiss-cheese: special case
 - The cheese feels *no backreaction* by construction
- What happens without spherical symmetry?
 - Szekeres swiss-cheese model with asymmetric holes (Bolejko '08) *Effects of similar size*
 - But still special: the cheese feels *no backreaction* of the holes
A local fluctuation?

Inhomogeneous Universe and Dark Energy

Motivations and Goals
Evidence for Dark Energy
Inhomogeneities?

Backreaction
2nd order
Higher orders

Light propagation

Exact models
Constructing the models
Geodesics
Results

Local Void
SNIa fit
CMB fit

Conclusions

8 Tomita ’98, Tomita ’00, Celerier ’01, Wiltshire ’05, Moffat ’05, Alnes et al. ’05, Mansouri-Biswas-A. N. ’06, Biswas-A. N. ’07, Garcia-Bellido and Haugboelle ’08

9 J. Goodman ’95, Stebbins-Caldwell ’07, Clarkson-Basset-Lu ’07
A local fluctuation?

- Locally *instead* (inside the LTB patch in the cheese) effects are large

8 Tomita ’98, Tomita ’00, Celerier ’01, Wiltshire ’05, Moffat ’05, Alnes et al. ’05, Mansouri-Biswas-A. N. ’06, Biswas-A. N. ’07, Garcia-Bellido and Haugboelle ’08

9 J. Goodman ’95, Stebbins-Caldwell ’07, Clarkson-Bassett-Lu ’07
A local fluctuation?

- Locally *instead* (inside the LTB patch in the cheese) effects are large
- Suppose that we live *inside* a peculiar local region

8 Tomita '98, Tomita '00, Celerier '01, Wiltshire '05, Moffat '05, Alnes et al. '05, Mansouri-Biswa-A. N. '06, Biswas-A. N. '07, Garcia-Bellido and Haugboelle '08

9 J. Goodman '95, Stebbins-Caldwell '07, Clarkson-Basset-Lu '07
A local fluctuation?

- Locally *instead* (inside the LTB patch in the cheese) effects are large
- Suppose that we live *inside* a peculiar local region
- ⇒ low z observations may be very different from average.

8 Tomita '98, Tomita '00, Celerier '01, Wiltshire '05, Moffat '05, Alnes et al. '05, Mansouri-Biswas-A. N. '06, Biswas-A. N. '07, Garcia-Bellido and Haugboelle '08
9 J. Goodman '95, Stebbins-Caldwell '07, Clarkson-Bassett-Lu '07
A local fluctuation?

- Locally *instead* (inside the LTB patch in the cheese) effects are large
- Suppose that we live inside a peculiar local region
- ⇒ low z observations may be very different from average.
- One realizes that acceleration is inferred comparing low z with high z...

8 Tomita ’98, Tomita ’00, Celerier ’01, Wiltshire ’05, Moffat ’05, Alnes et al. ’05, Mansouri-Biswas-A. N. ’06, Biswas-A. N. ’07, Garcia-Bellido and Haugboelle ’08

9 J. Goodman ’95, Stebbins-Caldwell ’07, Clarkson-Bassett-Lu ’07
A local fluctuation?

- Locally *instead* (inside the LTB patch in the cheese) effects are large
- Suppose that we live *inside* a peculiar local region
- \Rightarrow low z observations may be very different from average.
- One realizes that acceleration is inferred *comparing low z with high z*...
- Can this mimick acceleration 8?

8 Tomita '98, Tomita '00, Celerier '01, Wiltshire '05, Moffat '05, Alnes et al. '05, Mansouri-Biswas-A. N. '06, Biswas-A. N. '07, Garcia-Bellido and Haugboelle '08

9 J. Goodman '95, Stebbins-Caldwell '07, Clarkson-Basset-Lu '07
Locally *instead* (inside the LTB patch in the cheese) effects are large

Suppose that we live *inside* a peculiar local region

⇒ low \(z \) observations may be very different from average.

One realizes that acceleration is inferred *comparing low \(z \) with high \(z \)*...

Can this mimick acceleration \(^8\)?

Recent interest in proving the Copernican principle\(^9\)

\(^8\) Tomita ’98, Tomita ’00, Celerier ’01, Wiltshire ’05, Moffat ’05, Alnes et al. ’05, Mansouri-Biswas-A. N. ’06, Biswas-A. N. ’07, Garcia-Bellido and Haugboelle ’08

\(^9\) J. Goodman ’95, Stebbins-Caldwell ’07, Clarkson-Bassett-Lu ’07
A local fluctuation?

- Locally *instead* (inside the LTB patch in the cheese) effects are large
- Suppose that we live inside a peculiar local region
- \(\Rightarrow \) low \(z \) observations may be very different from average.
- One realizes that acceleration is inferred *comparing low \(z \) with high \(z \)*...
- Can this mimic acceleration \(^8\)?
- Recent interest in proving the Copernican principle \(^9\)
- How much contrast \(\delta \) and how large \(L \) is needed?

\(^8\) Tomita ’98, Tomita ’00, Celerier ’01, Wiltshire ’05, Moffat ’05, Alnes et al. ’05, Mansouri-Biswas-A. N. ’06, Biswas-A. N. ’07, Garcia-Bellido and Haugboelle ’08

\(^9\) J. Goodman ’95, Stebbins-Caldwell ’07, Clarkson-Bassett-Lu ’07
Qualitatively

Consider a “compensated Void” of size L: a spherical Void plus an external shell of matter
Qualitatively

- Consider a “compensated Void” of size L : a spherical Void plus an external shell of matter
- Same average density as the “external” FLRW
Qualitatively

- Consider a “compensated Void” of size L: a spherical Void plus an external shell of matter.
- Same average density as the “external” FLRW.
- Nonlinear evolution \Rightarrow Voids tend to be spherical.
Qualitatively

- Consider a “compensated Void” of size \(L \) : a spherical Void plus an external shell of matter
- Same average density as the “external” FLRW
- Nonlinear evolution \(\Rightarrow \) Voids tend to be spherical
- Assumption: we live near the center
Qualitatively

- Consider a “compensated Void” of size L: a spherical Void plus an external shell of matter
- Same average density as the “external” FLRW
- Nonlinear evolution \Rightarrow Voids tend to be spherical
- Assumption: we live near the center
- A void expands faster than the “external” average FLRW
Qualitatively

- Consider a “compensated Void” of size L: a spherical Void plus an external shell of matter
- Same average density as the “external” FLRW
- Nonlinear evolution \Rightarrow Voids tend to be spherical
- Assumption: we live near the center
- A void expands faster than the “external” average FLRW
- So, nearby objects inside the void redshift more
Consider a “compensated Void” of size \(L \) : a spherical Void plus an external shell of matter

- Same average density as the “external” FLRW

- Nonlinear evolution \(\Rightarrow \) Voids tend to be spherical

- Assumption: we live near the center

- A void expands faster than the “external” average FLRW

- So, nearby objects inside the void redshift more

- This can mimic acceleration (as we will see...)

Qualitatively
About Voids

Before going to the analysis...
About Voids

Before going to the analysis...

Let’s review some literature and observations on Voids
Inoue and Silk '06: some features of the low multipole anomalies in the CMB data could be explained by a pair of huge Voids ($L \sim 200 \text{ Mpc}/h$, $\delta \sim -0.3$)
Inoue and Silk '06: some features of the low multipole anomalies in the CMB data could be explained by a pair of huge Voids \((L \sim 200 \text{ Mpc}/h, \delta \sim -0.3) \)

The CMB has a Cold Spot \((\text{M. Cruz et al. ('06 and '07)}) \): it could be explained by another similar Big Void \((\text{Inoue and Silk '06}) \)
Other uses of Voids

- Inoue and Silk '06: some features of the low multipole anomalies in the CMB data could be explained by a pair of huge Voids ($L \sim 200 \, \text{Mpc}/h, \delta \sim -0.3$)

- The CMB has a Cold Spot (M. Cruz et al. ('06 and '07)): it could be explained by another similar Big Void (Inoue and Silk '06)

- The Cold Spot in the CMB claimed to be correlated with an underdense region in the LSS (Rudnick, Brown and Williams '07)
Observational Status

- Some observational evidence for a local large underdense region ($\sim 25\%$ less dense, $r \sim 200 \text{ Mpc}/h$) from number counts of galaxies (Frith et al. Mon. Not. Roy. Astron. Soc. 345, 1049 (2003))

- It would represent a 4σ fluctuation, at odds with ΛCDM.
Some observational evidence for a local large underdense region ($\sim 25\%$ less dense, $r \sim 200 \, \text{Mpc}/h$) from number counts of galaxies (Frith et al. Mon. Not. Roy. Astron. Soc. 345, 1049 (2003))

- It would represent a 4σ fluctuation, at odds with ΛCDM.

Einasto (arXiv:astro-ph/0609686): claims discrepancy (by a factor of 5) between observed abundance of superclusters and N-body simulations
Our “Minimal” Void

What is the size we need to mimic Acceleration for CMB+SNIa observations?
Our “Minimal” Void

- What is the size we need to mimic Acceleration for CMB+SNIa observations?
- It turns out that a Minimal Void needs roughly the same size *(for SNIa and WMAP)*
Our “Minimal” Void

- What is the size we need to mimic Acceleration for CMB+SNIa observations?
- It turns out that a Minimal Void needs roughly the same size (*for SNIa and WMAP*)
- \(r_{\text{Void}} \sim 200 - 250 \) Mpc/\(h \) and \(\sqrt{\langle \delta^2 \rangle} \sim 0.4 \)
Our “Minimal” Void

What is the size we need to mimic Acceleration for CMB+SNIa observations?

It turns out that a Minimal Void needs roughly the same size (for SNIa and WMAP)

$ r_{\text{Void}} \sim 200 - 250 \text{ Mpc}/h \text{ and } \sqrt{\langle \delta^2 \rangle} \sim 0.4$

Problem: the typical contrast on this scale is: $\sqrt{\langle \delta^2 \rangle} \sim 0.03 - 0.05$, using linear and Gaussian spectrum
Our “Minimal” Void

- What is the size we need to mimic Acceleration for CMB+SNIa observations?

- It turns out that a Minimal Void needs roughly the same size (for SNIa and WMAP)

- \(r_{\text{Void}} \sim 200 - 250 \text{ Mpc}/h \) and \(\sqrt{\langle \delta^2 \rangle} \sim 0.4 \)

- Problem: the typical contrast on this scale is: \(\sqrt{\langle \delta^2 \rangle} \sim 0.03 - 0.05 \), using linear and Gaussian spectrum

- Can one ever get these Voids?
Our “Minimal” Void

What is the size we need to mimic Acceleration for CMB+SN1a observations?

It turns out that a Minimal Void needs roughly the same size (for SN1a and WMAP)

\[r_{\text{Void}} \sim 200 - 250 \text{ Mpc}/h \text{ and } \sqrt{\langle \delta^2 \rangle} \sim 0.4 \]

Problem: the typical contrast on this scale is: \[\sqrt{\langle \delta^2 \rangle} \sim 0.03 - 0.05 \], using linear and Gaussian spectrum

Can one ever get these Voids?
 - Percolation of Voids?
What is the size we need to mimic Acceleration for CMB+SNIa observations?

It turns out that a Minimal Void needs roughly the same size (for SNIa and WMAP)

\[r_{\text{Void}} \sim 200 \text{ – } 250 \text{ Mpc/h} \text{ and } \sqrt{\langle \delta^2 \rangle} \sim 0.4 \]

Problem: the typical contrast on this scale is: \[\sqrt{\langle \delta^2 \rangle} \sim 0.03 \text{ – } 0.05, \text{ using linear and Gaussian spectrum} \]

Can one ever get these Voids?
- Percolation of Voids?
- Non-standard structure formation?
Our “Minimal” Void

- What is the size we need to mimic Acceleration for CMB+SNIa observations?

- It turns out that a Minimal Void needs roughly the same size (for SNIa and WMAP)

\[r_{\text{Void}} \sim 200 - 250 \text{ Mpc}/h \text{ and } \sqrt{\langle \delta^2 \rangle} \sim 0.4 \]

- Problem: the typical contrast on this scale is: \[\sqrt{\langle \delta^2 \rangle} \sim 0.03 - 0.05 \], using linear and Gaussian spectrum

- Can one ever get these Voids?
 - Percolation of Voids?
 - Non-standard structure formation?
 - Non-gaussianity?
Our “Minimal” Void

- What is the size we need to mimic Acceleration for CMB+SNIa observations?

- It turns out that a Minimal Void needs roughly the same size (for SNIa and WMAP)

 \[r_{\text{Void}} \sim 200 - 250 \text{ Mpc}/h \text{ and } \sqrt{\langle \delta^2 \rangle} \sim 0.4 \]

- Problem: the typical contrast on this scale is:

 \[\sqrt{\langle \delta^2 \rangle} \sim 0.03 - 0.05 \text{, using linear and Gaussian spectrum} \]

- Can one ever get these Voids?
 - Percolation of Voids?
 - Non-standard structure formation?
 - Non-gaussianity?
 - Nucleation of primordial Bubbles?
Motivations and Goals
- Evidence for Dark Energy
- Inhomogeneities?

Backreaction
- 2^{nd} order
- Higher orders

Light propagation

Exact models
- Constructing the models
- Geodesics
- Results

Local Void
- SNIa fit
- CMB fit

Conclusions
High and low z

- Evidence for acceleration comes from mismatch between:
 - measurements at low redshift \((0.03 \lesssim z \lesssim 0.07)\)
 - high-z SN (roughly \(0.4 \lesssim z \lesssim 1\))
High and low z

- Evidence for acceleration comes from mismatch between:
 - measurements at low redshift (0.03 $\lesssim z \lesssim 0.07$)
 - high-z SN (roughly $0.4 \lesssim z \lesssim 1$)

- SDSS-II taking data at intermediate redshift
Evidence for acceleration comes from a mismatch between:

- measurements at low redshift ($0.03 \lesssim z \lesssim 0.07$)
- high-z SN (roughly $0.4 \lesssim z \lesssim 1$)

SDSS-II taking data at intermediate redshift

We choose large r_{Void} (at $z \approx 0.07$)
High and low z

- Evidence for acceleration comes from mismatch between:
 - measurements at low redshift ($0.03 \lesssim z \lesssim 0.07$)
 - high-z SN (roughly $0.4 \lesssim z \lesssim 1$)

- SDSS-II taking data at intermediate redshift

- We choose large r_{Void} (at $z \approx 0.07$)

 \Rightarrow The Local Bubble is different from the average (open-like)
Evidence for acceleration comes from a mismatch between:
- measurements at low redshift ($0.03 \lesssim z \lesssim 0.07$)
- high-z SN (roughly $0.4 \lesssim z \lesssim 1$)

SDSS-II taking data at intermediate redshift

We choose large r_{Void} (at $z \approx 0.07$)

⇒ The Local Bubble is different from the average (open-like)

Outside just matter dominated (even if there are other Bubbles, their effect is small)
High and low z

- Evidence for acceleration comes from mismatch between:
 - measurements at low redshift ($0.03 \lesssim z \lesssim 0.07$)
 - high-z SN (roughly $0.4 \lesssim z \lesssim 1$)

- SDSS-II taking data at intermediate redshift

- We choose large r_{void} (at $z \approx 0.07$)

 \Rightarrow The Local Bubble is different from the average (open-like)

- Outside just matter dominated (even if there are other Bubbles, their effect is small)

- Rapid transition between h and h_{out}
\(\Delta m \) for different models

- Magnitude is \(m \equiv 5 \log_{10} D(z) \)
- The open “empty” Universe is subtracted (\(\Omega_K = -1 \))

\[
\Delta m = 0.085; \quad \delta_{\text{CENTRE}} = -0.48
\]

\[
\text{Magnitude is } m \equiv 5 \log_{10} D(z)
\]

\[
\text{The open “empty” Universe is subtracted (} \Omega_K = -1 \text{)}
\]
Inhomogeneous Universe and Dark Energy

Motivations and Goals
Evidence for Dark Energy
Inhomogeneities?
Backreaction
2nd order
Higher orders
Light propagation
Exact models
Constructing the models
Geodesics
Results
Local Void
SNIa fit
CMB fit
Conclusions

$m - z$ diagram

$z_{\text{jump}} = 0.085; \ \delta_{\text{CENTRE}} = -0.48$
Figure: Riess et al. dataset, astro-ph/0611576, 182 datapoints. We show 1σ, 2σ, 3σ and 4σ intervals (using likelihood $\propto e^{-\chi^2/2}$).
Fitting SNIa with a Jump

Figure: The red dashed lines are 10% and 1% goodness-of-fit (182 data points)
Table: Comparison with data (full data set of Riess et al.)

<table>
<thead>
<tr>
<th>Model</th>
<th>χ^2 (181 d.o.f.)</th>
</tr>
</thead>
<tbody>
<tr>
<td>ΛCDM (with $\Omega_M = 0.27$, $\Omega_{\Lambda} = 0.73$)</td>
<td>150</td>
</tr>
<tr>
<td>EdS (with $\Omega_M = 1$, $\Omega_{\Lambda} = 0$)</td>
<td>274</td>
</tr>
<tr>
<td>Void ($\sqrt{\langle \delta^2 \rangle} \approx 0.4$ on $L = 250/h\text{Mpc}$)</td>
<td>182</td>
</tr>
</tbody>
</table>

Two remarks:

- If one includes only instrumental error: no smooth curve can give a good fit
- Estimated error from intrinsic variability added in quadrature
Inhomogeneous Universe and Dark Energy

Motivations and Goals
- Evidence for Dark Energy
- Inhomogeneities?

Backreaction
- 2^{nd} order
- Higher orders

Light propagation

Exact models
- Constructing the models
- Geodesics
- Results

Local Void
- SNIa fit
- CMB fit

Conclusions
The ΛCDM fit

Fit of the WMAP (3-yr) data
The ΛCDM fit

- Fit of the WMAP (3-yr) data
- We looked at TT and TE correlations, using COSMOMC
In principle: we should compute propagation in EdS from $z = 1100$ to $z \sim 0.1$, and then in the Bubble
How do we fit?

- In principle: we should compute propagation in EdS from $z = 1100$ to $z \sim 0.1$, and then in the Bubble

- Ignore possible “secondary” effects in the Bubble:
How do we fit?

- In principle: we should compute propagation in EdS from $z = 1100$ to $z \sim 0.1$, and then in the Bubble

- Ignore possible “secondary” effects in the Bubble:

 - Just EdS with h_{out},
How do we fit?

- In principle: we should compute propagation in EdS from $z = 1100$ to $z \sim 0.1$, and then in the Bubble

- Ignore possible “secondary” effects in the Bubble:

- **Just EdS** with h_{out}, with some assumptions on the primordial spectrum:
How do we fit?

- In principle: we should compute propagation in EdS from $z = 1100$ to $z \sim 0.1$, and then in the Bubble.

- Ignore possible “secondary” effects in the Bubble:

- Just EdS with h_{out}, with some assumptions on the primordial spectrum:
 - n_s plus running α_s
How do we fit?

- In principle: we should compute propagation in EdS from $z = 1100$ to $z \sim 0.1$, and then in the Bubble

- Ignore possible “secondary” effects in the Bubble:

- **Just EdS** with h_{out}, with some assumptions on the primordial spectrum:
 - n_s plus running α_s
Fit to WMAP3

Inhomogeneous Universe and Dark Energy

Motivations and Goals
Evidence for Dark Energy
Inhomogeneities?

Backreaction
2nd order
Higher orders

Light propagation

Exact models
Constructing the models
Geodesics
Results

Local Void
SNIa fit
CMB fit

Conclusions
Goodness-of-fit

<table>
<thead>
<tr>
<th>Model</th>
<th>χ^2_{eff}</th>
<th>G.F.</th>
<th>χ^2_{eff}</th>
<th>G.F.</th>
<th>χ^2_{eff}</th>
<th>G.F.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Concordant ΛCDM</td>
<td>1038.9</td>
<td>4.7%</td>
<td>1455.2</td>
<td>11.3%</td>
<td>3538.6</td>
<td>41%</td>
</tr>
<tr>
<td>EdS $\alpha_s = 0$</td>
<td>1124.6</td>
<td>0%</td>
<td>1711.9</td>
<td>0%</td>
<td>3652.3</td>
<td>6%</td>
</tr>
<tr>
<td>EdS $\alpha_s \neq 0$</td>
<td>1057.8</td>
<td>1.9%</td>
<td>1475.5</td>
<td>5.7%</td>
<td>3577.4</td>
<td>24.6%</td>
</tr>
<tr>
<td>EdS $\alpha_s, \Omega_k \neq 0$</td>
<td>1048.7</td>
<td>2.9%</td>
<td>1466</td>
<td>7.9%</td>
<td>3560.9</td>
<td>31.1%</td>
</tr>
</tbody>
</table>

Table:

1st column: high-l TT ($31 \leq l \leq 1000$)

2nd column: high-l TT ($31 \leq l \leq 1000$) and TE ($24 \leq l \leq 450$)

3rd column: total of TT ($2 \leq l \leq 1000$) and TE ($2 \leq l \leq 450$)
The EdS model, with running, has:

- low h_{OUT} (about ~ 0.45)10

10 As in A. Blanchard et al.'03 and P. Hunt & S. Sarkar '07
The EdS model, with running, has:

- low h_{OUT} (about ~ 0.45)10

It has to be consistent with the SNIa analysis and the local measurements of h

10As in A. Blanchard et al.’03 and P. Hunt & S. Sarkar ’07
Result for parameters

The EdS model, with running, has:

- low h_{OUT} (about $\sim 0.45)^{10}$
 It has to be consistent with the SNIa analysis and the local measurements of h

- low n_S (about ~ 0.73)
 and large negative α_s (about ~ -0.16)

10 As in A. Blanchard et al.’03 and P. Hunt & S. Sarkar ’07
The EdS model, with running, has:

- low h_{OUT} (about ~ 0.45)\(^{10}\)

 It has to be consistent with the SNIa analysis and the local measurements of h

- low n_S (about ~ 0.73)

 and large negative α_S (about ~ -0.16)

 (should check consistency with Matter Power spectrum measurements: LSS surveys, Lyman-α forest,...)

\(^{10}\) As in A. Blanchard et al.’03 and P. Hunt & S. Sarkar ’07
Result for parameters

The EdS model, with running, has:

- **low** h_{OUT} (about ~ 0.45)10
 It has to be consistent with the SNIa analysis and the local measurements of h

- **low** n_S (about ~ 0.73)
 and large negative α_s (about ~ -0.16)
 (should check consistency with Matter Power spectrum measurements: LSS surveys, Lyman-α forest,...)

- larger value of Ω_M/Ω_b (around 10 instead of 6)

10 As in A. Blanchard et al.’03 and P. Hunt & S. Sarkar ’07
Result for parameters

The EdS model, with running, has:

- **low** h_{OUT} (about ~ 0.45)10
 It has to be consistent with the SNIa analysis and the local measurements of h

- **low** n_S (about ~ 0.73)
 and large negative α_S (about ~ -0.16)
 (should check consistency with Matter Power spectrum measurements: LSS surveys, Lyman-α forest,...)

- larger value of Ω_M/Ω_b (around 10 instead of 6)

- $\Omega_b h^2_{\text{out}}$ ($\sim 0.018^{+0.001}_{-0.002}$) consistent with BBN constraint
 (which is $0.017 \leq \Omega_b h^2_{\text{out}} \leq 0.024$, at 95% C.L.)

10 As in A. Blanchard et al.'03 and P. Hunt & S. Sarkar '07
Is this compatible with local h?

A crucial point: we have

- a low h_{out}
- a constraint on $\mathcal{J} = h/h_{\text{out}}$
Is this compatible with local h?

- A crucial point: we have
 - a low h_{out}
 - a constraint on $J = h/h_{\text{out}}$
- We get a constraint on h
A crucial point: we have

- a low h_{out}
- a constraint on $J = h/h_{\text{out}}$

We get a constraint on h. Compatible with local observations?
Is this compatible with local h?

- A crucial point: we have
 - a low h_{out}
 - a constraint on $J = h/h_{\text{out}}$

- We get a constraint on h. Compatible with local observations?
 - $h = 0.72 \pm 0.08$ from HST (W. L. Freedman et al., Astrophys. J. 553, 47 (2001))
 - $h = 0.62 \pm 0.01 \pm 0.05$ from HST with corrected Cepheids (A. Sandage et al., Astrophys. J. 653, 843 (2006))
 - $h = 0.59 \pm 0.04$ from Supernovae (Parodi, Saha, Sandage and Tammann, arXiv:astro-ph/0004063.)
 - $h = 0.54_{-0.03}^{+0.04}$ SZ effect ($z \approx 1$) (E. D. Reese et al., Astrophys. J. 581, 53 (2002))
Figure: 1-σ and 2-σ Contour plots for h vs. h_{out}.

Parameter Contours
Baryon Acoustic Oscillations

- Measurement of baryon acoustic peak in the galaxy distribution (Eisenstein et al., 2005).

- The position of the peak measures the ratio of the sound horizon at recombination \(\text{vs.} \) angular distance at \(z = 0.35 \).
Baryon Acoustic Oscillations

- Measurement of baryon acoustic peak in the galaxy distribution (Eisenstein et al., 2005).

- The position of the peak measures the ratio of the sound horizon at recombination vs. angular distance at $z = 0.35$.

- It constrains two quantities: $\Omega_m h^2$ and $D_A(0.35)$.

Baryon Acoustic Oscillations Measurement of baryon acoustic peak in the galaxy distribution (Eisenstein et al., 2005).

The position of the peak measures the ratio of the sound horizon at recombination vs. angular distance at $z = 0.35$.

It constrains two quantities: $\Omega_m h^2$ and $D_A(0.35)$.
Baryon Acoustic Oscillations

- Measurement of baryon acoustic peak in the galaxy distribution (Eisenstein et al., 2005).
- The position of the peak measures the ratio of the sound horizon at recombination vs. angular distance at $z = 0.35$.
- It constrains two quantities: $\Omega_m h^2$ and $D_A(0.35)$

$$D_V = 1370 \pm 64 \text{ and } \Omega_m h^2 = 0.130 (n_s/0.98)^{-1.2} \pm 0.011$$
Baryon Acoustic Oscillations

- Measurement of baryon acoustic peak in the galaxy distribution (Eisenstein et al., 2005).

- The position of the peak measures the ratio of the sound horizon at recombination vs. angular distance at $z = 0.35$.

- It constrains two quantities: $\Omega_m h^2$ and $D_A(0.35)$.

 $$D_V = 1370 \pm 64 \text{ and } \Omega_m h^2 = 0.130 \left(\frac{n_s}{0.98}\right)^{-1.2} \pm 0.011$$

- Caveats:
 - Distance used is D_V (and not D_A).
Baryon Acoustic Oscillations

- Measurement of baryon acoustic peak in the galaxy distribution (Eisenstein et al., 2005).
- The position of the peak measures the ratio of the sound horizon at recombination vs. angular distance at $z = 0.35$.
- It constrains two quantities: $\Omega_m h^2$ and $D_A(0.35)$

 $D_V = 1370 \pm 64$ and $\Omega_m h^2 = 0.130 (n_s/0.98)^{-1.2} \pm 0.011$

- Caveats:
 - Distance used is D_V (and not D_A)
 - Constraints are derived using ΛCDM
Baryon Acoustic Oscillations

- Measurement of baryon acoustic peak in the galaxy distribution (Eisenstein et al., 2005).

- The position of the peak measures the ratio of the sound horizon at recombination vs. angular distance at $z = 0.35$.

- It constrains two quantities: $\Omega_m h^2$ and $D_A(0.35)$

 $$D_V = 1370 \pm 64 \quad \text{and} \quad \Omega_m h^2 = 0.130 \left(\frac{n_s}{0.98}\right)^{-1.2} \pm 0.011$$

- Caveats:
 - Distance used is D_V (and not D_A)
 - Constraints are derived using ΛCDM
 - One should re-do the analysis with the running, as well.
Baryon Acoustic Oscillations

- If we use the numbers at face value:

11 As in P. Hunt & S. Sarkar '07
If we use the numbers at face value:

Using $n_s \sim 0.73$ the constraint is:

$$\Omega_m h^2_{\text{out}} = 0.185 \pm 0.011,$$

It agrees with our value (0.205 ± 0.01) within 2σ.

11 As in P. Hunt & S. Sarkar '07
If we use the numbers at face value:

Using $n_s \sim 0.73$ the constraint is:

$$\Omega_m h^2_{\text{out}} = 0.185 \pm 0.011,$$

It agrees with our value (0.205 ± 0.01) within 2σ.

On the other hand:

$D_A(0.35) = 1375\text{ Mpc}$ for ΛCDM

$D_A(0.35) = 1800\text{ Mpc}$ for EdS with $h_{\text{out}} \sim 0.45$.

As in P. Hunt & S. Sarkar ’07
Baryon Acoustic Oscillations

- If we use the numbers at face value:

- Using $n_s \sim 0.73$ the constraint is:

 $$\Omega_m h^2_{\text{out}} = 0.185 \pm 0.011,$$

- It agrees with our value (0.205 ± 0.01) within 2σ.

- On the other hand:

 \[D_A(0.35) = 1375 \text{ Mpc} \quad \text{for } \Lambda CDM\]
 \[D_A(0.35) = 1800 \text{ Mpc} \quad \text{for EdS with } h_{\text{out}} \sim 0.45,\]

- Not consistent with11 Eisenstein et al., 2005:

 $$D_V(0.35) = 1370 \pm 64 \text{ Mpc},$$

11 As in P. Hunt & S. Sarkar '07
Problem with BAO

- The problem is the **low value of h_{out} from CMB**!

- $h_{\text{out}} \sim 0.56$ would work...

12 Alnes et al.’06 - ’07, Garcia-Bellido & Haugboelle ’08
Problem with BAO

- The problem is the **low value of** h_{out} from CMB!

- $h_{\text{out}} \sim 0.56$ would work...

- To be checked better

12 Alnes et al.’06 - ’07, Garcia-Bellido & Haugboelle ’08
Problem with BAO

- The problem is the low value of h_{out} from CMB!

- $h_{\text{out}} \sim 0.56$ would work...

- To be checked better

- Possible ways out:

12 Alnes et al.’06 - ’07, Garcia-Bellido & Haugboelle ’08
The problem is the low value of h_{out} from CMB!

$h_{\text{out}} \sim 0.56$ would work…

To be checked better

Possible ways out:

- Fit CMB with higher h?

12 Alnes et al.’06 - ’07, Garcia-Bellido & Haugboelle ’08
The problem is the **low value of** h_{out} **from CMB**!

$h_{\text{out}} \sim 0.56$ would work...

To be checked better

Possible ways out:

- Fit CMB with higher h?
- Need much larger Void12?

12 Alnes et al.’06 - ’07, Garcia-Bellido & Haugboelle ’08
Problem with BAO

- The problem is the low value of h_{out} from CMB!
- $h_{\text{out}} \sim 0.56$ would work...
- To be checked better

Possible ways out:
- Fit CMB with higher h?
- Need much larger Void$_{12}$?
- What about evolution of BAO scale inside large voids?

12 Alnes et al.’06 - ’07, Garcia-Bellido & Haugboelle ’08
Inhomogeneous Universe and Dark Energy

Motivations and Goals
Evidence for Dark Energy
Inhomogeneities?

Backreaction
2nd order
Higher orders

Light propagation

Exact models
Constructing the models
Geodesics
Results

Local Void
SNIa fit
CMB fit

Conclusions

13 Alnes et al. '06
CMB Dipole

- How much Observer can be off-center?
- Observer at Distance d_O from center
 \[\frac{\delta T}{T} \sim v_O \sim \dot{d}_O \]
- CMB dipole $\leq 10^{-3}$ if d_O within $\mathcal{O}(10)\text{Mpc}/h$

\[13\text{ Alnes et al. '06}\]
CMB Dipole

- How much Observer can be off-center?

- Observer at Distance d_O from center

 \[\frac{\delta T}{T} \sim v_O \sim \dot{d}_O \]

- CMB dipole $\leq 10^{-3}$ if d_O within $\mathcal{O}(10)\text{Mpc}/h$

- Higher multipoles go as higher powers of v_O: negligible13.

13 Alnes et al. ’06
CMB Dipole

- How much Observer can be off-center?
- Observer at Distance d_O from center

\[\frac{\delta T}{T} \sim v_O \sim \dot{d}_O \]

- CMB dipole $\leq 10^{-3}$ if d_O within $\mathcal{O}(10)\text{Mpc}/h$

- Higher multipoles go as higher powers of v_O: negligible13.

13 Alnes et al. ’06
Backreaction and Light Propagation

Backreaction

- \(\mathcal{O}(10^{-5})\) at second order
- Nonperturbatively?
- Small in toy models (with "realistic" amount of inhomogeneity)
Backreaction and Light Propagation

Backreaction
- $\mathcal{O}(10^{-5})$ at second order
- Nonperturbatively?
- Small in toy models (with "realistic" amount of inhomogeneity)

Light propagation (in a region of size L)

- $\frac{\delta z}{1+z} = \mathcal{O}(\langle L/r_H \rangle^3)$
- $\frac{\delta D}{D} = \mathcal{O}(\langle L/r_H \rangle^2)$
Backreaction and Light Propagation

- **Backreaction**
 - $O(10^{-5})$ at second order
 - Nonperturbatively?
 - Small in toy models (with "realistic" amount of inhomogeneity)

- **Light propagation (in a region of size L)**
 - $\frac{\delta z}{1+z} = O((L/r_H)^3)$
 - $\frac{\delta D}{D} = O((L/r_H)^2)$ but angular average should be zero
Inhomogeneous Universe and Dark Energy

Motivations and Goals
Evidence for Dark Energy
Inhomogeneities?

Backreaction
2nd order
Higher orders

Light propagation

Exact models
Constructing the models
Geodesics
Results

Local Void
SNIa fit
CMB fit

Conclusions

Backreaction and Light Propagation

Backreaction
- $O(10^{-5})$ at second order
- Nonperturbatively?
- Small in toy models (with "realistic" amount of inhomogeneity)

Light propagation (in a region of size L)
- $\frac{\delta z}{1+z} = O((L/r_H)^3)$
- $\frac{\delta D}{D} = O((L/r_H)^2)$ but angular average should be zero
- If there are many patches the effects are cumulative
Backreaction and Light Propagation

Backreaction

- $\mathcal{O}(10^{-5})$ at second order
- Nonperturbatively?
- Small in toy models (with "realistic" amount of inhomogeneity)

Light propagation (in a region of size L)

\[
\frac{\delta z}{1+z} = \mathcal{O}\left((L/r_H)^3\right)
\]
\[
\frac{\delta D}{D} = \mathcal{O}\left((L/r_H)^2\right) \text{ but angular average should be zero}
\]
- If there are many patches the effects are cumulative
- It does not seem to be enough to mimic acceleration
Local Void scenario

- It mimics Acceleration with at least $L \sim 200 - 250 \text{ Mpc}/h$
- δ quite large (~ 0.4)
 - Disagrees with expected value ($\delta \sim 0.04$).
Local Void scenario

- It mimics Acceleration with at least $L \sim 200 - 250 \, \text{Mpc}/h$
- δ quite large (~ 0.4)
 - Disagrees with expected value ($\delta \sim 0.04$).
- But some observations seem to indicate such structures
 (need for more observations)
Local Void scenario

- It mimics Acceleration with at least $L \sim 200 \text{ -- } 250 \text{ Mpc}/h$

- δ quite large (~ 0.4)
 - Disagrees with expected value ($\delta \sim 0.04$).

- But some observations seem to indicate such structures (need for more observations)

- Consistent with WMAP and SNIa, and local h
Local Void scenario

- It mimics Acceleration with at least $L \sim 200 - 250 \text{ Mpc}/h$
- δ quite large (~ 0.4)
 Disagrees with expected value ($\delta \sim 0.04$).
- But some observations seem to indicate such structures
 (need for more observations)
- Consistent with WMAP and SNIa, and local h
- More data will discriminate (especially SDSS-II for Supernovae)
Local Void scenario

- It mimics Acceleration with at least \(L \sim 200 - 250 \, \text{Mpc}/h \)

- \(\delta \) quite large (\(\sim 0.4 \))

 Disagrees with expected value (\(\delta \sim 0.04 \)).

- But some observations seem to indicate such structures

 (need for more observations)

- Consistent with WMAP and SNIa, and local \(h \)

- More data will discriminate (especially SDSS-II for Supernovae)

- Low \(h_{\text{out}} \): consistency with BAO problematic
Local Void scenario

- It mimics Acceleration with at least $L \sim 200 - 250 \text{ Mpc}/h$

- δ quite large (~ 0.4)
 Disagrees with expected value ($\delta \sim 0.04$).

- But some observations seem to indicate such structures (need for more observations)

- Consistent with WMAP and SNIa, and local h

- More data will discriminate (especially SDSS-II for Supernovae)

- Low h_{out}: consistency with BAO problematic (larger Void? $O(1000 \text{ Mpc}/h)$)
Observer has to sit near the center (10% precision in radial position)
Local Void scenario

- Observer has to sit near the center (10% precision in radial position)
- But this may be further detected as anisotropic expansion
Local Void scenario

- Observer has to sit near the center (10% precision in radial position)
- But this may be further detected as anisotropic expansion
- Requires peculiar primordial spectrum: low tilt, large running.
Local Void scenario

- Observer has to sit near the center (10% precision in radial position)
- But this may be further detected as anisotropic expansion
- Requires peculiar primordial spectrum: low tilt, large running.
- Analysis of LSS and Lyman-α forest to be done
Local Void scenario

- Observer has to sit **near the center** (10% precision in radial position)

- But this may be further detected as anisotropic expansion

- Requires peculiar primordial spectrum: low tilt, large running.

- Analysis of LSS and Lyman-α forest to be done

- ISW effect to be computed (assuming many voids)
Local Void scenario

- Observer has to sit near the center (10% precision in radial position)
- But this may be further detected as anisotropic expansion
- Requires peculiar primordial spectrum: low tilt, large running.
- Analysis of LSS and Lyman-α forest to be done
- ISW effect to be computed (assuming many voids)
- Check directly in galaxy Surveys data if this could be compatible
Local Void scenario

- Observer has to sit near the center (10% precision in radial position)
- But this may be further detected as anisotropic expansion
- Requires peculiar primordial spectrum: low tilt, large running.
- Analysis of LSS and Lyman-α forest to be done
- ISW effect to be computed (assuming many voids)
- Check directly in galaxy Surveys data if this could be compatible
- Check if the higher Ω_m/Ω_b is compatible with other data
Inhomogeneous Cosmology, Swiss-Cheese, Voids: can it mimic Dark Energy?

Alessio Notari

CERN

Apr. 2008, PONT d’Avignon

14 In collaboration with: Tirthabir Biswas, Stephon Alexander, Deepak Vaid (Penn State U.), Reza Mansouri (Sharif U., Iran)
The density

- Roughly:

\[\rho(r, t) \simeq \frac{\langle \rho \rangle(t)}{1 + \left(\frac{t}{t_0}\right)^{2/3} \epsilon(r)}, \]

where \(\langle \rho \rangle(t) \equiv \frac{M_p^2}{6\pi t^2} \), and \(\epsilon(r) \equiv 3k(r) + rk'(r) \).
The density

Roughly:

\[\rho(r, t) \approx \frac{\langle \rho \rangle(t)}{1 + (t/t_0)^{2/3} \epsilon(r)} , \]

where \(\langle \rho \rangle(t) \equiv \frac{M_p^2}{6\pi t^2} \), \(\epsilon(r) \equiv 3k(r) + rk'(r) \).

\[\epsilon \ll 1 \text{ linear growth} \]
The density

Roughly:

\[\rho(r, t) \simeq \frac{\langle \rho \rangle(t)}{1 + \left(\frac{t}{t_0}\right)^{2/3} \epsilon(r)}, \]

where \(\langle \rho \rangle(t) \equiv \frac{M_p^2}{6\pi t^2} \), and \(\epsilon(r) \equiv 3k(r) + rk'(r) \).

\(\epsilon \ll 1 \) linear growth \(\propto a(t) \propto t^{2/3} \)
The density

Roughly:

\[\rho(r, t) \simeq \frac{\langle \rho \rangle(t)}{1 + (t/t_0)^{2/3} \epsilon(r)}, \]

where \(\langle \rho \rangle(t) \equiv \frac{M_p^2}{6\pi t^2} \), and \(\epsilon(r) \equiv 3k(r) + rk'(r) \).

\(\epsilon \ll 1 \) linear growth \(\propto a(t) \propto t^{2/3} \)

\(\epsilon \) not small: \(\delta \) grows rapidly (as in Zel’dovich approx)
Parameter values

<table>
<thead>
<tr>
<th>Model</th>
<th>ΛCDM</th>
<th>EdS, $\alpha_S = 0$</th>
<th>Eds, $\alpha_S \neq 0$</th>
<th>Eds, α_S, $\Omega_k \neq 0$</th>
</tr>
</thead>
<tbody>
<tr>
<td>$\Omega_b h^2_{\text{out}}$</td>
<td>0.022$^{+0.002}_{-0.002}$</td>
<td>0.022$^{+0.001}_{-0.001}$</td>
<td>0.018$^{+0.001}_{-0.002}$</td>
<td>0.019$^{+0.002}_{-0.001}$</td>
</tr>
<tr>
<td>$\Omega_m h^2_{\text{out}}$</td>
<td>0.106$^{+0.021}_{-0.013}$</td>
<td>0.198$^{+0.008}_{-0.011}$</td>
<td>0.186$^{+0.011}_{-0.009}$</td>
<td>0.167$^{+0.009}_{-0.007}$</td>
</tr>
<tr>
<td>Ω_{Λ}</td>
<td>0.759$^{+0.041}_{-0.103}$</td>
<td>0.0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>z_{re}</td>
<td>11.734$^{+4.993}_{-7.619}$</td>
<td>8.697$^{+4.351}_{-6.694}$</td>
<td>13.754$^{+2.246}_{-5.752}$</td>
<td>13.342$^{+2.55}_{-5.011}$</td>
</tr>
<tr>
<td>Ω_k</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>-0.05</td>
</tr>
<tr>
<td>n_S</td>
<td>0.96$^{+0.04}_{-0.04}$</td>
<td>0.94$^{+0.021}_{-0.038}$</td>
<td>0.732$^{+0.07}_{-0.071}$</td>
<td>0.761$^{+0.069}_{-0.069}$</td>
</tr>
<tr>
<td>α_S</td>
<td>0</td>
<td>0</td>
<td>$-0.161^{+0.044}_{-0.044}$</td>
<td>$-0.13^{+0.037}_{-0.048}$</td>
</tr>
<tr>
<td>$10^{10}A_S$</td>
<td>20.841$^{+3.116}_{-3.442}$</td>
<td>25.459$^{+2.135}_{-2.766}$</td>
<td>25.302$^{+2.182}_{-2.968}$</td>
<td>23.975$^{+2.198}_{-2.448}$</td>
</tr>
<tr>
<td>Ω_m/Ω_b</td>
<td>4.73$^{+0.999}_{-0.485}$</td>
<td>9.119$^{+0.341}_{-0.357}$</td>
<td>10.094$^{+0.645}_{-0.489}$</td>
<td>8.929$^{+0.512}_{-0.541}$</td>
</tr>
<tr>
<td>h_{out}</td>
<td>.72857$^{+0.05137}_{-0.07393}$</td>
<td>.46857$^{+0.00888}_{-0.01307}$</td>
<td>.4523$^{+0.01291}_{-0.01129}$</td>
<td>.42069$^{+0.01107}_{-0.00919}$</td>
</tr>
<tr>
<td>Age/GYr</td>
<td>13.733$^{+0.389}_{-0.369}$</td>
<td>13.908$^{+0.399}_{-0.258}$</td>
<td>14.408$^{+0.369}_{-0.4}$</td>
<td>15.338$^{+0.342}_{-0.393}$</td>
</tr>
<tr>
<td>σ_8</td>
<td>0.77$^{+0.121}_{-0.109}$</td>
<td>1.012$^{+0.056}_{-0.081}$</td>
<td>0.919$^{+0.07}_{-0.075}$</td>
<td>0.862$^{+0.06}_{-0.063}$</td>
</tr>
<tr>
<td>τ</td>
<td>0.095$^{+0.072}_{-0.074}$</td>
<td>0.047$^{+0.037}_{-0.041}$</td>
<td>0.079$^{+0.023}_{-0.044}$</td>
<td>0.081$^{+0.024}_{-0.041}$</td>
</tr>
</tbody>
</table>

Table: Most likely parameter values with 1 σ errors for the various COSMOMC Runs
Parameter likelihood

Figure: likelihoods to WMAP 3-yr for the run “EdS with α_s”
Parameter likelihood

Figure: Contour likelihood plots to WMAP 3-yr for the run “EdS with α_s”
Inhomogeneous Universe and Dark Energy

Motivations and Goals
Evidence for Dark Energy
Inhomogeneities?
Backreaction
2nd order
Higher orders
Light propagation
Exact models
Constructing the models
Geodesics
Results
Local Void
SNIa fit
CMB fit
Conclusions

Table: The "acceptable-fit" has G.O.F. of about 10% for SN

<table>
<thead>
<tr>
<th>Parameter</th>
<th>L</th>
<th>$\Omega_b h^2_{\text{out}}$</th>
<th>$\Omega_m h^2_{\text{out}}$</th>
<th>z_{re}</th>
<th>σ_8</th>
</tr>
</thead>
<tbody>
<tr>
<td>Best-fit</td>
<td>250$/h$</td>
<td>0.018$^{+0.002}_{-0.002}$</td>
<td>0.19$^{+0.01}_{-0.01}$</td>
<td>13.8$^{+2.2}_{-5.8}$</td>
<td>0.92$^{+0.07}_{-0.08}$</td>
</tr>
<tr>
<td>Acceptable-fit</td>
<td>160$/h$</td>
<td>0.02</td>
<td>0.2</td>
<td>13.8</td>
<td>0.92</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Parameter</th>
<th>n_s</th>
<th>α_s</th>
<th>δ_0</th>
<th>h_{out}</th>
<th>h</th>
</tr>
</thead>
<tbody>
<tr>
<td>Best-fit</td>
<td>0.73$^{+0.07}_{-0.07}$</td>
<td>$-0.16^{+0.05}_{-0.04}$</td>
<td>0.51$^{+0.03}_{-0.04}$</td>
<td>0.452$^{+0.013}_{-0.011}$</td>
<td>0.55$^{+0.024}_{-0.023}$</td>
</tr>
<tr>
<td>Acceptable-fit</td>
<td>0.73</td>
<td>-0.16</td>
<td>0.44</td>
<td>0.47</td>
<td>0.55</td>
</tr>
</tbody>
</table>
Inhomogeneous Universe and Dark Energy

Motivations and Goals
Evidence for Dark Energy

Inhomogeneities?
Backreaction
2nd order
Higher orders

Light propagation

Exact models
Constructing the models
Geodesics

Results

Local Void
SNIa fit
CMB fit

Conclusions

h in the Bump model

Figure: 1-\(\sigma\) and 2-\(\sigma\) Contour plots for h vs. h_{out}.
off-center location: dipole
off-center location: dipole and integrated effect (low-l)
off-center location: dipole and integrated effect (low-l)

photons going through similar Voids $O(r_{\text{Void}}/r_{\text{Hor}})^3$: similar to ISW effect?
- off-center location: dipole and integrated effect (low-\(l\))
- photons going through similar Voids \(\mathcal{O}(r_{\text{Void}}/r_{\text{Hor}})^3\): similar to ISW effect?
- Non-sphericity (again effect on low-\(l\))
Inhomogeneous Universe and Dark Energy

Motivations and Goals
- Evidence for Dark Energy
- Inhomogeneities?

Backreaction
- 2^{nd} order
- Higher orders

Light propagation

Exact models
- Constructing the models
- Geodesics
- Results

Local Void
- SNIa fit
- CMB fit

Conclusions

- off-center location: dipole and integrated effect (low-l)
- photons going through similar Voids $\mathcal{O}(r_{\text{Void}}/r_{\text{Hor}})^3$: similar to ISW effect?
- Non-sphericity (again effect on low-l)
Similarly the expansion is anisotropic if d_O nonzero15.

\[\text{\footnotesize15 Tomita (2000), Alnes et al. ('06)}\]
Similarly the expansion is anisotropic if d_O nonzero15.

Two papers claim significant anisotropy in H:

- D.Schwarz & Weinhorst ’07: in the SNIa dataset
- McClure & Dyer ’07: in the *Hubble Key Project* data

15 Tomita (2000), Alnes et al. (’06)
Anisotropy of H

- Similarly the expansion is anisotropic if d_O nonzero\(^{15}\).

- Two papers claim significant anisotropy in H:
 - D.Schwarz & Weinhorst ’07: in the SNIa dataset
 - McClure & Dyer ’07: in the *Hubble Key Project* data

- In addition this should be correlated with CMB dipole

\(^{15}\) Tomita (2000), Alnes et al. (’06)
Similarly the expansion is anisotropic if d_O nonzero\(^{15}\).

Two papers claim significant anisotropy in H:
- D.Schwarz & Weinhorst ’07: in the SNIa dataset
- McClure & Dyer ’07: in the *Hubble Key Project* data

In addition this should be correlated with CMB dipole

Also to be explored: non-sphericity of Void

\(^{15}\) Tomita (2000), Alnes et al. (’06)
It is well-known that linear Φ constant in Matter Dominated Universe
- It is well-known that linear Φ constant in Matter Dominated Universe

- If they evolve instead \Rightarrow photon feels $\Delta \Phi$ inside structures \Rightarrow additional secondary CMB anisotropy

- Correlation of CMB with LSS
ISW

- It is well-known that linear Φ constant in Matter Dominated Universe
- If they evolve instead \Rightarrow photon feels $\Delta \Phi$ inside structures \Rightarrow additional secondary CMB anisotropy
- Correlation of CMB with LSS
- Detected with some significance by several groups at low-l
- Consistent with $\Omega_\Lambda \sim 0.7$
ISW

- It is well-known that linear Φ constant in Matter Dominated Universe
- If they evolve instead \Rightarrow photon feels $\Delta \Phi$ inside structures \Rightarrow additional secondary CMB anisotropy
- Correlation of CMB with LSS
- Detected with some significance by several groups at low-l
- Consistent with $\Omega_\Lambda \sim 0.7$
- Can we get this in our scenario?
It is well-known that linear Φ constant in Matter Dominated Universe.

If they evolve instead \Rightarrow photon feels $\Delta \Phi$ inside structures \Rightarrow additional secondary CMB anisotropy

Correlation of CMB with LSS

Detected with some significance by several groups at low-l

Consistent with $\Omega_\Lambda \sim 0.7$

Can we get this in our scenario?

If there are other big Voids in the sky \Rightarrow nonlinear evolution of Φ (even in Matter Dominated Universe)

Effect of order $(L/r_{\text{hor}})^3 \sim \mathcal{O}(10^{-5})$
It is well-known that linear Φ constant in Matter Dominated Universe

If they evolve instead \Rightarrow photon feels $\Delta \Phi$ inside structures \Rightarrow additional secondary CMB anisotropy

Correlation of CMB with LSS

Detected with some significance by several groups at low-l

Consistent with $\Omega_\Lambda \sim 0.7$

Can we get this in our scenario?

If there are other big Voids in the sky \Rightarrow nonlinear evolution of Φ (even in Matter Dominated Universe)

Effect of order $(L/r_{\text{hor}})^3 \sim O(10^{-5})$

To be studied in detail...