Gravitational MHV Amplitudes in Twistor Space

David Skinner

Mathematical Institute, Oxford
Based on work in progress with L. Mason

Wonders of Gauge Theory \& Supergravity
$23^{\text {rd }}$ June 2008

MHV perturbation theory

- Can build SYM perturbation theory from MHV amplitudes, continued off-shell, together with +- propagators
(Cachazo, Svrček, Witten; Bedford, Brandhuber, Spence, Travaglini; Bena, Bern, Kosower, Roiban + many others)
- Can build SYM perturbation theory from MHV amplitudes, continued off-shell, together with +- propagators
(Cachazo, Svrček, Witten; Bedford, Brandhuber, Spence, Travaglini; Bena, Bern, Kosower, Roiban + many others)
- Can something similar be true for gravity?
(Bern, Dixon, Dunbar, Kosower, Bjerrum-Bohr, Ita, Perkins, Risager)

MHV perturbation theory

- Can build SYM perturbation theory from MHV amplitudes, continued off-shell, together with +- propagators
(Cachazo, Svrček, Witten; Bedford, Brandhuber, Spence, Travaglini; Bena, Bern, Kosower, Roiban + many others)
- Can something similar be true for gravity?
(Bern, Dixon, Dunbar, Kosower, Bjerrum-Bohr, Ita, Perkins, Risager)
- Usual recursive methods break down at NMHV for $n \geq 12$
(Bianchi, Elvang, Freedman)
- Can build SYM perturbation theory from MHV amplitudes, continued off-shell, together with +- propagators
(Cachazo, Svrček, Witten; Bedford, Brandhuber, Spence, Travaglini; Bena, Bern, Kosower, Roiban + many others)
- Can something similar be true for gravity?
(Bern, Dixon, Dunbar, Kosower, Bjerrum-Bohr, Ita, Perkins, Risager)
- Usual recursive methods break down at NMHV for $n \geq 12$
(Bianchi, Elvang, Freedman)
- Another approach: look for action whose off-shell Feynman diagrams involve MHV vertices
- Can build SYM perturbation theory from MHV amplitudes, continued off-shell, together with +- propagators
(Cachazo, Svrček, Witten; Bedford, Brandhuber, Spence, Travaglini; Bena, Bern, Kosower, Roiban + many others)
- Can something similar be true for gravity?
(Bern, Dixon, Dunbar, Kosower, Bjerrum-Bohr, Ita, Perkins, Risager)
- Usual recursive methods break down at NMHV for $n \geq 12$
(Bianchi, Elvang, Freedman)
- Another approach: look for action whose off-shell Feynman diagrams involve MHV vertices
- For Yang-Mills, this is successful (review later...)
(Boels, Mason, DS; Mansfield; Gorsky, Rosly; Ettle, Fu, Fudger, Morris)
- Can build SYM perturbation theory from MHV amplitudes, continued off-shell, together with +- propagators
(Cachazo, Svrček, Witten; Bedford, Brandhuber, Spence, Travaglini; Bena, Bern, Kosower, Roiban + many others)
- Can something similar be true for gravity?
(Bern, Dixon, Dunbar, Kosower, Bjerrum-Bohr, Ita, Perkins, Risager)
- Usual recursive methods break down at NMHV for $n \geq 12$
(Bianchi, Elvang, Freedman)
- Another approach: look for action whose off-shell Feynman diagrams involve MHV vertices
- For Yang-Mills, this is successful (review later...)
(Boels, Mason, DS; Mansfield; Gorsky, Rosly; Ettle, Fu, Fudger, Morris)
- Can we find an action whose vertices gives these amplitudes?
(Theisen, Ananth)

Gravity

Gravitational MHV amplitudes (Berends, Giele \& Kuijf)

$$
\mathcal{M}=[1 n]^{8}\left\{\frac{\langle 12\rangle\langle n-2 n-1\rangle}{[1 n-1]} \frac{F}{N(n)} \prod_{i=1}^{n-3} \prod_{j=i+2}^{n-1}[i j]+\mathrm{P}_{(2, \ldots, n-2)}\right\}
$$

where $N(n):=\prod_{i<j}[i j]$ and $\left.F:=\prod_{k=3}^{n-3}\langle k| p_{k+1}+p_{k+2}+\cdots+p_{n-1} \mid n\right]$

- Apology: with Penrose conventions for twistor space, natural amplitudes are mostly minus
- Can simplify a little...

Gravity

Gravity

$$
\mathcal{M}=\frac{[1 n]^{8}}{[1 n-1][n-1 n][n 1]}\left\{\frac{1}{C(n)} \prod_{k=2}^{n-2} \frac{\left.\langle k| p_{k+1}+\cdots+p_{n-1} \mid n\right]}{[k n]}+\text { Perms }\right\}
$$

- Works for all MHV amplitudes $n \geq 3$

Gravity

Gravity

$$
\mathcal{M}=\frac{[1 n]^{8}}{[1 n-1][n-1 n][n 1]}\left\{\frac{1}{C(n)} \prod_{k=2}^{n-2} \frac{\left.\langle k| p_{k+1}+\cdots+p_{n-1} \mid n\right]}{[k n]}+\text { Perms }\right\}
$$

- Works for all MHV amplitudes $n \geq 3$
- Appears to single out gravitons $1, n-1 \& n$

Gravity

Gravity

$$
\mathcal{M}=\frac{[1 n]^{8}}{[1 n-1][n-1 n][n 1]}\left\{\frac{1}{C(n)} \prod_{k=2}^{n-2} \frac{\left.\langle k| p_{k+1}+\cdots+p_{n-1} \mid n\right]}{[k n]}+\text { Perms }\right\}
$$

- Works for all MHV amplitudes $n \geq 3$
- Appears to single out gravitons $1, n-1 \& n$
- Extension to $\mathcal{N} \leq 8$ known through KLT relations; can be generated from pure gravity case (Bianchi, Elvang, Freedman)

Gravity

Gravity

$$
\mathcal{M}=\frac{[1 n]^{8}}{[1 n-1][n-1 n][n 1]}\left\{\frac{1}{C(n)} \prod_{k=2}^{n-2} \frac{\left.\langle k| p_{k+1}+\cdots+p_{n-1} \mid n\right]}{[k n]}+\text { Perms }\right\}
$$

- Works for all MHV amplitudes $n \geq 3$
- Appears to single out gravitons $1, n-1 \& n$
- Extension to $\mathcal{N} \leq 8$ known through KLT relations; can be generated from pure gravity case (Bianchi, Elvang, Freedman)
- Has derivative of a δ-fn support on holomorphic twistor lines (Witten)

Gravity

Gravity

$\mathcal{M}=\frac{[1 n]^{8}}{[1 n-1][n-1 n][n 1]}\left\{\frac{1}{C(n)} \prod_{k=2}^{n-2} \frac{\left.\langle k| p_{k+1}+\cdots+p_{n-1} \mid n\right]}{[k n]}+\right.$ Perms $\}$

- Works for all MHV amplitudes $n \geq 3$
- Appears to single out gravitons $1, n-1 \& n$
- Extension to $\mathcal{N} \leq 8$ known through KLT relations; can be generated from pure gravity case (Bianchi, Elvang, Freedman)
- Has derivative of a δ-fn support on holomorphic twistor lines (witten)

Today, as a first step, we'll construct an on-shell generating function in twistor space, whose expansion gives the BGK amplitudes

Outline

- Brief review of Yang-Mills
- Chalmers \& Siegel action
- Parke-Taylor amplitudes from Penrose transform of G^{+2}
- Brief review of Yang-Mills
- Chalmers \& Siegel action
- Parke-Taylor amplitudes from Penrose transform of G^{+2}
- Gravity
- Plebanski action
- Twistor basics
- Non-linear graviton
- BGK amplitudes from Penrose transform of Γ^{2}
- Brief review of Yang-Mills
- Chalmers \& Siegel action
- Parke-Taylor amplitudes from Penrose transform of G^{+2}
- Gravity
- Plebanski action
- Twistor basics
- Non-linear graviton
- BGK amplitudes from Penrose transform of Γ^{2}
- Open questions \& conclusions

Scattering off an ASD background

MHV amplitudes involve 2 positive and $n-2$ negative helicity particles

Scattering off an ASD background

A background made up entirely of negative helicity gluons/gravitons is anti self-dual

Scattering off an ASD background

A background made up entirely of negative helicity gluons/gravitons is anti self-dual

- Want an action that is well-adapted to describe this ASD background

Chalmers \& Siegel Action

For Yang-Mills, appropriate action is

Yang-Mills (Chalmers \& Siegel, 1996)

$$
S=\int_{M} \operatorname{tr}\left(G^{+} \wedge F_{A}-g^{2} G^{+} \wedge G^{+}\right)
$$

where $F_{A}=d A+\frac{1}{2}[A, A]$ is usual YM curvature and G^{+}is a Lie-algebra valued self-dual 2-form

Chalmers \& Siegel Action

For Yang-Mills, appropriate action is

Yang-Mills (Chalmers \& Siegel, 1996)

$$
S=\int_{M} \operatorname{tr}\left(G^{+} \wedge F_{A}-g^{2} G^{+} \wedge G^{+}\right)
$$

where $F_{A}=d A+\frac{1}{2}[A, A]$ is usual YM curvature and G^{+}is a Lie-algebra valued self-dual 2-form

- A and G^{+}are treated as independent fields

For Yang-Mills, appropriate action is

Yang-Mills (Chalmers \& Siegel, 1996)

$$
S=\int_{M} \operatorname{tr}\left(G^{+} \wedge F_{A}-g^{2} G^{+} \wedge G^{+}\right)
$$

where $F_{A}=d A+\frac{1}{2}[A, A]$ is usual YM curvature and G^{+}is a Lie-algebra valued self-dual 2-form

- A and G^{+}are treated as independent fields
- No coupling constant in F_{A}; $\lim g^{2} \rightarrow 0, G^{+}$becomes Lagrange multiplier enforcing $F_{A}^{+}=0$

For Yang-Mills, appropriate action is

Yang-Mills (Chalmers \& Siegel, 1996)

$$
S=\int_{M} \operatorname{tr}\left(G^{+} \wedge F_{A}-g^{2} G^{+} \wedge G^{+}\right)
$$

where $F_{A}=d A+\frac{1}{2}[A, A]$ is usual YM curvature and G^{+}is a Lie-algebra valued self-dual 2-form

- A and G^{+}are treated as independent fields
- No coupling constant in F_{A}; $\lim g^{2} \rightarrow 0, G^{+}$becomes Lagrange multiplier enforcing $F_{A}^{+}=0$
- $g^{2} \neq 0, G^{+}$eom is $G^{+}=F_{A}^{+} / 2 g^{2} \Rightarrow$ usual YM action (+ top.)

For Yang-Mills, appropriate action is

Yang-Mills (Chalmers \& Siegel, 1996)

$$
S=\int_{M} \operatorname{tr}\left(G^{+} \wedge F_{A}-g^{2} G^{+} \wedge G^{+}\right)
$$

where $F_{A}=d A+\frac{1}{2}[A, A]$ is usual YM curvature and G^{+}is a Lie-algebra valued self-dual 2-form

- A and G^{+}are treated as independent fields
- No coupling constant in F_{A}; $\lim g^{2} \rightarrow 0, G^{+}$becomes Lagrange multiplier enforcing $F_{A}^{+}=0$
- $g^{2} \neq 0, G^{+}$eom is $G^{+}=F_{A}^{+} / 2 g^{2} \Rightarrow$ usual YM action (+ top.)

Suggests MHV amplitudes are hiding in the G^{+2} term

According to the Penrose transform
$\left\{\begin{array}{c}\text { elements of } H^{1}\left(\mathbb{P} \mathbb{T}^{\prime}, \mathcal{O}(-2 h-2)\right) \\ \text { on twistor space } \mathbb{P} \mathbb{T}^{\prime}\end{array}\right\} \simeq\left\{\begin{array}{c}\text { soln of wave eqn for massless } \\ \text { linearized field, helicity } h\end{array}\right\}$

According to the Penrose transform
$\left\{\begin{array}{c}\text { elements of } H^{1}\left(\mathbb{P} \mathbb{T}^{\prime}, \mathcal{O}(-2 h-2)\right) \\ \text { on twistor space } \mathbb{P} \mathbb{T}^{\prime}\end{array}\right\} \simeq\left\{\begin{array}{c}\text { soln of wave eqn for massless } \\ \text { linearized field, helicity } h\end{array}\right\}$
So, for a gluon of $h=+1$ in Maxwell theory

$$
G_{\dot{\alpha} \dot{\beta}}(x)=\left.\int_{L_{x}}[\pi \mathrm{~d} \pi] \pi_{\dot{\alpha}} \pi_{\dot{\beta}} \mathcal{G}\right|_{L_{x}}
$$

where $G^{+}=G_{\dot{\alpha} \dot{\beta}} d x^{\alpha(\dot{\alpha}} \wedge d x_{\alpha}^{\dot{\beta})}$ and \mathcal{G} is a (0,1)-form of weight -4,

According to the Penrose transform
$\left\{\begin{array}{c}\text { elements of } H^{1}\left(\mathbb{P} \mathbb{T}^{\prime}, \mathcal{O}(-2 h-2)\right) \\ \text { on twistor space } \mathbb{P} \mathbb{T}^{\prime}\end{array}\right\} \simeq\left\{\begin{array}{c}\text { soln of wave eqn for massless } \\ \text { linearized field, helicity } h\end{array}\right\}$
So, for a gluon of $h=+1$ in Yang-Mills theory

$$
G_{\dot{\alpha} \dot{\beta}}(x)=\left.\int_{L_{x}}[\pi \mathrm{~d} \pi] \pi_{\dot{\alpha}} \pi_{\dot{\beta}} H^{-1} \mathcal{G}(Z)\right|_{L_{x}} H
$$

where $G^{+}=G_{\dot{\alpha} \dot{\beta}} d x^{\alpha(\dot{\alpha}} \wedge d x_{\alpha}^{\dot{\beta})}$ and \mathcal{G} is a (0,1)-form of weight -4, valued in $\operatorname{End}(E)$

- $H(x, \pi)$ are holomorphic frames trivializing $\left.E\right|_{L_{x}}$, ie $\left.\mathcal{A}\right|_{L_{x}}=-\bar{\partial} H H^{-1}$ H is a gauge transform relating the ASD bundle \mathbb{C}-str to the flat bundle \mathbb{C}-str

According to the Penrose transform
$\left\{\begin{array}{c}\text { elements of } H^{1}\left(\mathbb{P} \mathbb{T}^{\prime}, \mathcal{O}(-2 h-2)\right) \\ \text { on twistor space } \mathbb{P} \mathbb{T}^{\prime}\end{array}\right\} \simeq\left\{\begin{array}{c}\text { soln of wave eqn for massless } \\ \text { linearized field, helicity } h\end{array}\right\}$
So, for a gluon of $h=+1$ in Yang-Mills theory

$$
G_{\dot{\alpha} \dot{\beta}}(x)=\left.\int_{L_{x}}[\pi \mathrm{~d} \pi] \pi_{\dot{\alpha}} \pi_{\dot{\beta}} H^{-1} \mathcal{G}(Z)\right|_{L_{x}} H
$$

where $G^{+}=G_{\dot{\alpha} \dot{\beta}} d x^{\alpha(\dot{\alpha}} \wedge d x_{\alpha}^{\dot{\beta})}$ and \mathcal{G} is a (0,1)-form of weight -4, valued in $\operatorname{End}(E)$

- $H(x, \pi)$ are holomorphic frames trivializing $\left.E\right|_{L_{x}}$, ie $\left.\mathcal{A}\right|_{L_{x}}=-\bar{\partial} H H^{-1}$ H is a gauge transform relating the ASD bundle \mathbb{C}-str to the flat bundle \mathbb{C}-str
- If $\mathcal{G} \in H^{0,1}\left(\mathbb{P T} \mathbb{T}^{\prime}, \mathcal{O}(-4) \otimes \operatorname{End}(E)\right)$, then $d_{A} G^{+}=0$ by construction

The $G^{+^{2}}$ term in twistor space

Using this transform in Chalmers' \& Siegel's action gives

$$
\int \operatorname{tr} G^{+^{2}}=\int \mathrm{d}^{4} \times\left[\pi_{1} \mathrm{~d} \pi_{1}\right]\left[\pi_{2} \mathrm{~d} \pi_{2}\right]\left[\pi_{1} \pi_{2}\right]^{2} \operatorname{tr}\left(H_{2}^{-1} \mathcal{G}_{2} H_{2} H_{1}^{-1} \mathcal{G}_{1} H_{1}\right)
$$

The $G^{+^{2}}$ term in twistor space

Using this transform in Chalmers' \& Siegel's action gives

$$
\int \operatorname{tr} G^{+^{2}}=\int \mathrm{d}^{4} x\left[\pi_{1} \mathrm{~d} \pi_{1}\right]\left[\pi_{2} \mathrm{~d} \pi_{2}\right]\left[\pi_{1} \pi_{2}\right]^{4} \operatorname{tr}\left(\frac{H_{1} H_{2}^{-1}}{\left[\pi_{1} \pi_{2}\right]} \mathcal{G}_{2} \frac{H_{2} H_{1}^{-1}}{\left[\pi_{1} \pi_{2}\right]} \mathcal{G}_{1}\right)
$$

The $G^{+^{2}}$ term in twistor space

Using this transform in Chalmers' \& Siegel's action gives

$$
\int \operatorname{tr} G^{+^{2}}=\int \mathrm{d}^{4} x\left[\pi_{1} \mathrm{~d} \pi_{1}\right]\left[\pi_{2} \mathrm{~d} \pi_{2}\right]\left[\pi_{1} \pi_{2}\right]^{4} \operatorname{tr}\left(\frac{H_{1} H_{2}^{-1}}{\left[\pi_{1} \pi_{2}\right]} \mathcal{G}_{2} \frac{H_{2} H_{1}^{-1}}{\left[\pi_{1} \pi_{2}\right]} \mathcal{G}_{1}\right)
$$

The $G^{+^{2}}$ term in twistor space

Using this transform in Chalmers' \& Siegel's action gives

$$
\int \operatorname{tr} G^{+2}=\int \mathrm{d}^{4} \times \operatorname{tr}\left(H_{1} \frac{1}{\bar{\partial}_{12}} H_{2}^{-1} \mathcal{G}_{2}\left[\pi_{2} \pi_{1}\right]^{4} H_{2} \frac{1}{\bar{\partial}_{21}} H_{1}^{-1} \mathcal{G}_{1}\right)
$$

The $G^{+^{2}}$ term in twistor space

Using this transform in Chalmers' \& Siegel's action gives

$$
\int \operatorname{tr} G^{+2}=\int \mathrm{d}^{4} \times \operatorname{tr}\left(H_{1} \frac{1}{\bar{\partial}_{12}} H_{2}^{-1} \mathcal{G}_{2}\left[\pi_{2} \pi_{1}\right]^{4} H_{2} \frac{1}{\bar{\partial}_{21}} H_{1}^{-1} \mathcal{G}_{1}\right)
$$

The $G^{+^{2}}$ term in twistor space

Using this transform in Chalmers' \& Siegel's action gives

$$
\int \operatorname{tr} G^{+^{2}}=\int \mathrm{d}^{4} \times \operatorname{tr}\left(\frac{1}{\bar{\partial}+\mathcal{A}} \mathcal{G}_{2} \pi_{2 \dot{\alpha}} \pi_{2 \dot{\beta}} \pi_{2 \dot{\gamma}} \pi_{2 \dot{\delta}} \frac{1}{\bar{\partial}+\mathcal{A}} \mathcal{G}_{1} \pi_{1 \dot{\alpha}} \pi_{1 \dot{\beta}} \pi_{1 \dot{\gamma}} \pi_{1 \dot{\delta}}\right)
$$

The $G^{+^{2}}$ term in twistor space

Using this transform in Chalmers' \& Siegel's action gives

$$
\int \operatorname{tr} G^{+2}=\int \mathrm{d}^{4} \times \operatorname{tr}\left(\frac{1}{\bar{\partial}+\mathcal{A}} \mathcal{G}_{2} \pi_{2 \dot{\alpha}} \pi_{2 \dot{\beta}} \pi_{2 \dot{\gamma}} \pi_{2 \dot{\delta}} \frac{1}{\bar{\partial}+\mathcal{A}} \mathcal{G}_{1} \pi_{1 \dot{\alpha}} \pi_{1 \dot{\beta}} \pi_{1 \dot{\gamma}} \pi_{1 \dot{\delta}}\right)
$$

- Parke-Taylor amplitudes \Rightarrow expand in \mathcal{A} with

$$
\frac{1}{\overline{\bar{\partial}}+\mathcal{A}}=\frac{1}{\bar{\partial}}-\frac{1}{\bar{\partial}} \mathcal{A} \frac{1}{\bar{\partial}}+\frac{1}{\bar{\partial}} \mathcal{A} \frac{1}{\bar{\partial}} \mathcal{A} \frac{1}{\bar{\partial}}-\frac{1}{\bar{\partial}} \mathcal{A} \frac{1}{\bar{\partial}} \mathcal{A} \frac{1}{\bar{\partial}} \mathcal{A} \frac{1}{\bar{\partial}}+\cdots
$$

(recall $\bar{\partial}^{-1} \sim 1 /\left[\pi_{i} \pi_{j}\right]$) and use standard momentum eigenstates

The $G^{+^{2}}$ term in twistor space

Using this transform in Chalmers' \& Siegel's action gives

$$
\int \operatorname{tr} G^{+^{2}}=\int \mathrm{d}^{4} x \operatorname{tr}\left(\frac{1}{\bar{\partial}+\mathcal{A}} \mathcal{G}_{2} \pi_{2 \dot{\alpha}} \pi_{2 \dot{\beta}} \pi_{2 \dot{\gamma}} \pi_{2 \dot{\delta}} \frac{1}{\bar{\partial}+\mathcal{A}} \mathcal{G}_{1} \pi_{1 \dot{\alpha}} \pi_{1 \dot{\beta}} \pi_{1 \dot{\gamma}} \pi_{1 \dot{\delta}}\right)
$$

- Parke-Taylor amplitudes \Rightarrow expand in \mathcal{A} with

$$
\frac{1}{\overline{\bar{\partial}}+\mathcal{A}}=\frac{1}{\bar{\partial}}-\frac{1}{\bar{\partial}} \mathcal{A} \frac{1}{\bar{\partial}}+\frac{1}{\bar{\partial}} \mathcal{A} \frac{1}{\bar{\partial}} \mathcal{A} \frac{1}{\bar{\partial}}-\frac{1}{\bar{\partial}} \mathcal{A} \frac{1}{\bar{\partial}} \mathcal{A} \frac{1}{\bar{\partial}} \mathcal{A} \frac{1}{\bar{\partial}}+\cdots
$$

(recall $\bar{\partial}^{-1} \sim 1 /\left[\pi_{i} \pi_{j}\right]$) and use standard momentum eigenstates

- Has susy extensions for $\mathcal{N} \leq 4 ; \mathcal{N}=4$ version is (Nair; Boels, Mason, Ds)

$$
\int \mathrm{d}^{4 \mid 8} x \log \operatorname{det}(\bar{\partial}+\mathbf{A})
$$

where $\mathbf{A}=\mathcal{A}+\cdots+\psi^{4} \mathcal{G}$ and $\left.\mathbf{A}\right|_{L_{x}}=\left.\mathcal{A}\right|_{L_{x}}+\cdots+\left.(\theta \cdot \pi)^{4} \mathcal{G}\right|_{L_{x}}$

The $G^{+^{2}}$ term in twistor space

Using this transform in Chalmers' \& Siegel's action gives

$$
\int \operatorname{tr} G^{+^{2}}=\int \mathrm{d}^{4} \times \operatorname{tr}\left(\frac{1}{\bar{\partial}+\mathcal{A}} \mathcal{G}_{2} \pi_{2 \dot{\alpha}} \pi_{2 \dot{\beta}} \pi_{2 \dot{\gamma}} \pi_{2 \dot{\delta}} \frac{1}{\bar{\partial}+\mathcal{A}} \mathcal{G}_{1} \pi_{1 \dot{\alpha}} \pi_{1 \dot{\beta}} \pi_{1 \dot{\gamma}} \pi_{1 \dot{\delta}}\right)
$$

- Parke-Taylor amplitudes \Rightarrow expand in \mathcal{A} with

$$
\frac{1}{\overline{\bar{\partial}}+\mathcal{A}}=\frac{1}{\bar{\partial}}-\frac{1}{\bar{\partial}} \mathcal{A} \frac{1}{\bar{\partial}}+\frac{1}{\bar{\partial}} \mathcal{A} \frac{1}{\bar{\partial}} \mathcal{A} \frac{1}{\bar{\partial}}-\frac{1}{\bar{\partial}} \mathcal{A} \frac{1}{\bar{\partial}} \mathcal{A} \frac{1}{\bar{\partial}} \mathcal{A} \frac{1}{\bar{\partial}}+\cdots
$$

(recall $\bar{\partial}^{-1} \sim 1 /\left[\pi_{i} \pi_{j}\right]$) and use standard momentum eigenstates

- Has susy extensions for $\mathcal{N} \leq 4 ; \mathcal{N}=4$ version is (Nair; Boels, Mason, Ds)

$$
\int \mathrm{d}^{4 \mid 8} x \log \operatorname{det}(\bar{\partial}+\mathbf{A})
$$

where $\mathbf{A}=\mathcal{A}+\cdots+\psi^{4} \mathcal{G}$ and $\left.\mathbf{A}\right|_{L_{x}}=\left.\mathcal{A}\right|_{L_{x}}+\cdots+\left.(\theta \cdot \pi)^{4} \mathcal{G}\right|_{L_{x}}$
Connected part of twistor-string $d=1$ instanton partition function
(Witten; Roiban, Spradlin, Volovich)

The $G^{+^{2}}$ term in twistor space

Using this transform in Chalmers' \& Siegel's action gives

$$
\int \operatorname{tr} G^{+^{2}}=\int \mathrm{d}^{4} \times \operatorname{tr}\left(\frac{1}{\bar{\partial}+\mathcal{A}} \mathcal{G}_{2} \pi_{2 \dot{\alpha}} \pi_{2 \dot{\beta}} \pi_{2 \dot{\gamma}} \pi_{2 \dot{\delta}} \frac{1}{\bar{\partial}+\mathcal{A}} \mathcal{G}_{1} \pi_{1 \dot{\alpha}} \pi_{1 \dot{\beta}} \pi_{1 \dot{\gamma}} \pi_{1 \dot{\delta}}\right)
$$

- Parke-Taylor amplitudes \Rightarrow expand in \mathcal{A} with

$$
\frac{1}{\overline{\bar{\partial}}+\mathcal{A}}=\frac{1}{\bar{\partial}}-\frac{1}{\bar{\partial}} \mathcal{A} \frac{1}{\bar{\partial}}+\frac{1}{\bar{\partial}} \mathcal{A} \frac{1}{\bar{\partial}} \mathcal{A} \frac{1}{\bar{\partial}}-\frac{1}{\bar{\partial}} \mathcal{A} \frac{1}{\bar{\partial}} \mathcal{A} \frac{1}{\bar{\partial}} \mathcal{A} \frac{1}{\bar{\partial}}+\cdots
$$

(recall $\bar{\partial}^{-1} \sim 1 /\left[\pi_{i} \pi_{j}\right]$) and use standard momentum eigenstates

- Has susy extensions for $\mathcal{N} \leq 4 ; \mathcal{N}=4$ version is (Nair; Boels, Mason, Ds)

$$
\int \mathrm{d}^{4 \mid 8} x \log \operatorname{det}(\bar{\partial}+\mathbf{A})
$$

where $\mathbf{A}=\mathcal{A}+\cdots+\psi^{4} \mathcal{G}$ and $\left.\mathbf{A}\right|_{L_{x}}=\left.\mathcal{A}\right|_{L_{x}}+\cdots+\left.(\theta \cdot \pi)^{4} \mathcal{G}\right|_{L_{x}}$ Connected part of twistor-string $d=1$ instanton partition function (Witten; Roiban, Spradlin, Volovich)

- Off-shell perturbation theory $\Rightarrow+$ holomorphic Chern-Simons theory

- Palatini form of gravity action $S=\int e^{a} \wedge e^{b} \wedge R^{a b}(\Gamma) \epsilon_{a b c d}$; vierbein and spin connection independent
- Palatini form of gravity action $S=\int e^{a} \wedge e^{b} \wedge R^{a b}(\Gamma) \epsilon_{a b c d}$; vierbein and spin connection independent
- $\mathfrak{s o}(4, \mathbb{C}) \simeq \mathfrak{s l}(2, \mathbb{C}) \times \mathfrak{s l}(2, \mathbb{C}) \Leftrightarrow T M_{x}=\mathbb{S}_{x}^{+} \otimes \mathbb{S}_{x}^{-} \Rightarrow$ spin connection decomposes into connections on $\mathbb{S}^{ \pm}$
- $R^{ \pm}$depend only on sd/asd spin connections
- Palatini form of gravity action $S=\int e^{a} \wedge e^{b} \wedge R^{a b}(\Gamma) \epsilon_{a b c d}$; vierbein and spin connection independent
- $\mathfrak{s o}(4, \mathbb{C}) \simeq \mathfrak{s l}(2, \mathbb{C}) \times \mathfrak{s l}(2, \mathbb{C}) \Leftrightarrow T M_{x}=\mathbb{S}_{x}^{+} \otimes \mathbb{S}_{x}^{-} \Rightarrow \operatorname{spin}$ connection decomposes into connections on $\mathbb{S}^{ \pm}$
- $R^{ \pm}$depend only on sd/asd spin connections

Plebanski action for gravity

$$
S=\int_{M} \Sigma^{\dot{\alpha} \dot{\beta}} \wedge\left(d \Gamma+\kappa^{2} \Gamma \wedge \Gamma\right)_{\dot{\alpha} \dot{\beta}}
$$

where $\Sigma^{\dot{\alpha} \dot{\beta}}=e^{\alpha(\dot{\alpha}} \wedge e_{\alpha}^{\dot{\beta})}$ in terms of vierbein 1-forms $e^{\alpha \dot{\alpha}}=\sigma_{a}^{\alpha \dot{\alpha}} e_{\mu}^{a} d x^{\mu}$

- Palatini form of gravity action $S=\int e^{a} \wedge e^{b} \wedge R^{a b}(\Gamma) \epsilon_{a b c d}$; vierbein and spin connection independent
- $\mathfrak{s o}(4, \mathbb{C}) \simeq \mathfrak{s l}(2, \mathbb{C}) \times \mathfrak{s l}(2, \mathbb{C}) \Leftrightarrow T M_{x}=\mathbb{S}_{x}^{+} \otimes \mathbb{S}_{x}^{-} \Rightarrow \operatorname{spin}$ connection decomposes into connections on $\mathbb{S}^{ \pm}$
- $R^{ \pm}$depend only on sd/asd spin connections

Plebanski action for gravity

$$
S=\int_{M} \Sigma^{\dot{\alpha} \dot{\beta}} \wedge\left(d \Gamma+\kappa^{2} \Gamma \wedge \Gamma\right)_{\dot{\alpha} \dot{\beta}}
$$

where $\Sigma^{\dot{\alpha} \dot{\beta}}=e^{\alpha(\dot{\alpha}} \wedge e_{\alpha}^{\dot{\beta})}$ in terms of vierbein 1-forms $e^{\alpha \dot{\alpha}}=\sigma_{a}^{\alpha \dot{\alpha}} e_{\mu}^{a} d x^{\mu}$

- $\lim \kappa^{2} \rightarrow 0 \Rightarrow$ spacetime curvature $R^{+}(e)=0$
- Palatini form of gravity action $S=\int e^{a} \wedge e^{b} \wedge R^{a b}(\Gamma) \epsilon_{a b c d}$; vierbein and spin connection independent
- $\mathfrak{s o}(4, \mathbb{C}) \simeq \mathfrak{s l}(2, \mathbb{C}) \times \mathfrak{s l}(2, \mathbb{C}) \Leftrightarrow T M_{x}=\mathbb{S}_{x}^{+} \otimes \mathbb{S}_{x}^{-} \Rightarrow \operatorname{spin}$ connection decomposes into connections on $\mathbb{S}^{ \pm}$
- $R^{ \pm}$depend only on sd/asd spin connections

Plebanski action for gravity

$$
S=\int_{M} \Sigma^{\dot{\alpha} \dot{\beta}} \wedge\left(d \Gamma+\kappa^{2} \Gamma \wedge \Gamma\right)_{\dot{\alpha} \dot{\beta}}
$$

where $\Sigma^{\dot{\alpha} \dot{\beta}}=e^{\alpha(\dot{\alpha}} \wedge e_{\alpha}^{\dot{\beta})}$ in terms of vierbein 1-forms $e^{\alpha \dot{\alpha}}=\sigma_{a}^{\alpha \dot{\alpha}} e_{\mu}^{a} d x^{\mu}$

- $\lim \kappa^{2} \rightarrow 0 \Rightarrow$ spacetime curvature $R^{+}(e)=0$
- When $\kappa^{2} \neq 0$, Г eom $d \Sigma^{\dot{\alpha} \dot{\beta}}+2 \kappa^{2} \Gamma_{\dot{\gamma}}^{(\dot{\alpha}} \wedge \Sigma^{\dot{\beta}) \dot{\gamma}}=0$ implies $\Gamma_{\dot{\beta}}^{\dot{\alpha}}=$ spin connection associated to $e \Rightarrow$ Einstein-Hilbert action (+ top.)
- Palatini form of gravity action $S=\int e^{a} \wedge e^{b} \wedge R^{a b}(\Gamma) \epsilon_{a b c d}$; vierbein and spin connection independent
- $\mathfrak{s o}(4, \mathbb{C}) \simeq \mathfrak{s l}(2, \mathbb{C}) \times \mathfrak{s l}(2, \mathbb{C}) \Leftrightarrow T M_{x}=\mathbb{S}_{x}^{+} \otimes \mathbb{S}_{x}^{-} \Rightarrow \operatorname{spin}$ connection decomposes into connections on $\mathbb{S}^{ \pm}$
- $R^{ \pm}$depend only on sd/asd spin connections

Plebanski action for gravity

$$
S=\int_{M} \Sigma^{\dot{\alpha} \dot{\beta}} \wedge\left(d \Gamma+\kappa^{2} \Gamma \wedge \Gamma\right)_{\dot{\alpha} \dot{\beta}}
$$

where $\Sigma^{\dot{\alpha} \dot{\beta}}=e^{\alpha(\dot{\alpha}} \wedge e_{\alpha}^{\dot{\beta})}$ in terms of vierbein 1-forms $e^{\alpha \dot{\alpha}}=\sigma_{a}^{\alpha \dot{\alpha}} e_{\mu}^{a} d x^{\mu}$

- $\lim \kappa^{2} \rightarrow 0 \Rightarrow$ spacetime curvature $R^{+}(e)=0$
- When $\kappa^{2} \neq 0$, Г eom $d \Sigma^{\dot{\alpha} \dot{\beta}}+2 \kappa^{2} \Gamma_{\dot{\gamma}}^{(\dot{\alpha}} \wedge \Sigma^{\dot{\beta}) \dot{\gamma}}=0$ implies $\Gamma_{\dot{\beta}}^{\dot{\alpha}}=$ spin connection associated to $e \Rightarrow$ Einstein-Hilbert action (+ top.)
- Analogous to Chalmers \& Siegel (Abou-Zeid, Hull) Gravity MHV amplitudes from Penrose transform of Γ^{2} term?

Twistor basics

The twistor space of flat spacetime is called $\mathbb{P T}^{\prime}$

- $M \simeq \mathbb{C}^{4}$ (complexified) spacetime with coordinates $x^{\alpha \dot{\alpha}}=\sigma_{a}^{\alpha \dot{\alpha}} x^{a}$
- $\mathbb{P T}^{\prime}$ is $\mathbb{C P}^{3}-\mathbb{C P}^{1}$; homogeneous coordinates $\left[Z^{\prime}\right]=\left[\omega^{\alpha}, \pi_{\dot{\alpha}}\right]$; remove line $\pi_{\dot{\alpha}}=0$

Twistor basics

The twistor space of flat spacetime is called $\mathbb{P T}^{\prime}$

- $M \simeq \mathbb{C}^{4}$ (complexified) spacetime with coordinates $x^{\alpha \dot{\alpha}}=\sigma_{a}^{\alpha \dot{\alpha}} x^{a}$
- $\mathbb{P T}^{\prime}$ is $\mathbb{C P}^{3}-\mathbb{C P}^{1}$; homogeneous coordinates $\left[Z^{\prime}\right]=\left[\omega^{\alpha}, \pi_{\dot{\alpha}}\right]$; remove line $\pi_{\dot{\alpha}}=0$
- Can project $\left[\omega^{\alpha}, \pi_{\dot{\alpha}}\right] \xrightarrow{p}\left[\pi_{\dot{\alpha}}\right]$ so $\mathbb{P T}^{\prime} \simeq \mathcal{O}(1)+\mathcal{O}(1) \xrightarrow{p} \mathbb{C P}^{1}$
- $d \omega^{\alpha} \wedge d \omega_{\alpha}$ is natural symplectic form on the fibres, of weight +2

The twistor space of flat spacetime is called $\mathbb{P T}^{\prime}$

- $M \simeq \mathbb{C}^{4}$ (complexified) spacetime with coordinates $x^{\alpha \dot{\alpha}}=\sigma_{a}^{\alpha \dot{\alpha}} x^{a}$
- $\mathbb{P T}^{\prime}$ is $\mathbb{C P}^{3}-\mathbb{C P}^{1}$; homogeneous coordinates $\left[Z^{\prime}\right]=\left[\omega^{\alpha}, \pi_{\dot{\alpha}}\right]$; remove line $\pi_{\dot{\alpha}}=0$
- Can project $\left[\omega^{\alpha}, \pi_{\dot{\alpha}}\right] \xrightarrow{p}\left[\pi_{\dot{\alpha}}\right]$ so $\mathbb{P T}^{\prime} \simeq \mathcal{O}(1)+\mathcal{O}(1) \xrightarrow{p} \mathbb{C P}^{1}$
- $d \omega^{\alpha} \wedge d \omega_{\alpha}$ is natural symplectic form on the fibres, of weight +2

Spacetime is reconstructed as the moduli space of holomorphic lines (Riemann spheres) $L_{x} \simeq \mathbb{C P}^{1} \subset \mathbb{P T}^{\prime}$. Two spacetime points are null separated iff their corresponding lines intersect

Any such L_{x} is determined by the incidence relation $\omega^{\alpha}=\mathrm{i} x^{\alpha \dot{\alpha}} \pi_{\dot{\alpha}}$

The twistor space of flat spacetime is called $\mathbb{P T}^{\prime}$

- $M \simeq \mathbb{C}^{4}$ (complexified) spacetime with coordinates $x^{\alpha \dot{\alpha}}=\sigma_{a}^{\alpha \dot{\alpha}} x^{a}$
- $\mathbb{P T}^{\prime}$ is $\mathbb{C P}^{3}-\mathbb{C P}^{1}$; homogeneous coordinates $\left[Z^{\prime}\right]=\left[\omega^{\alpha}, \pi_{\dot{\alpha}}\right]$; remove line $\pi_{\dot{\alpha}}=0$
- Can project $\left[\omega^{\alpha}, \pi_{\dot{\alpha}}\right] \xrightarrow{p}\left[\pi_{\dot{\alpha}}\right]$ so $\mathbb{P T}^{\prime} \simeq \mathcal{O}(1)+\mathcal{O}(1) \xrightarrow{p} \mathbb{C P}^{1}$
- $d \omega^{\alpha} \wedge d \omega_{\alpha}$ is natural symplectic form on the fibres, of weight +2

Spacetime is reconstructed as the moduli space of holomorphic lines (Riemann spheres) $L_{x} \simeq \mathbb{C P}^{1} \subset \mathbb{P T}^{\prime}$. Two spacetime points are null separated iff their corresponding lines intersect

Any such L_{x} is determined by the incidence relation $\omega^{\alpha}=\mathrm{i} x^{\alpha \dot{\alpha}} \pi_{\dot{\alpha}}$

- $L_{x} \cap L_{y} \neq 0 \Leftrightarrow(x-y)^{\alpha \dot{\alpha}} \pi_{\dot{\alpha}}=0 \Leftrightarrow \operatorname{det}(x-y)=0$

The twistor space of flat spacetime is called $\mathbb{P T}^{\prime}$

- $M \simeq \mathbb{C}^{4}$ (complexified) spacetime with coordinates $x^{\alpha \dot{\alpha}}=\sigma_{a}^{\alpha \dot{\alpha}} x^{a}$
- $\mathbb{P T}^{\prime}$ is $\mathbb{C P}^{3}-\mathbb{C P}^{1}$; homogeneous coordinates $\left[Z^{\prime}\right]=\left[\omega^{\alpha}, \pi_{\dot{\alpha}}\right]$; remove line $\pi_{\dot{\alpha}}=0$
- Can project $\left[\omega^{\alpha}, \pi_{\dot{\alpha}}\right] \xrightarrow{p}\left[\pi_{\dot{\alpha}}\right]$ so $\mathbb{P T}^{\prime} \simeq \mathcal{O}(1)+\mathcal{O}(1) \xrightarrow{p} \mathbb{C P}^{1}$
- $d \omega^{\alpha} \wedge d \omega_{\alpha}$ is natural symplectic form on the fibres, of weight +2

Spacetime is reconstructed as the moduli space of holomorphic lines (Riemann spheres) $L_{x} \simeq \mathbb{C P}^{1} \subset \mathbb{P T}^{\prime}$. Two spacetime points are null separated iff their corresponding lines intersect

Any such L_{x} is determined by the incidence relation $\omega^{\alpha}=\mathrm{i} x^{\alpha \dot{\alpha}} \pi_{\dot{\alpha}}$

- $L_{x} \cap L_{y} \neq 0 \Leftrightarrow(x-y)^{\alpha \dot{\alpha}} \pi_{\dot{\alpha}}=0 \Leftrightarrow \operatorname{det}(x-y)=0$
- $d \omega^{\alpha} \wedge d \omega_{\alpha} \mid L_{x}=d x^{\alpha \dot{\alpha}} \wedge d x_{\alpha}^{\dot{\beta}} \pi_{\dot{\alpha}} \pi_{\dot{\beta}}=: \sum_{0}^{\dot{\alpha} \dot{\beta}} \pi_{\dot{\alpha}} \pi_{\dot{\beta}}$

The twistor space of flat spacetime is called $\mathbb{P T}^{\prime}$

- $M \simeq \mathbb{C}^{4}$ (complexified) spacetime with coordinates $x^{\alpha \dot{\alpha}}=\sigma_{a}^{\alpha \dot{\alpha}} x^{a}$
- $\mathbb{P T}^{\prime}$ is $\mathbb{C P}^{3}-\mathbb{C P}^{1}$; homogeneous coordinates $\left[Z^{\prime}\right]=\left[\omega^{\alpha}, \pi_{\dot{\alpha}}\right]$; remove line $\pi_{\dot{\alpha}}=0$
- Can project $\left[\omega^{\alpha}, \pi_{\dot{\alpha}}\right] \xrightarrow{p}\left[\pi_{\dot{\alpha}}\right]$ so $\mathbb{P T}^{\prime} \simeq \mathcal{O}(1)+\mathcal{O}(1) \xrightarrow{p} \mathbb{C P}^{1}$
- $d \omega^{\alpha} \wedge d \omega_{\alpha}$ is natural symplectic form on the fibres, of weight +2

Spacetime is reconstructed as the moduli space of holomorphic lines (Riemann spheres) $L_{x} \simeq \mathbb{C P}^{1} \subset \mathbb{P T}^{\prime}$. Two spacetime points are null separated iff their corresponding lines intersect

Any such L_{x} is determined by the incidence relation $\omega^{\alpha}=\mathrm{i} x^{\alpha \dot{\alpha}} \pi_{\dot{\alpha}}$

- $L_{x} \cap L_{y} \neq 0 \Leftrightarrow(x-y)^{\alpha \dot{\alpha}} \pi_{\dot{\alpha}}=0 \Leftrightarrow \operatorname{det}(x-y)=0$
- $\left.d \omega^{\alpha} \wedge d \omega_{\alpha}\right|_{L_{x}}=d x^{\alpha \dot{\alpha}} \wedge d x_{\alpha}^{\dot{\beta}} \pi_{\dot{\alpha}} \pi_{\dot{\beta}}=: \sum_{0}^{\dot{\alpha} \dot{\beta}} \pi_{\dot{\alpha}} \pi_{\dot{\beta}}$
- Plugging $\omega^{\alpha}=\mathrm{i} x^{\alpha \dot{\alpha}} \pi_{\dot{\alpha}}$ into fields on twistor space really pulls back to projectivized spin bundle $P\left(\mathbb{S}^{+}\right)$; coordinates $\left(x^{\alpha \dot{\alpha}},\left[\pi_{\dot{\beta}}\right]\right)$

Linearized gravity

According to Penrose transform, gravitons of helicity $\mp 2 \Leftrightarrow h_{2}(Z), \tilde{h}_{-6}(Z)$

Linearized gravity

According to Penrose transform, gravitons of helicity $\mp 2 \Leftrightarrow h_{2}(Z), \tilde{h}_{-6}(Z)$

- In vacuum ($G_{a b}=0, \Lambda=0$), gravitational radiation \Leftrightarrow linearized curvature fluctuations with four dotted or undotted spinor indices (Weyl curvature \subset Riemann curvature)

Linearized gravity

According to Penrose transform, gravitons of helicity $\mp 2 \Leftrightarrow h_{2}(Z), \tilde{h}_{-6}(Z)$

- In vacuum ($G_{a b}=0, \Lambda=0$), gravitational radiation \Leftrightarrow linearized curvature fluctuations with four dotted or undotted spinor indices (Weyl curvature \subset Riemann curvature)

$$
\begin{aligned}
(\delta R)_{\alpha \beta \gamma \delta}(x) & =\left.\int_{L_{x}}[\pi \mathrm{~d} \pi] \wedge \frac{\partial h_{2}}{\partial \omega^{\alpha} \partial \omega^{\beta} \partial \omega^{\gamma} \partial \omega^{\delta}}\right|_{L_{x}} \\
(\delta R)_{\dot{\alpha} \dot{\beta} \dot{\gamma} \dot{\delta}}(x) & =\left.\int_{L_{x}}[\pi \mathrm{~d} \pi] \wedge \pi_{\dot{\alpha}} \pi_{\dot{\beta}} \pi_{\dot{\gamma}} \pi_{\dot{\delta}} \tilde{h}_{-6}(Z)\right|_{L_{x}}
\end{aligned}
$$

- Penrose transform of self-dual spin connection is

$$
\Gamma_{\dot{\beta}}^{\dot{\alpha}}(x)=\left.\int_{L_{x}}[\pi \mathrm{~d} \pi] \wedge \pi^{\dot{\alpha}} \pi_{\dot{\beta}} B\right|_{L_{x}}
$$

where $B \in \Omega^{1,1}\left(\mathbb{P T}^{\prime}, \mathcal{O}(-4)\right)$, rather than (0,1)-form

Linearized gravity

According to Penrose transform, gravitons of helicity $\mp 2 \Leftrightarrow h_{2}(Z), \tilde{h}_{-6}(Z)$

- In vacuum ($G_{a b}=0, \Lambda=0$), gravitational radiation \Leftrightarrow linearized curvature fluctuations with four dotted or undotted spinor indices (Weyl curvature \subset Riemann curvature)

$$
\begin{aligned}
(\delta R)_{\alpha \beta \gamma \delta}(x) & =\left.\int_{L_{x}}[\pi \mathrm{~d} \pi] \wedge \frac{\partial h_{2}}{\partial \omega^{\alpha} \partial \omega^{\beta} \partial \omega^{\gamma} \partial \omega^{\delta}}\right|_{L_{x}} \\
(\delta R)_{\dot{\alpha} \dot{\beta} \dot{\gamma} \dot{\delta}}(x) & =\left.\int_{L_{x}}[\pi \mathrm{~d} \pi] \wedge \pi_{\dot{\alpha}} \pi_{\dot{\beta}} \pi_{\dot{\gamma}} \pi_{\dot{\delta}} \tilde{h}_{-6}(Z)\right|_{L_{x}}
\end{aligned}
$$

- Penrose transform of self-dual spin connection is

$$
\Gamma_{\dot{\beta}}^{\dot{\alpha}}(x)=\left.\int_{L_{x}}[\pi \mathrm{~d} \pi] \wedge \pi^{\dot{\alpha}} \pi_{\dot{\beta}} B\right|_{L_{x}}
$$

where $B \in \Omega^{1,1}\left(\mathbb{P T}^{\prime}, \mathcal{O}(-4)\right)$, rather than (0,1)-form

- $\epsilon_{\alpha \beta} \partial_{\alpha} B_{\beta}=\tilde{h}_{-6}$ ensures $d \Gamma_{\dot{\beta}}^{\dot{\alpha}}=(\delta R)_{\dot{\beta} \dot{\gamma} \dot{\delta}}^{\dot{\alpha}} d x^{\gamma \dot{\gamma}} \wedge d x_{\gamma}^{\dot{\delta}}$

Linearized gravitons are really infinitesimal deformations of spacetime curvature - what about twistor space?

Linearized gravitons are really infinitesimal deformations of spacetime curvature - what about twistor space?

- Holomorphic symplectic form $d \omega^{\alpha} \wedge d \omega_{\alpha}$ has associated Poisson bracket of weight -2

Linearized gravitons are really infinitesimal deformations of spacetime curvature - what about twistor space?

- Holomorphic symplectic form $d \omega^{\alpha} \wedge d \omega_{\alpha}$ has associated Poisson bracket of weight -2
- $h_{2} \Rightarrow\left\{h_{2}, \cdot\right\}=\frac{\partial h_{2}}{\partial \omega^{\alpha}} \frac{\partial}{\partial \omega_{\alpha}}=: V \in H^{0,1}\left(\mathbb{P}^{\prime}, T_{\mathbb{P} \mathbb{T}^{\prime}}\right)$ generates infinitesimal deformation of complex structure

Linearized gravitons are really infinitesimal deformations of spacetime curvature - what about twistor space?

- Holomorphic symplectic form $d \omega^{\alpha} \wedge d \omega_{\alpha}$ has associated Poisson bracket of weight -2
- $h_{2} \Rightarrow\left\{h_{2}, \cdot\right\}=\frac{\partial h_{2}}{\partial \omega^{\alpha}} \frac{\partial}{\partial \omega_{\alpha}}=: V \in H^{0,1}\left(\mathbb{P}^{\prime}, T_{\mathbb{P} \mathbb{T}^{\prime}}\right)$ generates infinitesimal deformation of complex structure

Penrose (1976)
$\left\{\begin{array}{c}\text { Finite deformations of complex } \\ \text { structure } \mathbb{P T} \mathbb{T}^{\prime} \leadsto \mathcal{P} \mathcal{T}\end{array}\right\} \stackrel{1: 1}{\longleftrightarrow}\left\{\begin{array}{c}\text { ASD deformations of } \\ \text { conformal structure } \\ (M, \eta) \sim(\mathcal{M},[g])\end{array}\right\}$

Linearized gravitons are really infinitesimal deformations of spacetime curvature - what about twistor space?

- Holomorphic symplectic form $d \omega^{\alpha} \wedge d \omega_{\alpha}$ has associated Poisson bracket of weight -2
- $h_{2} \Rightarrow\left\{h_{2}, \cdot\right\}=\frac{\partial h_{2}}{\partial \omega^{\alpha}} \frac{\partial}{\partial \omega_{\alpha}}=: V \in H^{0,1}\left(\mathbb{P}^{\prime}, T_{\mathbb{P T}^{\prime}}\right)$ generates infinitesimal deformation of complex structure

Penrose (1976)

$$
\left\{\begin{array}{c}
\text { Finite deformations of complex } \\
\text { structure } \mathbb{P T} \mathbb{T}^{\prime} \leadsto \mathcal{P} \mathcal{T}
\end{array}\right\} \stackrel{1: 1}{\longleftrightarrow}\left\{\begin{array}{c}
\text { ASD deformations of } \\
\text { conformal structure } \\
(M, \eta) \sim(\mathcal{M},[g])
\end{array}\right\}
$$

For a vacuum Einstein $g \in[g], \mathcal{P} \mathcal{T}$ must have a holomorphic fibration $\mathcal{P} \mathcal{T} \rightarrow \mathbb{C P}^{1}$ and an associated weight -2 Poisson structure (automatic if use Hamiltonian deformations of $\mathbb{P} \mathbb{T}^{\prime}$)

Linearized gravitons are really infinitesimal deformations of spacetime curvature - what about twistor space?

- Holomorphic symplectic form $d \omega^{\alpha} \wedge d \omega_{\alpha}$ has associated Poisson bracket of weight -2
- $h_{2} \Rightarrow\left\{h_{2}, \cdot\right\}=\frac{\partial h_{2}}{\partial \omega^{\alpha}} \frac{\partial}{\partial \omega_{\alpha}}=: V \in H^{0,1}\left(\mathbb{P}^{\prime}, T_{\mathbb{P T}^{\prime}}\right)$ generates infinitesimal deformation of complex structure

Penrose (1976)

$$
\left\{\begin{array}{c}
\text { Finite deformations of complex } \\
\text { structure } \mathbb{P T} \mathbb{T}^{\prime} \leadsto \mathcal{P} \mathcal{T}
\end{array}\right\} \stackrel{1: 1}{\longleftrightarrow}\left\{\begin{array}{l}
\text { ASD deformations of } \\
\text { conformal structure } \\
(M, \eta) \sim(\mathcal{M},[g])
\end{array}\right\}
$$

For a vacuum Einstein $g \in[g], \mathcal{P} \mathcal{T}$ must have a holomorphic fibration $\mathcal{P T} \rightarrow \mathbb{C P}^{1}$ and an associated weight -2 Poisson structure (automatic if use Hamiltonian deformations of $\mathbb{P} \mathbb{T}^{\prime}$)

- Unknown what \tilde{h}_{-6} deforms \Rightarrow only get ASD spacetime

The nonlinear graviton II
Spacetime is still the moduli space of degree-one holomorphic curves $L_{x} \subset \mathcal{P} \mathcal{T}$, but $\omega^{\alpha}=\mathrm{i} x^{\alpha \dot{\alpha}} \pi_{\dot{\alpha}}$ is no longer a holomorphic line

The nonlinear graviton II

Spacetime is still the moduli space of degree-one holomorphic curves $L_{x} \subset \mathcal{P} \mathcal{T}$, but $\omega^{\alpha}=\mathrm{i} x^{\alpha \dot{\alpha}} \pi_{\dot{\alpha}}$ is no longer a holomorphic line

Incidence relation generalized to $\omega^{\alpha}=F^{\alpha}(x, \pi)$ where

- $F^{\alpha}\left(x, \lambda \pi_{\dot{\beta}}\right)=\lambda F^{\alpha}\left(x, \pi_{\dot{\beta}}\right)$

The nonlinear graviton II

Spacetime is still the moduli space of degree-one holomorphic curves $L_{x} \subset \mathcal{P} \mathcal{T}$, but $\omega^{\alpha}=\mathrm{i} x^{\alpha \dot{\alpha}} \pi_{\dot{\alpha}}$ is no longer a holomorphic line

Incidence relation generalized to $\omega^{\alpha}=F^{\alpha}(x, \pi)$ where

- $F^{\alpha}\left(x, \lambda \pi_{\dot{\beta}}\right)=\lambda F^{\alpha}\left(x, \pi_{\dot{\beta}}\right)$
- $0=\left.(\bar{\partial}+\{h\}),\left(\omega^{\alpha}-F^{\alpha}\right)\right|_{L_{x}}=\partial^{\alpha} h(F(x, \pi), \pi)-\bar{\partial} F^{\alpha}(x, \pi)$
$\Rightarrow L_{x} \subset \mathcal{P} \mathcal{T}$ is holomorphic (non-linear equation)

The nonlinear graviton II

Spacetime is still the moduli space of degree-one holomorphic curves $L_{x} \subset \mathcal{P} \mathcal{T}$, but $\omega^{\alpha}=\mathrm{i} x^{\alpha \dot{\alpha}} \pi_{\dot{\alpha}}$ is no longer a holomorphic line

Incidence relation generalized to $\omega^{\alpha}=F^{\alpha}(x, \pi)$ where

- $F^{\alpha}\left(x, \lambda \pi_{\dot{\beta}}\right)=\lambda F^{\alpha}\left(x, \pi_{\dot{\beta}}\right)$
- $0=\left.(\bar{\partial}+\{h\}),\left(\omega^{\alpha}-F^{\alpha}\right)\right|_{L_{x}}=\partial^{\alpha} h(F(x, \pi), \pi)-\bar{\partial} F^{\alpha}(x, \pi)$ $\Rightarrow L_{x} \subset \mathcal{P} \mathcal{T}$ is holomorphic (non-linear equation)
- $F^{\alpha}-\mathrm{i} x^{\alpha \dot{\alpha}} \pi_{\dot{\alpha}}$ defines a (smooth) normal vector field on $L_{x} \subset \mathcal{P} \mathcal{T}$ At linearized level it determines the shift away from $L_{x} \subset \mathbb{P T}^{\prime}$

The nonlinear graviton II

Spacetime is still the moduli space of degree-one holomorphic curves $L_{x} \subset \mathcal{P} \mathcal{T}$, but $\omega^{\alpha}=\mathrm{i} x^{\alpha \dot{\alpha}} \pi_{\dot{\alpha}}$ is no longer a holomorphic line

Incidence relation generalized to $\omega^{\alpha}=F^{\alpha}(x, \pi)$ where

- $F^{\alpha}\left(x, \lambda \pi_{\dot{\beta}}\right)=\lambda F^{\alpha}\left(x, \pi_{\dot{\beta}}\right)$
- $0=\left.(\bar{\partial}+\{h\}),\left(\omega^{\alpha}-F^{\alpha}\right)\right|_{L_{x}}=\partial^{\alpha} h(F(x, \pi), \pi)-\bar{\partial} F^{\alpha}(x, \pi)$
$\Rightarrow L_{x} \subset \mathcal{P} \mathcal{T}$ is holomorphic (non-linear equation)
- $F^{\alpha}-\mathrm{i} x^{\alpha \dot{\alpha}} \pi_{\dot{\alpha}}$ defines a (smooth) normal vector field on $L_{x} \subset \mathcal{P} \mathcal{T}$ At linearized level it determines the shift away from $L_{x} \subset \mathbb{P T}^{\prime}$
Generalizing from flat space, can show $d \omega^{\alpha} \wedge d \omega_{\alpha} \mid L_{x}=e^{\alpha \dot{\alpha}} \wedge e_{\alpha}^{\dot{\beta}} \pi_{\dot{\alpha}} \pi_{\dot{\beta}}$
- $\left.d \omega^{\alpha}\right|_{L_{x}}=e^{\beta \dot{\beta}} \Lambda_{\beta}^{\alpha} \pi_{\dot{\beta}} \Rightarrow$ spacetime vierbein $(\Lambda \in S L(2, \mathbb{C})$ a frame $)$

Penrose transform of spin connection
$\Gamma_{\dot{\beta}}^{\dot{\alpha}}(x)=e^{\gamma \dot{\gamma}} \Gamma_{\gamma \dot{\gamma}} \dot{\alpha}_{\dot{\beta}}=\left.\int_{L_{x}}[\pi \mathrm{~d} \pi] \pi^{\dot{\alpha}} \pi_{\dot{\beta}} B\right|_{L_{x}}=\left.e^{\gamma \dot{\gamma}} \int_{L_{x}}[\pi \mathrm{~d} \pi] \pi^{\dot{\alpha}} \pi_{\dot{\beta}} \pi_{\dot{\gamma}} \wedge_{\gamma}{ }^{\delta} B_{\delta}\right|_{L_{x}}$
where vierbein arises because of pullback $B_{\alpha} d \omega^{\alpha}$ to $L_{x} \subset \mathcal{P} \mathcal{T}$

The Γ^{2} term

Penrose transform of spin connection

$$
\Gamma_{\dot{\beta}}^{\dot{\alpha}}(x)=e^{\gamma \dot{\gamma}} \Gamma_{\gamma \dot{\gamma}}^{\dot{\beta}} \dot{\alpha}_{\dot{\beta}}=\left.\int_{L_{x}}[\pi \mathrm{~d} \pi] \pi^{\dot{\alpha}} \pi_{\dot{\beta}} B\right|_{L_{x}}=\left.e^{\gamma \dot{\gamma}} \int_{L_{x}}[\pi \mathrm{~d} \pi] \pi^{\dot{\alpha}} \pi_{\dot{\beta}} \pi_{\dot{\gamma}} \wedge_{\gamma}^{\delta} B_{\delta}\right|_{L_{x}}
$$

where vierbein arises because of pullback $B_{\alpha} d \omega^{\alpha}$ to $L_{x} \subset \mathcal{P} \mathcal{T}$

Γ^{2} term in Twistor Space

$$
\begin{aligned}
\int \mathrm{d}^{4} x e \Gamma_{\alpha \dot{\alpha} \dot{\beta} \dot{\gamma}} \Gamma^{\alpha \dot{\alpha} \dot{\beta} \dot{\gamma}} & =\int \mathrm{d}^{4} x e\left[\pi_{2} \mathrm{~d} \pi_{2}\right]\left[\pi_{1} \mathrm{~d} \pi_{1}\right]\left[\pi_{2} \pi_{1}\right]^{3} \Lambda_{2 \alpha}^{\beta} B_{2 \beta} \Lambda_{1}^{\alpha \gamma} B_{1 \gamma} \\
& =\int \mathrm{d}^{4} x e\left[\pi_{2} \mathrm{~d} \pi_{2}\right] \Lambda_{2 \alpha}^{\beta} B_{2 \beta} \frac{1}{\bar{\partial}_{21}}\left(\Lambda_{1}^{\alpha \gamma} B_{1 \gamma}\left[\pi_{2} \pi_{1}\right]^{4}\right)
\end{aligned}
$$

The Γ^{2}

Penrose transform of spin connection

$$
\Gamma_{\dot{\beta}}^{\dot{\alpha}}(x)=e^{\gamma \dot{\gamma}} \Gamma_{\gamma \dot{\gamma}}^{\dot{\beta}} \dot{\alpha}_{\dot{\beta}}=\left.\int_{L_{x}}[\pi \mathrm{~d} \pi] \pi^{\dot{\alpha}} \pi_{\dot{\beta}} B\right|_{L_{x}}=\left.e^{\gamma \dot{\gamma}} \int_{L_{x}}[\pi \mathrm{~d} \pi] \pi^{\dot{\alpha}} \pi_{\dot{\beta}} \pi_{\dot{\gamma}} \wedge_{\gamma}^{\delta} B_{\delta}\right|_{L_{x}}
$$

where vierbein arises because of pullback $B_{\alpha} d \omega^{\alpha}$ to $L_{x} \subset \mathcal{P} \mathcal{T}$

Γ^{2} term in Twistor Space

$$
\begin{aligned}
\int \mathrm{d}^{4} x e \Gamma_{\alpha \dot{\alpha} \dot{\beta} \dot{\gamma}} \Gamma^{\alpha \dot{\alpha} \dot{\beta} \dot{\gamma}} & =\int \mathrm{d}^{4} x e\left[\pi_{2} \mathrm{~d} \pi_{2}\right]\left[\pi_{1} \mathrm{~d} \pi_{1}\right]\left[\pi_{2} \pi_{1}\right]^{3} \Lambda_{2 \alpha}^{\beta} B_{2 \beta} \Lambda_{1}^{\alpha \gamma} B_{1 \gamma} \\
& =\int \mathrm{d}^{4} x e\left[\pi_{2} \mathrm{~d} \pi_{2}\right] \Lambda_{2 \alpha}^{\beta} B_{2 \beta} \frac{1}{\bar{\partial}_{21}}\left(\Lambda_{1}^{\alpha \gamma} B_{1 \gamma}\left[\pi_{2} \pi_{1}\right]^{4}\right)
\end{aligned}
$$

- To obtain the BGK amplitudes, must expand deformed twistor lines around $L \subset \mathbb{P} \mathbb{T}^{\prime}$

The integral $\int \mathrm{d}^{4} \times e[\pi \mathrm{~d} \pi]$ is really over the projectivized spin bundle $P\left(\mathbb{S}^{+}\right)$with coordinates $\left(x^{\alpha \dot{\alpha}},\left[\pi_{\dot{\beta}}\right]\right)$

The integral $\int \mathrm{d}^{4} \times e[\pi \mathrm{~d} \pi]$ is really over the projectivized spin bundle $P\left(\mathbb{S}^{+}\right)$with coordinates $\left(x^{\alpha \dot{\alpha}},\left[\pi_{\dot{\beta}}\right]\right)$
Can find a diffeomorphism

$$
\phi: P\left(\mathbb{S}^{+}\right) \rightarrow P\left(\mathbb{S}^{+}\right) \quad \phi:\left(x^{\alpha \dot{\alpha}}, \pi_{\dot{\beta}}\right) \mapsto\left(y^{\alpha \dot{\alpha}}(x, \pi), \pi_{\dot{\beta}}\right)
$$

such that $\phi\left(F^{\alpha}(x, \pi)\right)=\mathrm{i} y^{\alpha \dot{\alpha}} \pi_{\dot{\alpha}}$

The integral $\int \mathrm{d}^{4} \times e[\pi \mathrm{~d} \pi]$ is really over the projectivized spin bundle $P\left(\mathbb{S}^{+}\right)$with coordinates $\left(x^{\alpha \dot{\alpha}},\left[\pi_{\dot{\beta}}\right]\right)$
Can find a diffeomorphism

$$
\phi: P\left(\mathbb{S}^{+}\right) \rightarrow P\left(\mathbb{S}^{+}\right) \quad \phi:\left(x^{\alpha \dot{\alpha}}, \pi_{\dot{\beta}}\right) \mapsto\left(y^{\alpha \dot{\alpha}}(x, \pi), \pi_{\dot{\beta}}\right)
$$

such that $\phi\left(F^{\alpha}(x, \pi)\right)=\mathrm{i} y^{\alpha \dot{\alpha}} \pi_{\dot{\alpha}}$

- Deformation of \mathbb{C}-str $\mathbb{P T}^{\prime} \rightarrow \mathcal{P} \mathcal{T}$ is not a diffeo, but pullback to $P\left(\mathbb{S}^{+}\right)$is
- cf $\mathcal{A} \neq-\bar{\partial} H H^{-1}$ but $\left.\mathcal{A}\right|_{L_{x}}=-\bar{\partial} H H^{-1}$

A spin-bundle diffeomorphism

The integral $\int \mathrm{d}^{4} x e[\pi \mathrm{~d} \pi]$ is really over the projectivized spin bundle $P\left(\mathbb{S}^{+}\right)$with coordinates $\left(x^{\alpha \dot{\alpha}},\left[\pi_{\dot{\beta}}\right]\right)$
Can find a diffeomorphism

$$
\phi: P\left(\mathbb{S}^{+}\right) \rightarrow P\left(\mathbb{S}^{+}\right) \quad \phi:\left(x^{\alpha \dot{\alpha}}, \pi_{\dot{\beta}}\right) \mapsto\left(y^{\alpha \dot{\alpha}}(x, \pi), \pi_{\dot{\beta}}\right)
$$

such that $\phi\left(F^{\alpha}(x, \pi)\right)=\mathrm{i} y^{\alpha \dot{\alpha}} \pi_{\dot{\alpha}}$

- Deformation of \mathbb{C}-str $\mathbb{P} \mathbb{T}^{\prime} \rightarrow \mathcal{P} \mathcal{T}$ is not a diffeo, but pullback to $P\left(\mathbb{S}^{+}\right)$is
- cf $\mathcal{A} \neq-\bar{\partial} H H^{-1}$ but $\left.\mathcal{A}\right|_{L_{x}}=-\bar{\partial} H H^{-1}$

Γ^{2} term in Twistor Space

$$
\int_{P\left(\mathbb{S}^{+}\right)} \mathrm{d}^{4} x e\left[\pi_{2} \mathrm{~d} \pi_{2}\right] \pi_{2 \dot{\alpha}} \pi_{2 \dot{\beta}} \pi_{2 \dot{\gamma}} \pi_{2 \dot{\delta}} \Lambda_{2 \alpha}^{\beta} B_{2 \beta} \frac{1}{\bar{\partial}_{21}}\left(\pi_{1}^{\dot{\alpha}} \pi_{1}^{\dot{\beta}} \pi_{1}^{\dot{\gamma}} \pi_{1}^{\dot{\delta}} \Lambda_{1}^{\alpha \gamma} B_{1 \gamma}\right)
$$

A spin-bundle diffeomorphism

The integral $\int \mathrm{d}^{4} x e[\pi \mathrm{~d} \pi]$ is really over the projectivized spin bundle $P\left(\mathbb{S}^{+}\right)$with coordinates $\left(x^{\alpha \dot{\alpha}},\left[\pi_{\dot{\beta}}\right]\right)$
Can find a diffeomorphism

$$
\phi: P\left(\mathbb{S}^{+}\right) \rightarrow P\left(\mathbb{S}^{+}\right) \quad \phi:\left(x^{\alpha \dot{\alpha}}, \pi_{\dot{\beta}}\right) \mapsto\left(y^{\alpha \dot{\alpha}}(x, \pi), \pi_{\dot{\beta}}\right)
$$

such that $\phi\left(F^{\alpha}(x, \pi)\right)=\mathrm{i} y^{\alpha \dot{\alpha}} \pi_{\dot{\alpha}}$

- Deformation of \mathbb{C}-str $\mathbb{P}^{\prime} \rightarrow \mathcal{P} \mathcal{T}$ is not a diffeo, but pullback to $P\left(\mathbb{S}^{+}\right)$is
- cf $\mathcal{A} \neq-\bar{\partial} H H^{-1}$ but $\left.\mathcal{A}\right|_{L_{x}}=-\bar{\partial} H H^{-1}$

Γ^{2} term in Twistor Space

$$
\int_{P\left(\mathbb{S}^{+}\right)} \phi^{*}\left(\mathrm{~d}^{4} y\left[\pi_{2} \mathrm{~d} \pi_{2}\right] \pi_{2 \dot{\alpha}} \pi_{2 \dot{\beta}} \pi_{2 \dot{\gamma}} \pi_{2 \dot{\delta}} B_{2 \alpha}(y, \pi)\right) \frac{1}{\bar{\partial}} \phi^{*}\left(\pi^{1 \dot{\alpha}} \pi^{1 \dot{\beta}} \pi^{1 \dot{\gamma}} \pi^{1 \dot{\delta}} B_{1}^{\alpha}(y, \pi)\right)
$$

A spin-bundle diffeomorphism

The integral $\int \mathrm{d}^{4} x e[\pi \mathrm{~d} \pi]$ is really over the projectivized spin bundle $P\left(\mathbb{S}^{+}\right)$with coordinates $\left(x^{\alpha \dot{\alpha}},\left[\pi_{\dot{\beta}}\right]\right)$
Can find a diffeomorphism

$$
\phi: P\left(\mathbb{S}^{+}\right) \rightarrow P\left(\mathbb{S}^{+}\right) \quad \phi:\left(x^{\alpha \dot{\alpha}}, \pi_{\dot{\beta}}\right) \mapsto\left(y^{\alpha \dot{\alpha}}(x, \pi), \pi_{\dot{\beta}}\right)
$$

such that $\phi\left(F^{\alpha}(x, \pi)\right)=\mathrm{i} y^{\alpha \dot{\alpha}} \pi_{\dot{\alpha}}$

- Deformation of \mathbb{C}-str $\mathbb{P} \mathbb{T}^{\prime} \rightarrow \mathcal{P} \mathcal{T}$ is not a diffeo, but pullback to $P\left(\mathbb{S}^{+}\right)$is
- cf $\mathcal{A} \neq-\bar{\partial} H H^{-1}$ but $\left.\mathcal{A}\right|_{L_{x}}=-\bar{\partial} H H^{-1}$

Γ^{2} term in Twistor Space

$$
\int_{\phi\left(P\left(\mathbb{S}^{+}\right)\right)} \mathrm{d}^{4} y\left[\pi_{2} \mathrm{~d} \pi_{2}\right] \pi_{2 \dot{\alpha}} \pi_{2 \dot{\beta}} \pi_{2 \dot{\gamma}} \pi_{2 \dot{\delta}} B_{2 \alpha} \phi^{-1^{*}} \frac{1}{\bar{\partial}} \phi^{*}\left(\pi^{1 \dot{\alpha}} \pi^{1 \dot{\beta}} \pi^{1 \dot{\gamma}} \pi^{1 \dot{\delta}} B_{1}^{\alpha}\right)
$$

A spin-bundle diffeomorphism

The integral $\int \mathrm{d}^{4} x e[\pi \mathrm{~d} \pi]$ is really over the projectivized spin bundle $P\left(\mathbb{S}^{+}\right)$with coordinates $\left(x^{\alpha \dot{\alpha}},\left[\pi_{\dot{\beta}}\right]\right)$
Can find a diffeomorphism

$$
\phi: P\left(\mathbb{S}^{+}\right) \rightarrow P\left(\mathbb{S}^{+}\right) \quad \phi:\left(x^{\alpha \dot{\alpha}}, \pi_{\dot{\beta}}\right) \mapsto\left(y^{\alpha \dot{\alpha}}(x, \pi), \pi_{\dot{\beta}}\right)
$$

such that $\phi\left(F^{\alpha}(x, \pi)\right)=\mathrm{i} y^{\alpha \dot{\alpha}} \pi_{\dot{\alpha}}$

- Deformation of \mathbb{C}-str $\mathbb{P T}^{\prime} \rightarrow \mathcal{P} \mathcal{T}$ is not a diffeo, but pullback to $P\left(\mathbb{S}^{+}\right)$is
- cf $\mathcal{A} \neq-\bar{\partial} H H^{-1}$ but $\left.\mathcal{A}\right|_{L_{x}}=-\bar{\partial} H H^{-1}$

Γ^{2} term in Twistor Space

$$
\int_{P\left(\mathbb{S}^{+}\right)} \mathrm{d}^{4} y\left[\pi_{2} \mathrm{~d} \pi_{2}\right] \pi_{2 \dot{\alpha}} \pi_{2 \dot{\beta}} \pi_{2 \dot{\gamma}} \pi_{2 \dot{\delta}} B_{2 \alpha} \frac{1}{\bar{\partial}+\mathcal{L}_{V}}\left(\pi^{1 \dot{\alpha}} \pi^{1 \dot{\beta}} \pi^{1 \dot{\gamma}} \pi^{1 \dot{\delta}} B_{1}^{\alpha}\right)
$$

- Just as $H \frac{1}{\bar{\partial}} H^{-1}=\frac{1}{\bar{\partial}+\mathcal{A}}$ in Yang-Mills

Berends-Giele-Kuijf amplitudes in twistor space

Expanding in powers of V gives (after some simplification)

$$
\begin{aligned}
& \text { Gravity MHV generating function } \\
& \sum_{n=3}^{\infty} \int \mathrm{d}^{4} y\left[\pi_{n} \mathrm{~d} \pi_{n}\right] B_{n \alpha}\left(\frac{1}{\bar{\partial}} \frac{V_{n-1}^{\alpha} \beta^{\dot{\alpha}}}{\left[\pi_{n-1} \beta\right]} \frac{1}{\bar{\partial}} V_{n-2} \frac{1}{\bar{\partial}} V_{n-3} \cdots \frac{1}{\bar{\partial}} V_{2} \frac{1}{\bar{\partial}} \tilde{h}_{1}\left[\pi_{1} \pi_{n}\right]^{4} \beta_{\dot{\alpha}}\right)
\end{aligned}
$$

Berends-Giele-Kuijf amplitudes in twistor space

Expanding in powers of V gives (after some simplification)

$$
\begin{aligned}
& \text { Gravity MHV generating function } \\
& \sum_{n=3}^{\infty} \int \mathrm{d}^{4} y\left[\pi_{n} \mathrm{~d} \pi_{n}\right] B_{n \alpha}\left(\frac{1}{\bar{\partial}} \frac{V_{n-1}^{\alpha} \beta^{\dot{\alpha}}}{\left[\pi_{n-1} \beta\right]} \frac{1}{\bar{\partial}} V_{n-2} \frac{1}{\bar{\partial}} V_{n-3} \cdots \frac{1}{\bar{\partial}} V_{2} \frac{1}{\bar{\partial}} \tilde{h}_{1}\left[\pi_{1} \pi_{n}\right]^{4} \beta_{\dot{\alpha}}\right)
\end{aligned}
$$

- No canonical way to pullback vector field \Rightarrow make gauge choice $V=V^{\alpha} \frac{\partial}{\partial \omega^{\alpha}} \rightarrow \frac{V^{\alpha} \beta^{\dot{\alpha}}}{[\pi \beta]} \frac{\partial}{\partial y^{\alpha \dot{\alpha}}}$ with $[\beta \mid=[n \mid$

Berends-Giele-Kuijf amplitudes in twistor space

Expanding in powers of V gives (after some simplification)

Gravity MHV generating function

$\sum_{n=3}^{\infty} \int \mathrm{d}^{4} y\left[\pi_{n} \mathrm{~d} \pi_{n}\right] B_{n \alpha}\left(\frac{1}{\bar{\partial}} \frac{V_{n-1}^{\alpha} \beta^{\dot{\alpha}}}{\left[\pi_{n-1} \beta\right]} \frac{1}{\bar{\partial}} V_{n-2} \frac{1}{\bar{\partial}} V_{n-3} \cdots \frac{1}{\bar{\partial}} V_{2} \frac{1}{\bar{\partial}} \tilde{h}_{1}\left[\pi_{1} \pi_{n}\right]^{4} \beta_{\dot{\alpha}}\right)$

- No canonical way to pullback vector field \Rightarrow make gauge choice $V=V^{\alpha} \frac{\partial}{\partial \omega^{\alpha}} \rightarrow \frac{V^{\alpha} \beta^{\dot{\alpha}}}{[\pi \beta]} \frac{\partial}{\partial y^{\alpha \dot{\alpha}}}$ with $[\beta \mid=[n \mid$
- Inserting momentum eigenstates gives all BGK amplitudes ($n \geq 3$)

$$
\frac{[1 n]^{8}}{[1 n-1][n-1 n][n 1]}\left\{\frac{1}{C(n)} \prod_{k=2}^{n-2} \frac{\left.\langle k| p_{k+1}+\cdots+p_{n-1} \mid n\right]}{[k n]}+\text { Perms }\right\}
$$

with $\mid \beta]=\mid n]$

Berends-Giele-Kuijf amplitudes in twistor space

Expanding in powers of V gives (after some simplification)

Gravity MHV generating function

$\sum_{n=3}^{\infty} \int \mathrm{d}^{4} y\left[\pi_{n} \mathrm{~d} \pi_{n}\right] B_{n \alpha}\left(\frac{1}{\bar{\partial}} \frac{V_{n-1}^{\alpha} \beta^{\dot{\alpha}}}{\left[\pi_{n-1} \beta\right]} \frac{1}{\bar{\partial}} V_{n-2} \frac{1}{\bar{\partial}} V_{n-3} \cdots \frac{1}{\bar{\partial}} V_{2} \frac{1}{\bar{\partial}} \tilde{h}_{1}\left[\pi_{1} \pi_{n}\right]^{4} \beta_{\dot{\alpha}}\right)$

- No canonical way to pullback vector field \Rightarrow make gauge choice $V=V^{\alpha} \frac{\partial}{\partial \omega^{\alpha}} \rightarrow \frac{V^{\alpha} \beta^{\dot{\alpha}}}{[\pi \beta]} \frac{\partial}{\partial y^{\alpha \dot{\alpha}}}$ with $[\beta \mid=[n \mid$
- Inserting momentum eigenstates gives all BGK amplitudes ($n \geq 3$)

$$
\frac{[1 n]^{8}}{[1 n-1][n-1 n][n 1]}\left\{\frac{1}{C(n)} \prod_{k=2}^{n-2} \frac{\left.\langle k| p_{k+1}+\cdots+p_{n-1} \mid n\right]}{[k n]}+\text { Perms }\right\}
$$

with $\mid \beta]=\mid n]$

Berends-Giele-Kuijf amplitudes in twistor space

Expanding in powers of V gives (after some simplification)
Gravity MHV generating function
$\sum_{n=3}^{\infty} \int \mathrm{d}^{4} y\left[\pi_{n} \mathrm{~d} \pi_{n}\right] B_{n \alpha}\left(\frac{1}{\bar{\partial}} \frac{V_{n-1}^{\alpha} \beta^{\dot{\alpha}}}{\left[\pi_{n-1} \beta\right]} \frac{1}{\bar{\partial}} V_{n-2} \frac{1}{\bar{\partial}} V_{n-3} \cdots \frac{1}{\bar{\partial}} V_{2} \frac{1}{\bar{\partial}} \tilde{h}_{1}\left[\pi_{1} \pi_{n}\right]^{4} \beta_{\dot{\alpha}}\right)$

- No canonical way to pullback vector field \Rightarrow make gauge choice $V=V^{\alpha} \frac{\partial}{\partial \omega^{\alpha}} \rightarrow \frac{V^{\alpha} \beta^{\dot{\alpha}}}{[\pi \beta]} \frac{\partial}{\partial y^{\alpha \dot{\alpha}}}$ with $[\beta \mid=[n \mid$
- Inserting momentum eigenstates gives all BGK amplitudes ($n \geq 3$)

$$
\frac{[1 n]^{8}}{[1 n-1][n-1 n][n 1]}\left\{\frac{1}{C(n)} \prod_{k=2}^{n-2} \frac{\left.\langle k| p_{k+1}+\cdots+p_{n-1} \mid n\right]}{[k n]}+\text { Perms }\right\}
$$

with $\mid \beta]=\mid n]$

Berends-Giele-Kuijf amplitudes in twistor space

Expanding in powers of V gives (after some simplification)
Gravity MHV generating function
$\sum_{n=3}^{\infty} \int \mathrm{d}^{4} y\left[\pi_{n} \mathrm{~d} \pi_{n}\right] B_{n \alpha}\left(\frac{1}{\bar{\partial}} \frac{V_{n-1}^{\alpha} \beta^{\dot{\alpha}}}{\left[\pi_{n-1} \beta\right]} \frac{1}{\bar{\partial}} V_{n-2} \frac{1}{\bar{\partial}} V_{n-3} \cdots \frac{1}{\bar{\partial}} V_{2} \frac{1}{\bar{\partial}} \tilde{h}_{1}\left[\pi_{1} \pi_{n}\right]^{4} \beta_{\dot{\alpha}}\right)$

- No canonical way to pullback vector field \Rightarrow make gauge choice $V=V^{\alpha} \frac{\partial}{\partial \omega^{\alpha}} \rightarrow \frac{V^{\alpha} \beta^{\dot{\alpha}}}{[\pi \beta]} \frac{\partial}{\partial y^{\alpha \dot{\alpha}}}$ with $[\beta \mid=[n \mid$
- Inserting momentum eigenstates gives all BGK amplitudes ($n \geq 3$)

$$
\frac{[1 n]^{8}}{[1 n-1][n-1 n][n 1]}\left\{\frac{1}{C(n)} \prod_{k=2}^{n-2} \frac{\left.\langle k| p_{k+1}+\cdots+p_{n-1} \mid n\right]}{[k n]}+\text { Perms }\right\}
$$

with $\mid \beta]=\mid n]$

Berends-Giele-Kuijf amplitudes in twistor space

Expanding in powers of V gives (after some simplification)
Gravity MHV generating function
$\sum_{n=3}^{\infty} \int \mathrm{d}^{4} y\left[\pi_{n} \mathrm{~d} \pi_{n}\right] B_{n \alpha}\left(\frac{1}{\bar{\partial}} \frac{V_{n-1}^{\alpha} \beta^{\dot{\alpha}}}{\left[\pi_{n-1} \beta\right]} \frac{1}{\bar{\partial}} V_{n-2} \frac{1}{\bar{\partial}} V_{n-3} \cdots \frac{1}{\bar{\partial}} V_{2} \frac{1}{\bar{\partial}} \tilde{h}_{1}\left[\pi_{1} \pi_{n}\right]^{4} \beta_{\dot{\alpha}}\right)$

- No canonical way to pullback vector field \Rightarrow make gauge choice $V=V^{\alpha} \frac{\partial}{\partial \omega^{\alpha}} \rightarrow \frac{V^{\alpha} \beta^{\dot{\alpha}}}{[\pi \beta]} \frac{\partial}{\partial y^{\alpha \dot{\alpha}}}$ with $[\beta \mid=[n \mid$
- Inserting momentum eigenstates gives all BGK amplitudes ($n \geq 3$)

$$
\frac{[1 n]^{8}}{[1 n-1][n-1 n][n 1]}\left\{\frac{1}{C(n)} \prod_{k=2}^{n-2} \frac{\left.\langle k| p_{k+1}+\cdots+p_{n-1} \mid n\right]}{[k n]}+\text { Perms }\right\}
$$

with $\mid \beta]=\mid n]$

Berends-Giele-Kuijf amplitudes in twistor space

Expanding in powers of V gives (after some simplification)
Gravity MHV generating function
$\sum_{n=3}^{\infty} \int \mathrm{d}^{4} y\left[\pi_{n} \mathrm{~d} \pi_{n}\right] B_{n \alpha}\left(\frac{1}{\bar{\partial}} \frac{V_{n-1}^{\alpha} \beta^{\dot{\alpha}}}{\left[\pi_{n-1} \beta\right]} \frac{1}{\bar{\partial}} V_{n-2} \frac{1}{\bar{\partial}} V_{n-3} \cdots \frac{1}{\bar{\partial}} V_{2} \frac{1}{\bar{\partial}} \tilde{h}_{1}\left[\pi_{1} \pi_{n}\right]^{4} \beta_{\dot{\alpha}}\right)$

- No canonical way to pullback vector field \Rightarrow make gauge choice $V=V^{\alpha} \frac{\partial}{\partial \omega^{\alpha}} \rightarrow \frac{V^{\alpha} \beta^{\dot{\alpha}}}{[\pi \beta]} \frac{\partial}{\partial y^{\alpha \dot{\alpha}}}$ with $[\beta \mid=[n \mid$
- Inserting momentum eigenstates gives all BGK amplitudes ($n \geq 3$)

$$
\frac{[1 n]^{8}}{[1 n-1][n-1 n][n 1]}\left\{\frac{1}{C(n)} \prod_{k=2}^{n-2} \frac{\left.\langle k| p_{k+1}+\cdots+p_{n-1} \mid n\right]}{[k n]}+\text { Perms }\right\}
$$

with $\mid \beta]=\mid n]$

- Derivative of δ-fn support \rightarrow perturbative description of support on deformed twistor lines

Open questions: twistor action for gravity?

Non-linear graviton: asd spacetimes \Leftrightarrow twistor space with integrable almost \mathbb{C}-str

Open questions: twistor action for gravity?

Non-linear graviton: asd spacetimes \Leftrightarrow twistor space with integrable almost \mathbb{C}-str

- $\bar{\partial} \rightarrow \bar{\partial}+V$ with $V=\{h$,$\} Hamiltonian$
- Nijenhuis tensor $N \in \Omega^{0,2}\left(\mathbb{P T}^{\prime}, T_{\mathbb{P T}^{\prime}}\right)$ is $N=(\bar{\partial}+V)^{2}$

Open questions: twistor action for gravity?

Non-linear graviton: asd spacetimes \Leftrightarrow twistor space with integrable almost \mathbb{C}-str

- $\bar{\partial} \rightarrow \bar{\partial}+V$ with $V=\{h$,$\} Hamiltonian$
- Nijenhuis tensor $N \in \Omega^{0,2}\left(\mathbb{P}^{\prime} \mathbb{T}^{\prime}, \boldsymbol{T}_{\mathbb{P T}^{\prime}}\right)$ is $N=\left\{\bar{\partial} h+\frac{1}{2}\{h, h\}, \cdot\right\}$

Open questions: twistor action for gravity?

Non-linear graviton: asd spacetimes \Leftrightarrow twistor space with integrable almost \mathbb{C}-str

- $\bar{\partial} \rightarrow \bar{\partial}+V$ with $V=\{h$,$\} Hamiltonian$
- Nijenhuis tensor $N \in \Omega^{0,2}\left(\mathbb{P T}^{\prime}, T_{\mathbb{P T}^{\prime}}\right)$ is $N=\left\{\bar{\partial} h+\frac{1}{2}\{h, h\}, \cdot\right\}$

Twistor action for ASD gravity (Mason, Wolf 2007)

$$
S_{\mathrm{asd}}=\int \Omega \wedge \tilde{h}\left(\bar{\partial} h+\frac{1}{2}\{h, h\}\right)=\int \Omega \wedge \epsilon^{\alpha \beta} B_{\alpha} \partial_{\beta}\left(\bar{\partial} h+\frac{1}{2}\{h, h\}\right)
$$

Analogue of hol Chern-Simons for YM (Closely related: Karras, Ketov; Sokatchev)

Non-linear graviton: asd spacetimes \Leftrightarrow twistor space with integrable almost \mathbb{C}-str

- $\bar{\partial} \rightarrow \bar{\partial}+V$ with $V=\{h$,$\} Hamiltonian$
- Nijenhuis tensor $N \in \Omega^{0,2}\left(\mathbb{P} \mathbb{T}^{\prime}, T_{\mathbb{P T}^{\prime}}\right)$ is $N=\left\{\bar{\partial} h+\frac{1}{2}\{h, h\}, \cdot\right\}$

Twistor action for ASD gravity (Mason, Wolf 2007)

$$
S_{\mathrm{asd}}=\int \Omega \wedge \tilde{h}\left(\bar{\partial} h+\frac{1}{2}\{h, h\}\right)=\int \Omega \wedge \epsilon^{\alpha \beta} B_{\alpha} \partial_{\beta}\left(\bar{\partial} h+\frac{1}{2}\{h, h\}\right)
$$

Analogue of hol Chern-Simons for YM (Closely related: Karnas, Ketov; Sokatchev)
We would like to obtain a twistor action for (perturbative) gravity by adding the twistorial MHV vertices to this action

Non-linear graviton: asd spacetimes \Leftrightarrow twistor space with integrable almost \mathbb{C}-str

- $\bar{\partial} \rightarrow \bar{\partial}+V$ with $V=\{h$,$\} Hamiltonian$
- Nijenhuis tensor $N \in \Omega^{0,2}\left(\mathbb{P} \mathbb{T}^{\prime}, T_{\mathbb{P T}^{\prime}}\right)$ is $N=\left\{\bar{\partial} h+\frac{1}{2}\{h, h\}, \cdot\right\}$

Twistor action for ASD gravity (Mason, Wolf 2007)

$$
S_{\mathrm{asd}}=\int \Omega \wedge \tilde{h}\left(\bar{\partial} h+\frac{1}{2}\{h, h\}\right)=\int \Omega \wedge \epsilon^{\alpha \beta} B_{\alpha} \partial_{\beta}\left(\bar{\partial} h+\frac{1}{2}\{h, h\}\right)
$$

Analogue of hol Chern-Simons for YM (Closely related: Karras, Ketov; Sokatchev)
We would like to obtain a twistor action for (perturbative) gravity by adding the twistorial MHV vertices to this action

- Off-shell, $\mathcal{P T}$ is an almost complex manifold...

Non-linear graviton: asd spacetimes \Leftrightarrow twistor space with integrable almost \mathbb{C}-str

- $\bar{\partial} \rightarrow \bar{\partial}+V$ with $V=\{h$,$\} Hamiltonian$
- Nijenhuis tensor $N \in \Omega^{0,2}\left(\mathbb{P} \mathbb{T}^{\prime}, T_{\mathbb{P T}^{\prime}}\right)$ is $N=\left\{\bar{\partial} h+\frac{1}{2}\{h, h\}, \cdot\right\}$

Twistor action for ASD gravity (Mason, Wolf 2007)

$$
S_{\mathrm{asd}}=\int \Omega \wedge \tilde{h}\left(\bar{\partial} h+\frac{1}{2}\{h, h\}\right)=\int \Omega \wedge \epsilon^{\alpha \beta} B_{\alpha} \partial_{\beta}\left(\bar{\partial} h+\frac{1}{2}\{h, h\}\right)
$$

Analogue of hol Chern-Simons for YM (Closely related: Karras, Ketov; Sokatchev)
We would like to obtain a twistor action for (perturbative) gravity by adding the twistorial MHV vertices to this action

- Off-shell, $\mathcal{P} \mathcal{T}$ is an almost complex manifold...
- Does this approach give successful MHV perturbation theory? cf (Bianchi, Elvang, Freedman)

Conclusions

Covered in this talk:

- Review of twistor Parke-Taylor amplitudes
- Review of non-linear graviton
- Constructed twistor BGK amplitudes from Penrose transform of part of Plebanski action

Many open questions:

Conclusions

Covered in this talk:

- Review of twistor Parke-Taylor amplitudes
- Review of non-linear graviton
- Constructed twistor BGK amplitudes from Penrose transform of part of Plebanski action

Many open questions:

- Off-shell continuation / twistor action for gravity?

Conclusions

Covered in this talk:

- Review of twistor Parke-Taylor amplitudes
- Review of non-linear graviton
- Constructed twistor BGK amplitudes from Penrose transform of part of Plebanski action

Many open questions:

- Off-shell continuation / twistor action for gravity?
- MHV diagrams as Feynman diagrams? Loops?

Conclusions

Covered in this talk:

- Review of twistor Parke-Taylor amplitudes
- Review of non-linear graviton
- Constructed twistor BGK amplitudes from Penrose transform of part of Plebanski action

Many open questions:

- Off-shell continuation / twistor action for gravity?
- MHV diagrams as Feynman diagrams? Loops?
- Extension to supergravity?

Conclusions

Covered in this talk:

- Review of twistor Parke-Taylor amplitudes
- Review of non-linear graviton
- Constructed twistor BGK amplitudes from Penrose transform of part of Plebanski action

Many open questions:

- Off-shell continuation / twistor action for gravity?
- MHV diagrams as Feynman diagrams? Loops?
- Extension to supergravity?
- Twistor strings for Einstein sugra? (Abou-Zeid, Hull, Mason)

Conclusions

Covered in this talk:

- Review of twistor Parke-Taylor amplitudes
- Review of non-linear graviton
- Constructed twistor BGK amplitudes from Penrose transform of part of Plebanski action

Many open questions:

- Off-shell continuation / twistor action for gravity?
- MHV diagrams as Feynman diagrams? Loops?
- Extension to supergravity?
- Twistor strings for Einstein sugra? (Abou-Zeid, Hull, Mason)
- (Generalized?) Geometry of twistor space for non asd spacetimes?

Conclusions

Covered in this talk:

- Review of twistor Parke-Taylor amplitudes
- Review of non-linear graviton
- Constructed twistor BGK amplitudes from Penrose transform of part of Plebanski action

Many open questions:

- Off-shell continuation / twistor action for gravity?
- MHV diagrams as Feynman diagrams? Loops?
- Extension to supergravity?
- Twistor strings for Einstein sugra? (Abou-Zeid, Hull, Mason)
- (Generalized?) Geometry of twistor space for non asd spacetimes?

Thanks for listening!

