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MHV perturbation theory

Can build SYM perturbation theory from MHV amplitudes, continued
off-shell, together with +− propagators
(Cachazo, Svrček, Witten; Bedford, Brandhuber, Spence, Travaglini; Bena, Bern, Kosower, Roiban + many others)

Can something similar be true for gravity?
(Bern, Dixon, Dunbar, Kosower, Bjerrum-Bohr, Ita, Perkins, Risager)

Usual recursive methods break down at NMHV for n ≥ 12
(Bianchi, Elvang, Freedman)

Another approach: look for action whose off-shell Feynman diagrams
involve MHV vertices

For Yang-Mills, this is successful (review later...)
(Boels, Mason, DS; Mansfield; Gorsky, Rosly; Ettle, Fu, Fudger, Morris)

Can we find an action whose vertices gives these amplitudes?
(Theisen, Ananth)

D. Skinner (Oxford) Gravity & Twistors June 2008 2 / 21



MHV perturbation theory

Can build SYM perturbation theory from MHV amplitudes, continued
off-shell, together with +− propagators
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Gravity

Gravitational MHV amplitudes (Berends, Giele & Kuijf)

M = [1n]8

〈12〉〈n − 2 n − 1〉
[1 n − 1]

F

N(n)

n−3∏
i=1

n−1∏
j=i+2

[ij ] + P(2,...,n−2)


where N(n) :=

∏
i<j [ij ] and F :=

∏n−3
k=3 〈k |pk+1 + pk+2 + · · ·+ pn−1|n]

Apology: with Penrose conventions for twistor space, natural
amplitudes are mostly minus
Can simplify a little...

Gravity

M =
[1n]8

[1 n − 1][n − 1 n][n1]

{
1

C (n)

n−2∏
k=2

〈k |pk+1 + · · ·+ pn−1|n]

[kn]
+ Perms

}

Works for all MHV amplitudes n ≥ 3
Appears to single out gravitons 1, n − 1 & n
Extension to N ≤ 8 known through KLT relations; can be generated
from pure gravity case (Bianchi, Elvang, Freedman)

Has derivative of a δ-fn support on holomorphic twistor lines (Witten)

Today, as a first step, we’ll construct an on-shell generating function in
twistor space, whose expansion gives the BGK amplitudes

(Nair)
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Outline

Brief review of Yang-Mills

Chalmers & Siegel action
Parke-Taylor amplitudes from Penrose transform of G+2

Gravity

Plebanski action
Twistor basics
Non-linear graviton
BGK amplitudes from Penrose transform of Γ2

Open questions & conclusions
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Brief Review of Yang-Mills
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Scattering off an ASD background

MHV amplitudes involve 2 positive and n − 2 negative helicity particles

A background made up entirely of negative helicity gluons/gravitons is
anti self-dual

Want an action that is well-adapted to describe this ASD background
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Chalmers & Siegel Action

For Yang-Mills, appropriate action is

Yang-Mills (Chalmers & Siegel, 1996)

S =

∫
M

tr
(
G+ ∧ FA − g2G+ ∧ G+

)
where FA = dA + 1

2 [A,A] is usual YM curvature and G+ is a Lie-algebra
valued self-dual 2-form

A and G+ are treated as independent fields

No coupling constant in FA; lim g2 → 0, G+ becomes Lagrange
multiplier enforcing F +

A = 0

g2 6= 0, G+ eom is G+ = F +
A /2g2 ⇒ usual YM action (+ top.)

Suggests MHV amplitudes are hiding in the G+2
term
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The Penrose transform

According to the Penrose transform{
elements of H1(PT′,O(−2h − 2))

on twistor space PT′
}
'
{

soln of wave eqn for massless
linearized field, helicity h

}

So, for a gluon of h = +1

where G+ = Gα̇β̇dx
α(α̇ ∧ dx

β̇)
α and G is a (0,1)-form of weight −4,

H(x , π) are holomorphic frames trivializing E |Lx , ie A|Lx = −∂H H−1

H is a gauge transform relating the ASD bundle C-str to the flat
bundle C-str

If G ∈ H0,1(PT′,O(−4)⊗ End(E )), then dAG+ = 0 by construction
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The G+2 term in twistor space

Using this transform in Chalmers’ & Siegel’s action gives∫
tr G+2

=

∫
d4x [π1 dπ1][π2 dπ2] [π1 π2]2 tr

(
H−1

2 G2H2 H−1
1 G1H1

)

Parke-Taylor amplitudes ⇒ expand in A with

1

∂ +A
=

1

∂
− 1

∂
A 1

∂
+

1

∂
A 1

∂
A 1

∂
− 1

∂
A 1

∂
A 1

∂
A 1

∂
+ · · ·

(recall ∂
−1 ∼ 1/[πi πj ]) and use standard momentum eigenstates

Has susy extensions for N ≤ 4; N = 4 version is (Nair; Boels, Mason, DS)∫
d4|8x log det(∂ + A)

where A = A+ · · ·+ ψ4G and A|Lx = A|Lx + · · ·+ (θ · π)4G|Lx

Connected part of twistor-string d = 1 instanton partition function
(Witten; Roiban, Spradlin, Volovich)

Off-shell perturbation theory ⇒ + holomorphic Chern-Simons theory
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The Plebanski Action

Palatini form of gravity action S =
∫

ea ∧ eb ∧ Rab(Γ) εabcd ;
vierbein and spin connection independent

so(4,C) ' sl(2,C)× sl(2,C) ⇔ TMx = S+
x ⊗ S−x ⇒ spin

connection decomposes into connections on S±
R± depend only on sd/asd spin connections

Plebanski action for gravity

S =

∫
M

Σα̇β̇ ∧
(
dΓ + κ2Γ ∧ Γ

)
α̇β̇

where Σα̇β̇ = e
α(α̇ ∧ e

β̇)
α in terms of vierbein 1-forms eαα̇ = σαα̇a ea

µdxµ

limκ2 → 0 ⇒ spacetime curvature R+(e) = 0

When κ2 6= 0, Γ eom dΣα̇β̇ + 2κ2Γ
(α̇
γ̇ ∧ Σ

β̇)γ̇
= 0 implies Γα̇

β̇
= spin

connection associated to e ⇒ Einstein-Hilbert action (+ top.)

Analogous to Chalmers & Siegel (Abou-Zeid, Hull)

Gravity MHV amplitudes from Penrose transform of Γ2 term?
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Twistor basics

The twistor space of flat spacetime is called PT′

M ' C4 (complexified) spacetime with coordinates xαα̇ = σαα̇a xa

PT′ is CP3 − CP1; homogeneous coordinates [Z I ] = [ωα, πα̇];
remove line πα̇ = 0

Can project [ωα, πα̇]
p→ [πα̇] so PT′ ' O(1) +O(1)

p→ CP1

dωα ∧ dωα is natural symplectic form on the fibres, of weight +2

Spacetime is reconstructed as the moduli space of holomorphic lines
(Riemann spheres) Lx ' CP1 ⊂ PT′. Two spacetime points are null
separated iff their corresponding lines intersect

Any such Lx is determined by the incidence relation ωα = ixαα̇πα̇
Lx ∩ Ly 6= 0 ⇔ (x − y)αα̇πα̇ = 0 ⇔ det(x − y) = 0

dωα ∧ dωα|Lx = dxαα̇ ∧ dx β̇
α πα̇πβ̇ =: Σα̇β̇

0 πα̇πβ̇
Plugging ωα = ixαα̇πα̇ into fields on twistor space really pulls back to
projectivized spin bundle P(S+); coordinates (xαα̇, [πβ̇])
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Linearized gravity

According to Penrose transform, gravitons of helicity ∓2⇔ h2(Z ), h̃−6(Z )

In vacuum (Gab = 0, Λ = 0), gravitational radiation ⇔ linearized
curvature fluctuations with four dotted or undotted spinor indices
(Weyl curvature ⊂ Riemann curvature)

(δR)αβγδ(x) =

∫
Lx

[π dπ] ∧ ∂h2

∂ωα∂ωβ∂ωγ∂ωδ

∣∣∣∣
Lx

(δR)α̇β̇γ̇δ̇(x) =

∫
Lx

[π dπ] ∧ πα̇πβ̇πγ̇πδ̇ h̃−6(Z )
∣∣∣
Lx

Penrose transform of self-dual spin connection is

Γα̇
β̇

(x) =

∫
Lx

[π dπ] ∧ πα̇πβ̇ B|Lx

where B ∈ Ω1,1(PT′,O(−4)), rather than (0,1)-form

εαβ∂αBβ = h̃−6 ensures dΓα̇
β̇

= (δR)α̇
β̇γ̇δ̇

dxγγ̇ ∧ dx δ̇
γ
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The nonlinear graviton I

Linearized gravitons are really infinitesimal deformations of spacetime
curvature - what about twistor space?

Holomorphic symplectic form dωα ∧ dωα has associated Poisson
bracket of weight −2

h2 ⇒ {h2, · } = ∂h2
∂ωα

∂
∂ωα

=: V ∈ H0,1(PT′,TPT′) generates
infinitesimal deformation of complex structure

Penrose (1976){
Finite deformations of complex

structure PT′ ; PT

}
1:1←→


ASD deformations of
conformal structure
(M, η) ; (M, [g ])


For a vacuum Einstein g ∈ [g ], PT must have a holomorphic fibration
PT → CP1 and an associated weight −2 Poisson structure
(automatic if use Hamiltonian deformations of PT′)

Unknown what h̃−6 deforms ⇒ only get ASD spacetime
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The nonlinear graviton II

Spacetime is still the moduli space of degree-one holomorphic curves
Lx ⊂ PT , but ωα = ixαα̇πα̇ is no longer a holomorphic line

Incidence relation generalized to ωα = Fα(x , π) where

Fα(x , λπβ̇) = λFα(x , πβ̇)

0 = (∂ + {h, })(ωα − Fα)|Lx = ∂αh(F (x , π), π)− ∂Fα(x , π)
⇒ Lx ⊂ PT is holomorphic (non-linear equation)

Fα − ixαα̇πα̇ defines a (smooth) normal vector field on Lx ⊂ PT
At linearized level it determines the shift away from Lx ⊂ PT′

Generalizing from flat space, can show dωα ∧ dωα|Lx = eαα̇ ∧ e β̇
α πα̇πβ̇

dωα|Lx = eββ̇Λ α
β πβ̇ ⇒ spacetime vierbein (Λ ∈ SL(2,C) a frame)
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The Γ2 term

Penrose transform of spin connection

Γα̇
β̇

(x) = eγγ̇Γγγ̇
α̇
β̇

=

∫
Lx

[π dπ]πα̇πβ̇B|Lx = eγγ̇
∫

Lx

[π dπ]πα̇πβ̇πγ̇Λ δ
γ Bδ|Lx

where vierbein arises because of pullback Bαdωα to Lx ⊂ PT

Γ2 term in Twistor Space∫
d4x e Γαα̇β̇γ̇Γαα̇β̇γ̇ =

∫
d4x e [π2 dπ2][π1 dπ1] [π2 π1]3 Λ β

2αB2β Λαγ1 B1γ

=

∫
d4x e [π2 dπ2] Λ β

2αB2β
1

∂21

(
Λαγ1 B1γ [π2 π1]4

)

To obtain the BGK amplitudes, must expand deformed twistor lines
around L ⊂ PT′
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A spin-bundle diffeomorphism

The integral
∫

d4x e [π dπ] is really over the projectivized spin bundle
P(S+) with coordinates (xαα̇, [πβ̇])

Can find a diffeomorphism

φ : P(S+)→ P(S+) φ : (xαα̇, πβ̇) 7→ (yαα̇(x , π), πβ̇)

such that φ(Fα(x , π)) = iyαα̇πα̇

Deformation of C-str PT′ → PT is not a diffeo, but pullback to
P(S+) is

cf A 6= −∂H H−1 but A|Lx = −∂H H−1

Just as H 1
∂
H−1 = 1

∂+A in Yang-Mills
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Berends-Giele-Kuijf amplitudes in twistor space

Expanding in powers of V gives (after some simplification)

Gravity MHV generating function
∞∑

n=3

∫
d4y [πn dπn] Bnα

(
1

∂

V α
n−1β

α̇

[πn−1 β]

1

∂
Vn−2

1

∂
Vn−3 · · ·

1

∂
V2

1

∂
h̃1[π1 πn]4βα̇

)

No canonical way to pullback vector field ⇒
make gauge choice V = V α ∂

∂ωα → V αβα̇

[π β]
∂

∂yαα̇ with [β| = [n|

Inserting momentum eigenstates gives all BGK amplitudes (n ≥ 3)

[1n]8

[1 n − 1][n − 1 n][n1]

{
1

C (n)

n−2∏
k=2

〈k |pk+1 + · · ·+ pn−1|n]

[kn]
+ Perms

}
with |β] = |n]

Derivative of δ-fn support → perturbative description of support on
deformed twistor lines
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[1n]8

[1 n − 1][n − 1 n][n1]

{
1

C (n)

n−2∏
k=2

〈k |pk+1 + · · ·+ pn−1|n]

[kn]
+ Perms

}
with |β] = |n]

Derivative of δ-fn support → perturbative description of support on
deformed twistor lines
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Open Questions & Conclusions
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Open questions: twistor action for gravity?

Non-linear graviton: asd spacetimes ⇔ twistor space with integrable
almost C-str

∂ → ∂ + V with V = {h, } Hamiltonian

Nijenhuis tensor N ∈ Ω0,2(PT′,TPT′) is N

Twistor action for ASD gravity (Mason, Wolf 2007)

Sasd =

∫
Ω ∧ h̃

(
∂h +

1

2
{h, h}

)
=

∫
Ω ∧ εαβBα∂β

(
∂h +

1

2
{h, h}

)
Analogue of hol Chern-Simons for YM (Closely related: Karnas, Ketov; Sokatchev)

We would like to obtain a twistor action for (perturbative) gravity by
adding the twistorial MHV vertices to this action

Off-shell, PT is an almost complex manifold. . .

Does this approach give successful MHV perturbation theory?
cf (Bianchi, Elvang, Freedman)
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Conclusions

Covered in this talk:

Review of twistor Parke-Taylor amplitudes

Review of non-linear graviton

Constructed twistor BGK amplitudes from Penrose
transform of part of Plebanski action

Many open questions:

Off-shell continuation / twistor action for gravity?

MHV diagrams as Feynman diagrams? Loops?

Extension to supergravity?

Twistor strings for Einstein sugra? (Abou-Zeid, Hull, Mason)

(Generalized?) Geometry of twistor space for non asd spacetimes?

Thanks for listening!
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