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Outline

e Scattering and Wilson loops: a butchered summary and preview

quantum corrections at strong coupling

e Scattering at weak coupling
structure of amplitudes
perturbation theory and unitarity
symmetries
cues from strong coupling; large number of legs

e 6-points at 2-loops
e BDS vs. Amplitude (vs. DHKS/BHT) and the remainder function

e Outlook



Scattering amplitudes at strong coupling from AdS/CFT
Alday, Maldacena

e use T-duality to relate vertex operators to extended strings

e use warping of AdS to argue that large momentum approx. is exact

¢ mathematically — same calculation as for vev of Wilson loops

— minimal surfaces with prescribed boundary conditions
— WL = closed polygon w/ light-like edges
— regularization is required

O % expansion — perturbation around the minimal surface
¢ Relevant action (in absence of regularization) Kallosh, Tseytlin
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= Known result(s) in N = 4: min. surface ending on 4-sided polygon
Alday, Maldacena

= higher polygons resist despite attempts

e Conjectured dual of gauge theory dim. reg.:
AdSs x S° — AdSs_o. x S°12¢; extra scale

e Some features of - corrections Kruczenski. RR. Tirziu. Tsetytlin

VA

= Not clear how to construct the complete worldsheet action

= At tree-level, regularization is due to nontrivial conformal factor
in induced metric; 1-loop Z is insensitive to it — no regularization!

Need worldsheet solution to all orders in €

gauge theory: In Z should contain In A «< ws perturbation theory?

other regulators depart from gauge theory information

Stick to tree level...



¢ In general — difficult problem simplifies for large number of legs

= many gluons moving in alternating directions i

» Further approximation: 1T'> L;
find leading term in T/L T

= Space-like rectangle A

L
¢ Leading order: qq potential multiplied by distance

Ax2 T
NW)=vx —— =  A>1

o)

= dependence on T'/L suggests that it arises from nontrivial function

= Oother L and T dependence: L+ 1, LT together with regulator



Weak coupling implications: New conjecture

A;;/IHV
In ytree, MHV = IN(Wh) + O(e)
n

Drummond, Henn, Korchemsky, Sokatchev

order by order in perturbation theory Brandhuber, Heslop, Travaglini
¢ Evidence:
= 4-points at 1-loop Drummond, Korchemsky, Sokatchev
o ﬂ—DOiﬂtS at l—|OOD Brandhuber, Heslop, Travaglini

holds in any gauge theory!

= 4- and 5-points at 2-loop Drummond, Henn, Korchemsky, Sokatchev

e How far does it go? Why does it work at all?



Current perturbative analytic results in N =4 SYM

mA New on-shell technology:
8 = |imits of string theory amplitudes
o = generalized unitarity method
= complex momenta (p-analyticity)
S) m = efficient multiple cuts (1 loop)
) = holomorphic anomaly (1 loop)
4 2006 = twistor space structure
3 I2006 = further multiple cuts (higher loops)
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Properties of scattering amplitudes

1

e General grounds: leading IR pole at L loops is oL

1

dk 1
— = collinear:/ T

14e X7

overlap of = soft: / 1+€

e IR pole structure (including subleading poles) is predicted
by the soft/collinear factorization and exponentiation theorem

= Extensive QCD literature: Akhoury (1979), Mueller (1979), Collins (1980),

Sen (1981), Sterman (1987), Botts, Sterman (1989), Catani, Trentadue (1989),
Korchemsky (1989), Magnea, Sterman (1990), Korchemsky, Marchesini (1992),
Catani (1998), Sterman, Tejeda-Yeomans (2002)

e Simplifications at large N: IR in terms of G(\), cusp anomaly
v (A) or the large spin limit of the twist-2 anomalous dimension,
“collinear” anomalous dimension Gg(\)

e N =4 SYM — further simplifications 8 =10



Soft/Collinear factorization Magnea, Sterman
Sterman, Tejeda-Yeomans

¢ Rescaled amplitude factorizes in three parts:

M = S0, 2, as(u), &) x | TT (2, as(rn), )| x hn(k, 2, as(i), e)
z =1 M p

» S(k,u,as(pn),e) soft function; captures the soft gluon radiation;

defined up to overall function

» Ji(k,p,as(pn),e) independent of color flow; all collinear dynamics

» hy(u, as(p),e) is finite as e — 0
¢ Independence of (Q: factorization vs. evolution

e Consequences of the large N limit: Bern, Dixon, Smirnov
1) trivial color structure: S can be absorbed in J

2) planarity: gluon exchange is confined to neighboring legs



4

n N 1/2
M, = X {H M[gg—>1] (M))\’ 6)] X hn(k, X, €)
i=1 K

= Sudakov form factor: decay of a scalar into 2 gluons

» Factorization — diferential (RG) equation for Ml9g—1l

Mueller (1979); Collins (1980); Sen(1981); Korchemsky, Radyushkin (1987);
Korchemsky (1989); Magnea, Sterman (1990)

d 2

dln Q2

Mlog—1] (ff—;A> — ; [K(e \) + G(Q /\,e)] Mlog—1] (%x)

(dl— + B(A)— ) (K+G) =0 (dl— + B(AN)— ) K(e,A) = —vr(A)

= Exact solution



4

n N 1/2
M, = X {H M[gg—>1] (M))\’ 6)] X hn(k, X, €)
i=1 K

= Sudakov form factor: decay of a scalar into 2 gluons

» Factorization — diferential (RG) equation for Ml9g—1l

Mueller (1979); Collins (1980); Sen(1981); Korchemsky, Radyushkin (1987);
Korchemsky (1989); Magnea, Sterman (1990)

= Exact solution for N = 4 SYM Bern, Dixon, Smirnov
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2G4
Mn = exp {_Za ((ZE)Q T ) 2 ( - )

—Sii+1

X hn

F)=> a' y%) universal scaling function



Technology of choice: generalized unitarity-based method
Bern, Dixon, Dunbar, Kosower

e a generalized cut isolates the part of an amplitude which contains
some specified set of propagators and imposes the on-shell condition
for their momenta

e Reconstruct amplitudes from (generalized) d-dimensional cuts



Technology of choice: generalized unitarity-based method
Bern, Dixon, Dunbar, Kosower

o 2- Ioop 4-point amplitudes: Bern, Rozowsky, Yan

— 00

= double-two-particle cuts suffice to reconstruct the amplitude

= izslzszsﬁ Si» + Sy3

o 2-loop splitting amplitude Anastasiou, Bern, Dixon, Kosower

controls the behavior of amplitudes as two adjacent momenta become collinear
pho1=2P pn=(1-2)P P20
n'— n-1 n'— n-1 n'— n-1 n:— n-7
0D, — QD e + OO0, +
1 n 1 n 1 no 1 n
Split® split Split?

Split® = split@ rP s, 10 Do) = (rg)(e))z + F@r®(26) + O(e)

N |~



Technology of choice: generalized unitarity-based method

o 2-loop 4-point amplitudes: Bern, Rozowsky, Yan
-_ 2
o 2-loop splitting amplitude Anastasiou, Bern, Dixon, Kosower

pho1=2P pn=(1-2)P P?-=0
n—2 n-1 n—2 n-1 N—2 n-1 N2 n—7
f — D, + Oa,+ 0@
‘1n 1 n 1 @ n 1 @ n
split® split™ split?
Splitting amplitudes may be computed directly!

o Both consistent with: Anastasiou, Bern, Dixon, Kosower

MP @) = (M) + 12 () MP 20 + ¢ + 09

— ABDK conjecture that it holds for any n at 2-loops



o Striking resemblance with the general structure of IR poles

() (1) 2 le
_ I 9k 29 Z
M”_exp{ 8;a ((ze)2+ le >Z< )
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X hn
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fF)=> a' 7%) cusp anomalous dimension (univ. scaling fcn.)
l

1 2\
—QZ <M—> — singular part of the 1-loop n-point amplitude
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o Striking resemblance with the general structure of IR poles

() (1) 2 le
L~ i 7 29 ( p )

Mpy=exp|—) a - X h

=ow |5l () ] <o
) => a' ’y%) universal scaling function

l
1 ,u2 ‘
= o> — singular part of the 1-loop n-point amplitude

€2\ =5 i41

o hp — exp (Z a%é”) and combine with the pole part
l

Bern, Dixon, Smirnov

= ew [_; > fOOMP ) + O fO() = P+
[

Captures correctly collinear limit: ng,l) — Mél_)l + ?“gn



Nevertheless...

not a proof. There is evidence for the conjecture:

= 3-loop 4-points

TE

= Strong coupling limit of the 4-gluon amplitude

= 2-loop 5-points
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There are also puzzles:

e Large coupling limit of n-gluon amplitude in the large n limit and

a special kinematic configuration Alday, Maldacena
2
() = 22T :
I (Z> A
L
Y dfO@MP) = X afO@wn®ao = 2T

[ [

e Hexagon Wilson loop at 2-loops differs from BDS ansatz by non-
trivial function of momenta Drummond, Henn, Korchemsky, Sokatchev

e Difficulties with multi-Regge limits Bartels, Lipatov, Sabio-Vera



Dual conformal invariance Drummond, Henn, Sokatchev, Smirnov

4- and 5- point amplitudes: integrals invariant under dual space
inversion if regularized by continuing external momenta off-shell

! C132233%
o ki =x; —z;41 and I: zt’ — x—g , finitness « wy = =7
i

xzkle

e Regulator breaks dual conformal invariance — potential anomaly

e Wilson loop renormalization: W = Z(e)F Korchemsky, Radyushkin
2

K" In FW —f()\) Z M o I ZZ‘|‘ Drummond, Henn

Sl sz_l i1 Sokatchev, Smirnov

o Subtracted BDS ansatz In FPPY = f()\) F{Y(0) captures anomaly



Probe structure of amplitude: define 2-loop ‘“remainder fct' :

B2 lim [M7§2>(e) B <%<M7g1)(€))2 4@ D (26) + 0(2))]

m finite

= trivial collinear limits

If believe that dual conformal symmetry holds —

— RéQ) iIs the first potentially-nonzero remainder fct

— expressed in terms of

2 2 2 2

_ Ti3%ype _ S512545 _ To4x51

Uir = —5 5 — U2 — 5o —
L1436 51235345 L2541

2 .2
523556 i I35Lgy  S34S61
,  uz = =
$2345123 T3:Te,  S3455234

¢ homogeneous solution of W.I. « component unrelated to IR



6—point amplitude at 2—|OODS Bern, Dixon, Kosower, RR, Spradlin, Vergu, Volovich

m Use generalized unitarity
= no-triangle constraint — double-two-particle cuts suffice

Relevant generalized cuts:

N— 4 N //)\ o N—4 //)\
= o VI V=V L L =
(a) (b) (c) !
A 1A ip A X A
VIV VELVELY
(d)j/ (e)

= Main advantage: for d = 4 cuts each tree is MHV
= noO guarantee that d = 4 suffice (already for 5-points odd)

= Split in d =4 cuts and d # 4 cuts  M{P(e) = M P=e) + M (e)



6-point amplitude at 2-loops: use dual conformal symmetry to or-
ganize integrals

(2) (5)
x __..,----'L »_..;---{ A
N N P\ - P
/—.___1___1:/' i S {fj _I."H'_'"“f,'/x
- o %o+ k1)? X(p+ k1)? < (p+ k)2
(6) (7)
(R) (9) (10)
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m 26 possible dual conformal integrals



The integrand:

M6(2),D:4—2€(€) _ Mé2),D:4(€) 4+ MéQ},,u(e)

_ 1 1 1 1
M=) = T > !chl(l)(e) + 2@ (e) + 5@1(3)(6) + 5041<4>(e) + e51) (e)
12 perms.
1 1
+ ol () + 2erlV(e) + Seal @ (&) 4 col ) (e)
1 1
+ c10109(€) 4+ 1110 () + 56121(12)(6) + 56131(13)(6)
(2).1 1 1 e LI TeLy
Mg="(e) = 16 Z ZC14I (e) + 56151 (€)
12 perms.

= Strategy: expose propagators in products of trees; id integrals

= c15 May be obtained from a partial d = 4 cut



e [ he coefficients:

c1
2
c3
Cq
c5
C6
c7
cg
9
C10
C11
C12
€13
C14
C15

>
$1653451235345 + $1254552345345 + 5345(523556 — 51235234)
5 >
512553
$234(81235234 — $23556)
2
$125234
$34(51235234 — 2523556)
—5105235234
2 512350345345 — 45165345123 — 5125455234 — $235565345
2 516(52345345 — S16534)

$235345234
$23(2516534 — 52345345)
$125235234
$345(52345345 — S16534)
>

—5345556

—25126(512352345345 — S165345123 — S125455234 — S235565345,
2516 (512352345345 — 5165345123 — 5125455234 — 5235565345



= Some comments

x Méz)’“ nonvanishing while integrand vanishes in D = 4
o MéQ)’D:4 IS constructed out of pseudo-conformal integrals

= Unlike n=4 and n=5, relative weights are not 0, +£1

» Features of the result

IR divergences should be the same as in BDS

subtract BDS — find conformal invariance?
812845 823856 834561
ul = Uup = u3z =
$1235345 $2345123 $3455234

How important is D = 4?7 (detk;-k; =0, 4,5 =1,---,5)7

Comparison with expectation value of hexagon Wilson loop~?




o "Direct” integration — departure from BDS ansatz

Ra = M2 — p(REDS

RY = Ry(K(®) =1.0037 +0.0057 K(©) : (1/4,1/4,1/4)

kinematics (u1,un,u3) RA — R%
K@) (1/4,1/4,1/4) —0.018 + 0.023
K(2) (0.547253, 0.203822, 0.881270) | —2.753 & 0.015
K®) (28/17,16/5,112/85) —4.7445 + 0.0075
K@ (1/9,1/9,1/9) 4.12 +0.10
K®) (4/81,4/81,4/81) 10.00 + 0.50

= the remainder function is nontrivial

= it is dual conformal invariant



o Comparison with hexagon Wilson loop

R4

RS = Ry (K(®) = 1.0937 £ 0.0057

(2)BDS

0 _—
RY, = 13.26530

kinematics (w1, un,u3) R — R% Ry — R%/
K@D (1/4,1/4,1/4) —0.0184+0.023 | <10°°
K(2) | (0547253, 0.203822, 0.881270) | —2.753+0.015 | —2.7553
K@) (28/17,16/5,112/85) —4.7445 4+ 0.0075 | —4.7446
K@) (1/9,1/9,1/9) 4.12 +0.10 4.0914
K®) (4/81,4/81,4/81) 10.00 + 0.50 9.7255

e Agreement within errors!

¢ Mg = (Wg) # MEDS



Where else does Réz) crop up?

Does it have another (more physical) interpretation?



Where else does Réz) crop up? More physical interpretation?

Yes; a triple-collinear splitting amplitude

= triple-collinear limit:

a =z21P ky = zoP c = 23P P2 -0
z1+z20+23=1, 0<z;<1

l
ADker, k2, ko1, kn) = > > AL (K, PY) SpIit®) (kn-okn—1kn; P)
A== s=0

s-loop triple-collinear
splitting amplitude

= MHV amplitudes — four triple-collinear splitting amplitudes

Splity (k kT kF; P) =0
Split_ (kT k; kX P) i Splity (kg kT kT P) 5 Splity (k] k, kT; P)

Split_(kd k;Fkd; P) L
o7 o = S s 21523)
Sp”tt_ree(ka kb k. ;P) abc” Sabc



= first time for 6-point kinematics ko = z1P, ky = 2oP, k. = 23P

& Cross ratios are arbitrary! — R survives

iy = S45 1 o = S56 1 s = 2123
s456 1 — 23 sa56 1 — 21 (1 —21)(1—23)

= triple-collinear factorization vs. corrected BDS at 2-loops

Méz) — MA(LQ) —I—Mil) rgl) —I—’rg?)
MA(LQ)BDS+ML(11)BDSTg1)BDS+Té2)BDS (2)( )

¢ remainder function « triple-collinear splitting amplitude

(2)BDS/, s S
(Sabbasbbc 2172376)

RéQ) (,a) — rgz)( Sab  Sbc.

Sube’ Sabe Z17Z37€> _TS
¢ Advantage: potentially simpler integrals

= potentially resummable



Summary

e rescaled 6pt MHV amplitude=Wilson loop#=BDS
— BDS captures the part of amplitudes determined by IR behavior

e correction visible in triple-collinear limit; equals splitting amplitude



Summary and open questions

e rescaled 6pt MHV amplitude=Wilson loop#=BDS

e correction visible in triple-collinear limit; equals splitting amplitude

e Is it possible to find the analytic form of the remainder?

e Why are MHV amplitudes related to null Wilson loops? What
about non-MHV amplitudes?

e Who ordered dual conformal invariance? WAhat are the allowed
types of contributions that break it?

e \What other implications does it have? Is it relevant for non-MHV
amplitudes and in what sense? (see conjecture in Sokatchev’'s talk)

e Is dual conformal invariance really restricted to the planar theory?
What theories exhibit it? Does it have any relation to integrability
of the dilatation operator?



Extra



Scattering amplitudes in CFT

e CFT: = interactions never turn off — no free asymptotic states

» [R divergences

e Regularization:

e Similarly to QCD:

use dimensional regularization d = 4 — 2¢
breaks conformal invariance

allows definition of asymptotic states
recovered as e — O

= on-shell gauge invariance

= for “N = 4 collider” observables, need to
turn them into scattering of gauge singlets

= finiteness exposes properties of
amplitudes which hold in any gauge theory



