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Outline

• Scattering and Wilson loops: a butchered summary and preview

quantum corrections at strong coupling

• Scattering at weak coupling

structure of amplitudes

perturbation theory and unitarity

symmetries

cues from strong coupling; large number of legs

• 6-points at 2-loops

• BDS vs. Amplitude (vs. DHKS/BHT) and the remainder function

• Outlook



Scattering amplitudes at strong coupling from AdS/CFT
Alday, Maldacena

• use T -duality to relate vertex operators to extended strings

• use warping of AdS to argue that large momentum approx. is exact

� mathematically – same calculation as for vev of Wilson loops

7→ minimal surfaces with prescribed boundary conditions

7→ WL = closed polygon w/ light-like edges

7→ regularization is required

� 1√
λ

expansion = perturbation around the minimal surface

� Relevant action (in absence of regularization) Kallosh, Tseytlin

SE =

√
λ

4π

∫

d2σ

[

1

z2
(∂axm∂axm+∂azs∂azs)+4εabθ̄(∂axmΓm+∂azsΓs)∂bθ

]



Known result(s) in N = 4: min. surface ending on 4-sided polygon
Alday, Maldacena

higher polygons resist despite attempts

• Conjectured dual of gauge theory dim. reg.:

AdS5 × S5 7→ AdS5−2ε × S5+2ε; extra scale

• Some features of 1√
λ

corrections Kruczenski, RR, Tirziu, Tsetytlin

Not clear how to construct the complete worldsheet action

At tree-level, regularization is due to nontrivial conformal factor

in induced metric; 1-loop Z is insensitive to it 7→ no regularization!

Need worldsheet solution to all orders in ε

gauge theory: lnZ should contain lnλ ↔ ws perturbation theory?

other regulators depart from gauge theory information

Stick to tree level...



� In general – difficult problem simplifies for large number of legs

L

T

many gluons moving in alternating directions

Further approximation: T � L;
find leading term in T/L

Space-like rectangle

� Leading order: qq̄ potential multiplied by distance

ln〈W 〉 =
√

λ
4π2

Γ
(

1
4

)4

T

L
λ � 1

dependence on T/L suggests that it arises from nontrivial function

other L and T dependence: L + T , LT together with regulator



Weak coupling implications: New conjecture

ln
AMHV

n

A
tree,MHV
n

= ln〈Wn〉 + O(ε)

order by order in perturbation theory
Drummond, Henn, Korchemsky, Sokatchev

Brandhuber, Heslop, Travaglini

� Evidence:

4-points at 1-loop Drummond, Korchemsky, Sokatchev

n-points at 1-loop Brandhuber, Heslop, Travaglini

holds in any gauge theory!

4- and 5-points at 2-loop Drummond, Henn, Korchemsky, Sokatchev

• How far does it go? Why does it work at all?



Current perturbative analytic results in N = 4 SYM
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New on-shell technology:

limits of string theory amplitudes

generalized unitarity method

complex momenta (p-analyticity)

efficient multiple cuts (1 loop)

holomorphic anomaly (1 loop)

twistor space structure

further multiple cuts (higher loops)



Properties of scattering amplitudes

• General grounds: leading IR pole at L loops is
1

ε2L

overlap of soft :
∫

dω

ω1+ε
∝ 1

ε
collinear :

∫

dkT

k1+ε
T

∝ 1

ε

• IR pole structure (including subleading poles) is predicted

by the soft/collinear factorization and exponentiation theorem

Extensive QCD literature: Akhoury (1979), Mueller (1979), Collins (1980),

Sen (1981), Sterman (1987), Botts, Sterman (1989), Catani, Trentadue (1989),

Korchemsky (1989), Magnea, Sterman (1990), Korchemsky, Marchesini (1992),

Catani (1998), Sterman, Tejeda-Yeomans (2002)

• Simplifications at large N : IR in terms of β(λ), cusp anomaly

γK(λ) or the large spin limit of the twist-2 anomalous dimension,

“collinear” anomalous dimension G0(λ)

• N = 4 SYM – further simplifications β = 0



Soft/Collinear factorization Magnea, Sterman
Sterman, Tejeda-Yeomans

� Rescaled amplitude factorizes in three parts:

Mn = S(k,
Q

µ
, αs(µ), ε) ×





n
∏

i=1

Ji(
Q

µ
, αs(µ), ε)



× hn(k,
Q

µ
, αs(µ), ε)

S(k, µ, αs(µ), ε) soft function; captures the soft gluon radiation;

defined up to overall function

Ji(k, µ, αs(µ), ε) independent of color flow; all collinear dynamics

hn(µ, αs(µ), ε) is finite as ε → 0

� Independence of Q: factorization vs. evolution

• Consequences of the large N limit: Bern, Dixon, Smirnov

1) trivial color structure: S can be absorbed in J

2) planarity: gluon exchange is confined to neighboring legs



S

S

SS

S

S

SS

M

Mn = ×




n
∏

i=1

M[gg→1]

(

si,i+1

µ
, λ, ε

)





1/2

× hn(k, λ, ε)

Sudakov form factor: decay of a scalar into 2 gluons

Factorization 7→ diferential (RG) equation for M[gg→1]

Mueller (1979); Collins (1980); Sen(1981); Korchemsky, Radyushkin (1987);
Korchemsky (1989); Magnea, Sterman (1990)

d

d lnQ2
M[gg→1]

(

Q2

µ2 ,λ,ε

)

=
1

2

[

K(ε, λ) + G(
Q2

µ2
, λ, ε)

]

M[gg→1]
(

Q2

µ2 ,λ,ε

)

(

d

d lnµ
+ β(λ)

d

dg

)

(K+G) = 0

(

d

d lnµ
+ β(λ)

d

dg

)

K(ε, λ) = −γK(λ)

Exact solution
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Mn = ×




n
∏

i=1

M[gg→1]

(

si,i+1

µ
, λ, ε

)





1/2

× hn(k, λ, ε)

Sudakov form factor: decay of a scalar into 2 gluons

Factorization 7→ diferential (RG) equation for M[gg→1]

Mueller (1979); Collins (1980); Sen(1981); Korchemsky, Radyushkin (1987);
Korchemsky (1989); Magnea, Sterman (1990)

Exact solution for N = 4 SYM Bern, Dixon, Smirnov

Mn = exp



−1

8

∑

l

al





γ
(l)
K

(lε)2
+

2G(l)
0

lε





∑

i

(

µ2

−si,i+1

)lε


 × hn

f(λ) =
∑

l

al γ
(l)
K universal scaling function



Technology of choice: generalized unitarity-based method
Bern, Dixon, Dunbar, Kosower

• a generalized cut isolates the part of an amplitude which contains

some specified set of propagators and imposes the on-shell condition

for their momenta

• Reconstruct amplitudes from (generalized) d-dimensional cuts



Technology of choice: generalized unitarity-based method
Bern, Dixon, Dunbar, Kosower

� 2-loop 4-point amplitudes: Bern, Rozowsky, Yan

+

double-two-particle cuts suffice to reconstruct the amplitude

i2 s12s23 s12 s23

� 2-loop splitting amplitude Anastasiou, Bern, Dixon, Kosower

controls the behavior of amplitudes as two adjacent momenta become collinear

pn−1 = zP pn = (1 − z)P P2 → 0

n

n−1

1

n−2

Split(0)
1

n−2

n

n−1

Split(1)
1

n−2 n−1

n
Split(2)

1

n−2 n−1

n

Split(l) = Split(0) r
(l)
S (z,sn−1,n,ε) r(2)

S (ε) =
1

2

(

r(1)
S (ε)

)2

+ f (2)r(1)
S (2ε) + O(ε)



Technology of choice: generalized unitarity-based method

� 2-loop 4-point amplitudes: Bern, Rozowsky, Yan

i2 s12s23 s12 s23

� 2-loop splitting amplitude Anastasiou, Bern, Dixon, Kosower

pn−1 = zP pn = (1 − z)P P2 → 0

n

n−1

1

n−2

Split(0)
1

n−2

n

n−1

Split(1)
1

n−2 n−1

n1

n−2 n−1

n

Split(2)

Splitting amplitudes may be computed directly!

� Both consistent with: Anastasiou, Bern, Dixon, Kosower

M
(2)
n (ε) =

1

2

(

M
(1)
n (ε)

)2
+ f(2)(ε)M

(1)
n (2ε) + C(2) + O(ε)

7→ ABDK conjecture that it holds for any n at 2-loops



� Striking resemblance with the general structure of IR poles

Mn = exp



−1

8

∑

l

al





γ
(l)
K

(lε)2
+

2G(l)
0

lε





∑

i

(

µ2

−si,i+1

)lε


 × hn

f(λ) =
∑

l

al γ
(l)
K cusp anomalous dimension (univ. scaling fcn.)

1

ε2

∑

i

(

µ2

−si,i+1

)ε

– singular part of the 1-loop n-point amplitude



� Striking resemblance with the general structure of IR poles

Mn = exp



−1

8

∑

l

al





γ
(l)
K

(lε)2
+

2G(l)
0

lε





∑

i

(

µ2

−si,i+1

)lε


 × hn

f(λ) =
∑

l

al γ
(l)
K universal scaling function

1

ε2

∑

i

(

µ2

−si,i+1

)ε

– singular part of the 1-loop n-point amplitude

� hn → exp





∑

l

alh
(l)
n



 and combine with the pole part

Bern, Dixon, Smirnov

Mn = exp



−1

8

∑

l

alf(l)(ε)M(1)
n (lε) + C(l)



 f(l)(ε) = f
(l)
0 +εf

(l)
1 +ε2f

(l)
2

Captures correctly collinear limit: M
(1)
n 7→ M

(1)
n−1 + r

(1)
S



Nevertheless... not a proof. There is evidence for the conjecture:

3-loop 4-points Bern, Dixon, Smirnov

s12s23 s12 s23
2

1

l
k1l+( )

2s232

4
l

k4l+( )
2s1222i3

Strong coupling limit of the 4-gluon amplitude Alday, Maldacena

2-loop 5-points Cachazo, Spradlin, Volovich
Bern, Czakon, Dixon, Kosower, RR, Smirnov
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There are also puzzles:

• Large coupling limit of n-gluon amplitude in the large n limit and

a special kinematic configuration Alday, Maldacena

L

Tln〈Wn→∞〉 =

√
λ

4

16π2

Γ
(

1
4

)4

T

L
+ . . .

∑

l

alf(l)(ε)M(1)
n (lε) =

∑

l

alf(l)(ε)〈Wn〉(1)(lε)
n→∞−→

√
λ

4

T

L
+ . . .

• Hexagon Wilson loop at 2-loops differs from BDS ansatz by non-

trivial function of momenta Drummond, Henn, Korchemsky, Sokatchev

• Difficulties with multi-Regge limits Bartels, Lipatov, Sabio-Vera



Dual conformal invariance Drummond, Henn, Sokatchev, Smirnov

4- and 5- point amplitudes: integrals invariant under dual space

inversion if regularized by continuing external momenta off-shell

ki = xi − xi+1 and I : x
µ
i 7→ x

µ
i

x2
i

; finitness ↔ uijkl =
x2

ijx
2
kl

x2
ikx2

jl

• Regulator breaks dual conformal invariance → potential anomaly

• Wilson loop renormalization: W = Z(ε)F Korchemsky, Radyushkin

K
µ lnFW

n =
1

2
f(λ)

n
∑

i=1

x
µ
i,i+1 ln

x2
i,i+2

x2
i−1,i+1

Drummond, Henn

Sokatchev, Smirnov

� Subtracted BDS ansatz lnFBDS
n =

1

4
f(λ)F

(1)
n (0) captures anomaly



Probe structure of amplitude: define 2-loop “remainder fct”:

R
(2)
n ≡ lim

ε→0

[

M
(2)
n (ε) −

(

1

2

(

M
(1)
n (ε)

)2
+ f(2)(ε)M

(1)
n (2ε) + C(2)

)]

finite

trivial collinear limits

If believe that dual conformal symmetry holds –

7→ R
(2)
6 is the first potentially-nonzero remainder fct

7→ expressed in terms of

u1 =
x2
13x

2
46

x2
14x

2
36

=
s12s45

s123s345

, u2 =
x2
24x

2
51

x2
25x

2
41

=
s23s56

s234s123

, u3 =
x2
35x

2
62

x2
36x

2
52

=
s34s61

s345s234

� homogeneous solution of W.I. ↔ component unrelated to IR



6-point amplitude at 2-loops Bern, Dixon, Kosower, RR, Spradlin, Vergu, Volovich

use generalized unitarity

no-triangle constraint 7→ double-two-particle cuts suffice

Relevant generalized cuts:

(a) (b) (c)

(d) (e)

Main advantage: for d = 4 cuts each tree is MHV

no guarantee that d = 4 suffice (already for 5-points odd)

Split in d = 4 cuts and d 6= 4 cuts M (2)
6 (ε) = M (2),D=4

6 (ε) + M (2),µ
6 (ε)



6-point amplitude at 2-loops: use dual conformal symmetry to or-

ganize integrals

26 possible dual conformal integrals



The integrand:

M
(2),D=4−2ε
6 (ε) = M

(2),D=4
6 (ε) + M

(2),µ
6 (ε)

M (2),D=4
6 (ε) =

1

16

∑

12 perms.

[

1

4
c1I

(1)(ε) + c2I
(2)(ε) +

1

2
c3I

(3)(ε) +
1

2
c4I

(4)(ε) + c5I
(5)(ε)

+ c6I
(6)(ε) +

1

4
c7I

(7)(ε) +
1

2
c8I

(8)(ε) + c9I
(9)(ε)

+ c10I
(10)(ε) + c11I

(11)(ε) +
1

2
c12I

(12)(ε) +
1

2
c13I

(13)(ε)

]

M (2),µ
6 (ε) =

1

16

∑

12 perms.

[

1

4
c14I

(14)(ε) +
1

2
c15I

(15)(ε)

]

Strategy: expose propagators in products of trees; id integrals

c15 may be obtained from a partial d = 4 cut



• The coefficients:

c1 = s16s34s123s345 + s12s45s234s345 + s2345(s23s56 − s123s234)

c2 = 2 s12s223

c3 = s234(s123s234 − s23s56)

c4 = s12s2234

c5 = s34(s123s234 − 2s23s56)

c6 = −s12s23s234

c7 = 2 s123s234s345 − 4s16s34s123 − s12s45s234 − s23s56s345

c8 = 2 s16(s234s345 − s16s34)

c9 = s23s34s234

c10 = s23(2s16s34 − s234s345)

c11 = s12s23s234

c12 = s345(s234s345 − s16s34)

c13 = −s2345s56

c14 = −2 s126(s123s234s345 − s16s34s123 − s12s45s234 − s23s56s345)

c15 = 2 s16 (s123s234s345 − s16s34s123 − s12s45s234 − s23s56s345)



Some comments

M
(2),µ
6 nonvanishing while integrand vanishes in D = 4

M
(2),D=4
6 is constructed out of pseudo-conformal integrals

Unlike n=4 and n=5, relative weights are not 0,±1

Features of the result

IR divergences should be the same as in BDS

subtract BDS −→ find conformal invariance?

u1 =
s12s45

s123s345
u2 =

s23s56

s234s123
u3 =

s34s61

s345s234

How important is D = 4? (det ki · kj = 0, i, j = 1, · · · ,5)?

Comparison with expectation value of hexagon Wilson loop?



� “Direct” integration 7→ departure from BDS ansatz

RA ≡ M(2)
6 −M(2)BDS

6

R0
A ≡ RA(K(0)) = 1.0937 ± 0.0057 K(0) : (1/4,1/4,1/4)

kinematics (u1, u2, u3) RA − R0
A

K(1) (1/4,1/4,1/4) −0.018 ± 0.023

K(2) (0.547253, 0.203822, 0.881270) −2.753 ± 0.015

K(3) (28/17,16/5,112/85) −4.7445 ± 0.0075

K(4) (1/9,1/9,1/9) 4.12 ± 0.10

K(5) (4/81,4/81,4/81) 10.00 ± 0.50

the remainder function is nontrivial

it is dual conformal invariant



� Comparison with hexagon Wilson loop

RA ≡ M(2)
6 −M(2)BDS

6

R0
A ≡ RA(K(0)) = 1.0937 ± 0.0057 R0

W = 13.26530

kinematics (u1, u2, u3) RA − R0
A RW − R0

W

K(1) (1/4,1/4,1/4) −0.018 ± 0.023 < 10−5

K(2) (0.547253, 0.203822, 0.881270) −2.753 ± 0.015 −2.7553

K(3) (28/17,16/5,112/85) −4.7445 ± 0.0075 −4.7446

K(4) (1/9,1/9,1/9) 4.12 ± 0.10 4.0914

K(5) (4/81,4/81,4/81) 10.00 ± 0.50 9.7255

• Agreement within errors!

• M6 = 〈W6〉 6= MBDS
6



Where else does R
(2)
6 crop up?

Does it have another (more physical) interpretation?



Where else does R
(2)
6 crop up? More physical interpretation?

Yes; a triple-collinear splitting amplitude

triple-collinear limit:

ka = z1P kb = z2P kc = z3P P2 → 0

z1+z2+z3=1 , 0≤zi≤1

A(l)
n (k1, . . . , kn−2, kn−1, kn) 7→

∑

λ=±

l
∑

s=0

A(l−s)
n (k1, . . . , P

λ) Split
(s)
−λ(kn−2kn−1kn;P )

↗
s-loop triple-collinear
splitting amplitude

MHV amplitudes 7→ four triple-collinear splitting amplitudes

Split+(k+
a k+

b k+
c ;P ) = 0

Split−(k+
a k+

b k+
c ;P ) ; Split+(k−a k+

b k+
c ;P ) ; Split+(k+

a k−b k+
c ;P )

Split−(k+
a k+

b k+
c ;P )

Splittree− (k+
a k+

b k+
c ;P )

= rS(
sab
sabc

, sbc
sabc

, z1, z3)



first time for 6-point kinematics ka = z1P, kb = z2P, kc = z3P

� cross ratios are arbitrary! → R survives

ū1 =
s45

s456

1

1 − z3
ū2 =

s56

s456

1

1 − z1
ū3 =

z1z3
(1 − z1)(1 − z3)

triple-collinear factorization vs. corrected BDS at 2-loops

M
(2)
6 7→ M

(2)
4 + M

(1)
4 r

(1)
S + r

(2)
S

7→ M
(2)BDS
4 + M

(1)BDS
4 r

(1)BDS
S + r

(2)BDS
S + R

(2)
6 (ū)

� remainder function ↔ triple-collinear splitting amplitude

R
(2)
6 (ū) = r

(2)
S (

sab
sabc

, sbc
sabc

, z1, z3, ε) − r
(2)BDS
S (

sab
sabc

, sbc
sabc

, z1, z3, ε)

� Advantage: potentially simpler integrals

potentially resummable



Summary

• rescaled 6pt MHV amplitude=Wilson loop6=BDS

– BDS captures the part of amplitudes determined by IR behavior

• correction visible in triple-collinear limit; equals splitting amplitude



Summary and open questions

• rescaled 6pt MHV amplitude=Wilson loop6=BDS

• correction visible in triple-collinear limit; equals splitting amplitude

• Is it possible to find the analytic form of the remainder?

• Why are MHV amplitudes related to null Wilson loops? What

about non-MHV amplitudes?

• Who ordered dual conformal invariance? What are the allowed

types of contributions that break it?

• What other implications does it have? Is it relevant for non-MHV

amplitudes and in what sense? (see conjecture in Sokatchev’s talk)

• Is dual conformal invariance really restricted to the planar theory?

What theories exhibit it? Does it have any relation to integrability

of the dilatation operator?

• ...



Extra



Scattering amplitudes in CFT

• CFT: interactions never turn off → no free asymptotic states

IR divergences

• Regularization: use dimensional regularization d = 4 − 2ε

breaks conformal invariance

allows definition of asymptotic states

recovered as ε → 0

• Similarly to QCD: on-shell gauge invariance

for “N = 4 collider” observables, need to

turn them into scattering of gauge singlets

finiteness exposes properties of

amplitudes which hold in any gauge theory


