Wonders of E_{10} and $K\left(E_{10}\right)$

Hermann Nicolai
MPI für Gravitationsphysik (AEI), Potsdam
Wonders of Gauge Theory and Supergravity IHP and LPT-ENS, Paris, 23-28 June 2008

(mostly) based on work done in collaboration with:
Thibault Damour, Axel Kleinschmidt and Marc Henneaux

Wonders of E_{10} and $K\left(E_{10}\right)$

Hermann Nicolai
MPI für Gravitationsphysik (AEI), Potsdam
Wonders of Gauge Theory and Supergravity IHP and LPT-ENS, Paris, 23-28 June 2008
(mostly) based on work done in collaboration with:
Thibault Damour, Axel Kleinschmidt and Marc Henneaux

Main message of this talk:
Search for unification = search for symmetries Most successful guiding principle of physics

Wonders of E_{10} and $K\left(E_{10}\right)$

Hermann Nicolai
MPI für Gravitationsphysik (AEI), Potsdam
Wonders of Gauge Theory and Supergravity IHP and LPT-ENS, Paris, 23-28 June 2008
(mostly) based on work done in collaboration with:
Thibault Damour, Axel Kleinschmidt and Marc Henneaux

Main message of this talk:
Search for unification = search for symmetries Most successful guiding principle of physics
... and perhaps also for quantum gravity...

The BKL Paradigm

- Near a spacelike (cosmological) singularity, Einstein equations should simplify \Rightarrow BKL decoupling: $\partial_{x} \ll \partial_{t}$?
[BKL \equiv Belinskii, Khalatnikov, Lifshitz (1972)]

The BKL Paradigm

- Near a spacelike (cosmological) singularity, Einstein equations should simplify \Rightarrow BKL decoupling: $\partial_{x} \ll \partial_{t}$?
[BKL 三 Belinskii, Khalatnikov, Lifshitz (1972)]

The BKL Paradigm

- Near a spacelike (cosmological) singularity, Einstein equations should simplify \Rightarrow BKL decoupling: $\partial_{x} \ll \partial_{t}$?
[BKL 三 Belinskii, Khalatnikov, Lifshitz (1972)]

- Dimensional reduction to one (time) dimension \rightarrow effective dynamics near singularity from gradient expansion? \rightarrow billiards, chaotic oscillations, etc.

Another (old) paradigm

- Cosmological evolution as 'geodesic motion' in the moduli space of 3-geometries [wheeler, Dewitt, ...]:

$$
\mathcal{M} \equiv \mathcal{G}^{(3)}=\frac{\left\{\text { spatial metrics } g_{i j}(\mathrm{x})\right\}}{\{\text { diffeomorphisms }\}}
$$

Another (old) paradigm

- Cosmological evolution as 'geodesic motion' in the moduli space of 3 -geometries [wheeler, Dewitt, ...]:

$$
\mathcal{M} \equiv \mathcal{G}^{(3)}=\frac{\left\{\text { spatial metrics } g_{i j}(\mathrm{x})\right\}}{\{\text { diffeomorphisms }\}}
$$

- Can we understand and 'simplify' \mathcal{M} by means of an embedding into a group theoretical coset $G / K(G)$?

Another (old) paradigm

- Cosmological evolution as 'geodesic motion' in the moduli space of 3 -geometries [wheeler, Dewitt, ...]:

$$
\mathcal{M} \equiv \mathcal{G}^{(3)}=\frac{\left\{\text { spatial metrics } g_{i j}(\mathbf{x})\right\}}{\{\text { diffeomorphisms }\}}
$$

- Can we understand and 'simplify' \mathcal{M} by means of an embedding into a group theoretical coset $G / K(G)$?
- The prototype example: moduli space of solutions of Einstein equations with two commuting Killing vectors
$\mathcal{M}=A_{1}^{(1)} / K\left(A_{1}^{(1)}\right), \quad A_{1}^{(1)} \equiv S \widehat{L(2, \mathbb{R})_{c . e .}}=$ Geroch group

Another (old) paradigm

- Cosmological evolution as 'geodesic motion' in the moduli space of 3 -geometries [wheeler, Dewitt, ...]:

$$
\mathcal{M} \equiv \mathcal{G}^{(3)}=\frac{\left\{\text { spatial metrics } g_{i j}(\mathrm{x})\right\}}{\{\text { diffeomorphisms }\}}
$$

- Can we understand and 'simplify' \mathcal{M} by means of an embedding into a group theoretical coset $G / K(G)$?
- The prototype example: moduli space of solutions of Einstein equations with two commuting Killing vectors

$$
\left.\mathcal{M}=A_{1}^{(1)} / K\left(A_{1}^{(1)}\right), \quad A_{1}^{(1)} \equiv S \widehat{L(2, \mathbb{R}}\right)_{c . e .}=\text { Geroch group }
$$

- Unification of space-time, matter and gravitation: configuration space \mathcal{M} for quantum gravity should consistently incorporate matter degrees of freedom.

Hidden symmetries

Reduction of SUGRA ${ }_{11}$ to $D=11-n$ [Cremmer, Julia (1979)]

n	Scalar Coset $E_{n} / K\left(E_{n}\right)$
1	$G L(1) / \mathbf{1}$
2	$G L(2) / S O(2)$
3	$S L(3) \times S L(2) / U(2)$
4	$S L(5) / S O(5)$
5	$S O(5,5) / S O(5) \times S O(5)$
6	$E_{6} / U S p(4)$
7	$E_{7} / S U(8)$
8	$E_{8} /\left(S p i n(16) / \mathbb{Z}_{2}\right)$
9	$E_{9} / K\left(E_{9}\right)$
10	$E_{10} / K\left(E_{10}\right)$
11	$E_{11} / K\left(E_{11}\right)$

$\Rightarrow \quad E_{10}$ from dimensional reduction to $D=1$?

$\Rightarrow \quad E_{10}$ from dimensional reduction to $D=1$?

However: $\mathcal{L}=\mathcal{L}\left(g_{i j}(t), A_{i j k}(t)\right)$ is only invariant under $G L(10, \mathbb{R}) \ltimes T_{120} \ldots$ but:
$\Rightarrow \quad E_{10}$ from dimensional reduction to $D=1$?
However: $\mathcal{L}=\mathcal{L}\left(g_{i j}(t), A_{i j k}(t)\right)$ is only invariant under $G L(10, \mathbb{R}) \ltimes T_{120} \ldots$ but:
Effective dynamics of diagonal metric degrees of freedom is governed by cosmological billiards in Weyl chamber of E_{10} !
[Damour, Henneaux, hep-th/0012172; DHN, hep-th/0212256]
$\Rightarrow \quad E_{10}$ from dimensional reduction to $D=1$?
However: $\mathcal{L}=\mathcal{L}\left(g_{i j}(t), A_{i j k}(t)\right)$ is only invariant under $G L(10, \mathbb{R}) \ltimes T_{120} \ldots$ but:
Effective dynamics of diagonal metric degrees of freedom is governed by cosmological billiards in Weyl chamber of E_{10} !
[Damour, Henneaux, hep-th/0012172; DHN, hep-th/0212256] motivates BASIC CONJECTURE: $\mathcal{M}=E_{10} / K\left(E_{10}\right)$

Dynamics of supergravity (or some M theoretic extension)

Null geodesic motion on
$E_{10} / K\left(E_{10}\right)$ coset space
are equivalent! [Dhi, hep-th/0207267]

SUGRA eqs. of motion + canonical constraints
∞-component geodesic eqn.
and coset constraints

Definition of E_{10}

Definition of E_{10}

E_{10} is the Kac-Moody group with Kac-Moody Lie algebra $\mathfrak{g} \equiv \mathfrak{e}_{10}$ of rank 10 defined via the Dynkin diagram

$$
A_{i j}
$$

Cartan matrix

Definition of E_{10}

E_{10} is the Kac-Moody group with Kac-Moody Lie algebra $\mathfrak{g} \equiv \mathfrak{e}_{10}$ of rank 10 defined via the Dynkin diagram

Cartan matrix
Chevalley-Serre presentation: Generators h_{i}, e_{i}, f_{i} for $i=1, \ldots, 10$ with relations

$$
\begin{aligned}
{\left[h_{i}, h_{j}\right] } & =0, & {\left[e_{i}, f_{j}\right] } & =\delta_{i j} h_{i}, \\
{\left[h_{i}, e_{j}\right] } & =A_{i j} e_{j}, & {\left[h_{i}, f_{j}\right] } & =-A_{i j} f_{j}, \\
\left(\operatorname{ad~} e_{i}\right)^{1-A_{i j}} e_{j} & =0, & \left(\operatorname{ad} f_{i}\right)^{1-A_{i j}} f_{j} & =0 .
\end{aligned}
$$

Definition of E_{10}

E_{10} is the Kac-Moody group with Kac-Moody Lie algebra $\mathfrak{g} \equiv \mathfrak{e}_{10}$ of rank 10 defined via the Dynkin diagram

Cartan matrix
Chevalley-Serre presentation: Generators h_{i}, e_{i}, f_{i} for $i=1, \ldots, 10$ with relations

$$
\begin{aligned}
{\left[h_{i}, h_{j}\right] } & =0, & {\left[e_{i}, f_{j}\right] } & =\delta_{i j} h_{i}, \\
{\left[h_{i}, e_{j}\right] } & =A_{i j} e_{j}, & {\left[h_{i}, f_{j}\right] } & =-A_{i j} f_{j}, \\
\left(\operatorname{ad} e_{i}\right)^{1-A_{i j}} e_{j} & =0, & \left(\operatorname{ad} f_{i}\right)^{1-A_{i j}} f_{j} & =0 .
\end{aligned}
$$

h_{i} span Cartan subalgebra $\mathfrak{h} ; e_{i}$ and f_{i} : positive and negative simple root generators

Key Properties

Key Properties

- Root space decomposition: $\alpha \in Q\left(E_{10}\right)=\mathrm{II}_{1,9}$

$$
\mathfrak{g}_{\alpha}=\{x \in \mathfrak{g}:[h, x]=\alpha(h) x \text { for } h \in \mathfrak{h}\}
$$

Real roots ($\alpha^{2}=2$) and imaginary roots ($\alpha^{2} \leq 0$)

Key Properties

- Root space decomposition: $\alpha \in Q\left(E_{10}\right)=\mathrm{II}_{1,9}$

$$
\mathfrak{g}_{\alpha}=\{x \in \mathfrak{g}:[h, x]=\alpha(h) x \quad \text { for } h \in \mathfrak{h}\}
$$

Real roots ($\alpha^{2}=2$) and imaginary roots ($\alpha^{2} \leq 0$)

- $W^{+}\left(E_{10}\right)=\mathrm{PSL}_{2}\left(\mathbb{O}_{\mathbb{Z}}\right) \quad$ [KFN, math.RT/0805.3018]

Key Properties

- Root space decomposition: $\alpha \in Q\left(E_{10}\right)=\mathrm{II}_{1,9}$

$$
\mathfrak{g}_{\alpha}=\{x \in \mathfrak{g}:[h, x]=\alpha(h) x \text { for } h \in \mathfrak{h}\}
$$

Real roots ($\alpha^{2}=2$) and imaginary roots ($\alpha^{2} \leq 0$)

- $W^{+}\left(E_{10}\right)=\mathrm{PSL}_{2}\left(\mathbb{O}_{\mathbb{Z}}\right) \quad$ [KFN, math.RT/0805.3018]
- Invariant bilinear form \rightarrow Action Principle

$$
\left\langle h_{i} \mid h_{j}\right\rangle=A_{i j} \quad, \quad\left\langle e_{i} \mid f_{j}\right\rangle=\delta_{i j} \quad, \quad\langle[x, y] \mid z\rangle=\langle x \mid[y, z]\rangle .
$$

[No other polynomial Casimir for $\operatorname{dim} \mathfrak{g}=\infty \rightarrow$ action is (essentially) unique!]

Key Properties

- Root space decomposition: $\alpha \in Q\left(E_{10}\right)=\mathrm{II}_{1,9}$

$$
\mathfrak{g}_{\alpha}=\{x \in \mathfrak{g}:[h, x]=\alpha(h) x \text { for } h \in \mathfrak{h}\}
$$

Real roots ($\alpha^{2}=2$) and imaginary roots ($\alpha^{2} \leq 0$)

- $W^{+}\left(E_{10}\right)=\mathrm{PSL}_{2}\left(\mathbb{O}_{\mathbb{Z}}\right) \quad$ [KFN, math.RT/0805.3018]
- Invariant bilinear form \rightarrow Action Principle

$$
\left\langle h_{i} \mid h_{j}\right\rangle=A_{i j} \quad, \quad\left\langle e_{i} \mid f_{j}\right\rangle=\delta_{i j} \quad, \quad\langle[x, y] \mid z\rangle=\langle x \mid[y, z]\rangle .
$$

[No other polynomial Casimir for $\operatorname{dim} \mathfrak{g}=\infty \rightarrow$ action is (essentially) unique!]

- Triangular decomposition \rightarrow Computability

$$
\mathfrak{g}=\mathfrak{e}_{10}=\mathfrak{n}_{-} \oplus \mathfrak{h} \oplus \mathfrak{n}_{+}, \quad \text { with } \mathfrak{n}_{ \pm}:=\bigoplus_{\alpha \gtrless 0} \mathfrak{g}_{\alpha}
$$

Compact subalgebra $K\left(\mathfrak{e}_{10}\right)$

Compact subalgebra $K\left(\mathfrak{e}_{10}\right)$

Chevalley involution ω on \mathfrak{e}_{10} is defined by

$$
\omega\left(e_{i}\right)=-f_{i}, \quad \omega\left(f_{i}\right)=-e_{i}, \quad \omega\left(h_{i}\right)=-h_{i}
$$

and extends to all of \mathfrak{e}_{10} by $\omega([x, y])=[\omega(x), \omega(y)]$.

Compact subalgebra $K\left(\mathfrak{e}_{10}\right)$

Chevalley involution ω on \mathfrak{e}_{10} is defined by

$$
\omega\left(e_{i}\right)=-f_{i}, \quad \omega\left(f_{i}\right)=-e_{i}, \quad \omega\left(h_{i}\right)=-h_{i}
$$

and extends to all of \mathfrak{e}_{10} by $\omega([x, y])=[\omega(x), \omega(y)]$.
Fixed point set

$$
\mathfrak{k}_{10} \equiv K\left(\mathfrak{e}_{10}\right)=\left\{x \in \mathfrak{e}_{10}: \omega(x) \equiv-x^{T}=x\right\}
$$

is a subalgebra of \mathfrak{e}_{10}, called the compact subalgebra.

Compact subalgebra $K\left(\mathfrak{e}_{10}\right)$

Chevalley involution ω on \mathfrak{e}_{10} is defined by

$$
\omega\left(e_{i}\right)=-f_{i}, \quad \omega\left(f_{i}\right)=-e_{i}, \quad \omega\left(h_{i}\right)=-h_{i}
$$

and extends to all of \mathfrak{e}_{10} by $\omega([x, y])=[\omega(x), \omega(y)]$.
Fixed point set

$$
\mathfrak{k}_{10} \equiv K\left(\mathfrak{e}_{10}\right)=\left\{x \in \mathfrak{e}_{10}: \omega(x) \equiv-x^{T}=x\right\}
$$

is a subalgebra of \mathfrak{e}_{10}, called the compact subalgebra.
\rightarrow generalizes compact subalgebra of finite dimensional
Lie algebras (in split real form; e.g. $\mathfrak{s o}(n) \subset \mathfrak{g l}(n)$)

Compact subalgebra $K\left(\mathfrak{e}_{10}\right)$

Chevalley involution ω on \mathfrak{e}_{10} is defined by

$$
\omega\left(e_{i}\right)=-f_{i}, \quad \omega\left(f_{i}\right)=-e_{i}, \quad \omega\left(h_{i}\right)=-h_{i}
$$

and extends to all of \mathfrak{e}_{10} by $\omega([x, y])=[\omega(x), \omega(y)]$.
Fixed point set

$$
\mathfrak{k}_{10} \equiv K\left(\mathfrak{e}_{10}\right)=\left\{x \in \mathfrak{e}_{10}: \omega(x) \equiv-x^{T}=x\right\}
$$

is a subalgebra of \mathfrak{e}_{10}, called the compact subalgebra.
\rightarrow generalizes compact subalgebra of finite dimensional Lie algebras (in split real form; e.g. $\mathfrak{s o}(n) \subset \mathfrak{g l}(n)$)

However: \mathfrak{k}_{10} is not a Kac-Moody algebra [KN, hep-th/0506238]

Level decomposition: $A_{9} \subset \mathfrak{e}_{10}$

Level decomposition: $A_{9} \subset \mathfrak{e}_{10}$

Level decomposition: $A_{9} \subset \mathfrak{e}_{10}$

ℓ	A_{9} module	Tensor
0	$[100000001] \oplus[000000000]$	$K^{a}{ }_{b}$
1	$[000000100]$	$E^{a b c}$
2	$[000100000]$	$E^{a_{1} \ldots a_{6}}$
3	$[010000001]$	$E^{a_{1} \ldots a_{8} \mid a_{9}}$

Level decomposition: $A_{9} \subset \mathfrak{e}_{10}$

ℓ	A_{9} module	Tensor
0	$[100000001] \oplus[000000000]$	$K^{a^{a}}{ }_{b}$
1	$[000000100]$	$E^{a b c}$
2	$[000100000]$	$E^{a_{1} \ldots a_{6}}$
3	$[010000001]$	$E^{a_{1} \ldots a_{8} \mid a_{9}}$

These are just the representations corresponding to the bosonic fields of $D=11$ SUGRA and their magnetic duals.
At level $\ell=3$: dual graviton $h_{a_{1} \ldots a_{8} \mid a_{9}}\left(\right.$ with $\left.h_{\left[a_{1} \ldots a_{8} \mid a_{9}\right]}=0\right)$
[For more representations, see: Fischbacher,N. hep-th/0301017]

Versatility of $E_{10}\left(\& E_{11}\right)$

Versatility of $E_{10}\left(\& E_{11}\right)$

The one-dimensional $E_{10} \sigma$-model unifies

Versatility of $E_{10}\left(\& E_{11}\right)$

The one-dimensional $E_{10} \sigma$-model unifies

$D=11$ SUGRA

[DHN; West 2002]

Versatility of $E_{10}\left(\& E_{11}\right)$

The one-dimensional $E_{10} \sigma$-model unifies

$$
D=11 \text { SUGRA }
$$

[DHN; West 2002]

mlIA $D=10$ SUGRA

[Kleinschmidt, Schnakenburg, West 2003]
[Kleinschmidt, N. 2004]

Versatility of $E_{10}\left(\& E_{11}\right)$

The one-dimensional $E_{10} \sigma$-model unifies

$D=11$ SUGRA

[DHN; West 2002]

mIIA $D=10$ SUGRA

[Kleinschmidt, Schnakenburg, West 2003] [Kleinschmidt, N. 2004]

IIB $D=10$ SUGRA

[Kleinschmidt, Schnakenburg, West 2003] [Kleinschmidt, N. 2004]

Versatility of $E_{10}\left(\& E_{11}\right)$

The one-dimensional $E_{10} \sigma$-model unifies

$D=11$ SUGRA

[DHN; West 2002]

$$
\text { mlIA } D=10 \text { SUGRA }
$$

[Kleinschmidt, Schnakenburg, West 2003] [Kleinschmidt, N. 2004]

IIB $D=10$ SUGRA

[Kleinschmidt, Schnakenburg, West 2003] [Kleinschmidt, N. 2004]
These are the (maximal) low energy theories of the 'M-theory diagram', now all part of a single model.

Dynamics: bosonic Lagrangian

Dynamics: bosonic Lagrangian

Decompose Cartan form for $\mathcal{V}(t) \in E_{10} / K\left(E_{10}\right)$

$$
\partial_{t} \mathcal{V} \mathcal{V}^{-1}(t)=\mathcal{Q}(t)+\mathcal{P}(t) \quad, \quad \mathcal{Q} \in \mathfrak{k}_{10}, \mathcal{P} \in \mathfrak{e}_{10} \ominus \mathfrak{k}_{10}
$$

Dynamics: bosonic Lagrangian

Decompose Cartan form for $\mathcal{V}(t) \in E_{10} / K\left(E_{10}\right)$

$$
\partial_{t} \mathcal{V} \mathcal{V}^{-1}(t)=\mathcal{Q}(t)+\mathcal{P}(t) \quad, \quad \mathcal{Q} \in \mathfrak{k}_{10}, \mathcal{P} \in \mathfrak{e}_{10} \ominus \mathfrak{k}_{10}
$$

\Rightarrow essentially unique coset Lagrangian $(n(t)=$ lapse $)$

$$
\mathcal{L}=\frac{1}{2 n}\langle\mathcal{P} \mid \mathcal{P}\rangle .
$$

Dynamics: bosonic Lagrangian

Decompose Cartan form for $\mathcal{V}(t) \in E_{10} / K\left(E_{10}\right)$

$$
\partial_{t} \mathcal{V} \mathcal{V}^{-1}(t)=\mathcal{Q}(t)+\mathcal{P}(t) \quad, \quad \mathcal{Q} \in \mathfrak{k}_{10}, \mathcal{P} \in \mathfrak{e}_{10} \ominus \mathfrak{k}_{10}
$$

\Rightarrow essentially unique coset Lagrangian $(n(t)=$ lapse $)$

$$
\mathcal{L}=\frac{1}{2 n}\langle\mathcal{P} \mid \mathcal{P}\rangle .
$$

invariant under local $K\left(E_{10}\right)$ and global E_{10} :

$$
\mathcal{V}(t) \rightarrow k(t) \mathcal{V}(t) g \Rightarrow \mathcal{P} \rightarrow k \mathcal{P} k^{-1}, \mathcal{Q} \rightarrow k \mathcal{Q} k^{-1}+\partial_{t} k k^{-1}
$$

Dynamics: bosonic Lagrangian

Decompose Cartan form for $\mathcal{V}(t) \in E_{10} / K\left(E_{10}\right)$

$$
\partial_{t} \mathcal{V} \mathcal{V}^{-1}(t)=\mathcal{Q}(t)+\mathcal{P}(t) \quad, \quad \mathcal{Q} \in \mathfrak{k}_{10}, \mathcal{P} \in \mathfrak{e}_{10} \ominus \mathfrak{k}_{10}
$$

\Rightarrow essentially unique coset Lagrangian $(n(t)=$ lapse $)$

$$
\mathcal{L}=\frac{1}{2 n}\langle\mathcal{P} \mid \mathcal{P}\rangle .
$$

invariant under local $K\left(E_{10}\right)$ and global E_{10} :

$$
\mathcal{V}(t) \rightarrow k(t) \mathcal{V}(t) g \Rightarrow \mathcal{P} \rightarrow k \mathcal{P} k^{-1}, \mathcal{Q} \rightarrow k \mathcal{Q} k^{-1}+\partial_{t} k k^{-1}
$$

Equations of motion: null geodesic on $E_{10} / K\left(E_{10}\right)$

$$
n \partial_{t}\left(n^{-1} \mathcal{P}\right)=[\mathcal{Q}, \mathcal{P}], \quad\langle\mathcal{P} \mid \mathcal{P}\rangle=0 .
$$

Example: $A_{9} \subset E_{10}$

With $\partial_{t} \mathcal{V}^{-1}=\sum_{\ell \geq 0} P^{(\ell)} * E^{(\ell)}$ (schematically) and truncation $P^{(\ell)}=0$ for $\ell>3 \Rightarrow$ Equations of motion up to $\ell=3(a, b=1, \ldots, 10)$ [DHN; DN, hep-th/0410245]

$$
\begin{aligned}
n \mathcal{D}^{(0)}\left(n^{-1} P_{a b}^{(0)}\right)= & -\frac{1}{4}\left(P_{a c d}^{(1)} P_{b c d}^{(1)}-\frac{1}{9} \delta_{a b} P_{c d e}^{(1)} P_{c d e}^{(1)}\right) \\
& -\frac{1}{2 \cdot 5!}\left(P_{a c_{1} \ldots c_{5}}^{(2)} P_{b c_{1} \ldots c_{5}}^{(2)}-\frac{1}{9} \delta_{a b} P_{c_{1} \ldots c_{6}}^{(2)} P_{c_{1} \ldots c_{6}}^{(2)}\right) \\
& +\frac{4}{9!}\left(P_{a c_{1} \ldots c_{7} \mid c_{8}}^{(3)} P_{b c_{1} \ldots c_{7} \mid c_{8}}^{(3)}+\frac{1}{8} P_{c_{1} \ldots c_{8} \mid a}^{(3)} P_{c_{1} \ldots c_{8} \mid b}^{(3)}\right. \\
& \left.-\frac{1}{8} \delta_{a b} P_{c_{1} \ldots c_{8} \mid c_{9}}^{(3)} P_{c_{1} \ldots c_{8} \mid c_{9}}^{(3)}\right) \\
& \\
n \mathcal{D}^{(0)}\left(n^{-1} P_{a b c}^{(1)}\right)= & -\frac{1}{6} P_{a b c d e f}^{(2)} P_{d e f}^{(1)}+\frac{1}{3 \cdot 5!} P_{a b c d_{1} \ldots d_{5} \mid d_{6}}^{(3)} P_{d_{1} \ldots d_{6}}^{(2)} \\
n \mathcal{D}^{(0)}\left(n^{-1} P_{a_{1} \ldots a_{6}}^{(2)}\right)= & \frac{1}{6} P_{a_{1} \ldots a_{6} c d e}^{(3)} P_{c d e}^{(1)} \\
n \mathcal{D}^{(0)}\left(n^{-1} P_{a_{1} \ldots a_{8} \mid a_{9}}^{(3)}\right)= & 0 \quad \quad\left(\text { with } P_{\left[a_{1} \ldots a_{8} \mid a_{9}\right]}^{(3)}=0\right) .
\end{aligned}
$$

This is a consistent truncation of $E_{10} / K\left(E_{10}\right)$ coset dynamics: solutions of truncated theory are also solutions of the full theory.

Correspondence with SUGRA ${ }_{11}$

Correspondence with SUGRA ${ }_{11}$

Bosonic $D=11$ supergravity equations [Cremmer, Julia, Scherk 1978]

$$
\begin{aligned}
\mathcal{E}_{A B} & \equiv R_{A B}-\frac{1}{3} F_{A C D E} F_{B}^{C D E}+\frac{1}{36} \eta_{A B} F_{C D E F} F^{C D E F}=0 \\
\mathcal{M}^{B C D} & \equiv D_{A} F^{A B C D}+\frac{1}{576} \epsilon^{B C D E_{1} \ldots E_{8}} F_{E_{1} \ldots E_{4}} F_{E_{5} \ldots E_{8}}=0
\end{aligned}
$$

and Bianchi identities: $D_{[A} F_{B C D E]}=R_{[A B C] D}=0$

Correspondence with SUGRA ${ }_{11}$

Bosonic $D=11$ supergravity equations [Cremmer, Julia, Scherk 1978]

$$
\begin{aligned}
\mathcal{E}_{A B} & \equiv R_{A B}-\frac{1}{3} F_{A C D E} F_{B}^{C D E}+\frac{1}{36} \eta_{A B} F_{C D E F} F^{C D E F}=0 \\
\mathcal{M}^{B C D} & \equiv D_{A} F^{A B C D}+\frac{1}{576} \epsilon^{B C D E_{1} \ldots E_{8}} F_{E_{1} \ldots E_{4}} F_{E_{5} \ldots E_{8}}=0
\end{aligned}
$$

and Bianchi identities: $D_{[A} F_{B C D E]}=R_{[A B C] D}=0$
Consider gauge fi xed (à la ADM) equations at some fixed spatial point x_{0} :

- keeping all temporal and fi rst order spatial derivatives at x_{0}
- zero-shift gauge: $E_{M}^{A}=\left(\begin{array}{c|c}N & 0 \\ \hline 0 & e_{m}{ }^{a}\end{array}\right)$ and Coulomb gauge: $A_{t m n}=0$
- Anholonomy coeffi cients $\left[\partial_{b}, \partial_{c}\right]=\tilde{\Omega}_{b c \mid a} \partial_{a}$ chosen traceless (in some neighborhood of \mathbf{x}_{0}) by exploiting spatial Lorentz group, i.e. $\Lambda_{a b}=\Lambda_{a b}(t, \mathbf{x})$ [? ? ?]
- Thus the standard ADM procedure leads to usual split into:
- Dynamical equations: $\mathcal{E}_{a b}=\mathcal{M}_{a b c}=D_{[0} F_{b c d e]}=R_{[0 a b] c}=0$
- Canonical constraints: $\mathcal{E}_{00}=\mathcal{E}_{0 a}=\mathcal{M}_{0 a b}=D_{[a} F_{b c d e]}=R_{[a b c] d}=0$

Correspondence with SUGRA ${ }_{11}$

Bosonic $D=11$ supergravity equations [Cremmer, Julia, Scherk 1978]

$$
\begin{aligned}
\mathcal{E}_{A B} & \equiv R_{A B}-\frac{1}{3} F_{A C D E} F_{B}^{C D E}+\frac{1}{36} \eta_{A B} F_{C D E F} F^{C D E F}=0 \\
\mathcal{M}^{B C D} & \equiv D_{A} F^{A B C D}+\frac{1}{576} \epsilon^{B C D E_{1} \ldots E_{8}} F_{E_{1} \ldots E_{4}} F_{E_{5} \ldots E_{8}}=0
\end{aligned}
$$

and Bianchi identities: $D_{[A} F_{B C D E]}=R_{[A B C] D}=0$
Then with the identifi cation $n=N e^{-1}$ and (r.h.s. always at fi xed spatial point $\mathbf{x}=\mathbf{x}_{0}$)

$$
\begin{aligned}
\mathcal{D}^{(0)} P_{a b}^{(0)} & =R_{a b}^{\text {time derivatives }} \\
P_{a b c}^{(1)} & =N F_{0 a b c} \\
P_{a_{1} \ldots a_{6}}^{(2)} & =-\frac{1}{4!} N \epsilon_{a_{1} \ldots a_{6} b_{1} \ldots b_{4}} F_{b_{1} \ldots b_{4}} \\
P_{a_{1} \ldots a_{8} \mid a_{9}}^{(3)} & =\frac{3}{2} N \epsilon_{a_{1} \ldots a_{8} b c} \tilde{\Omega}_{b c \mid a_{9}}
\end{aligned}
$$

the two sets of dynamical equations coincide! (recall $P_{\left[a_{1} \ldots a_{8} \mid a_{9}\right]}^{(3)}=0 \Leftrightarrow \tilde{\Omega}_{a b \mid b}=0$) Dynamical equations for mIIA and IIB similarly from level decompositions w.r.t. fi nite dimensional subgroups $D_{9} \equiv S O(9,9) \subset E_{10}$ and $A_{8} \times A_{1} \equiv S L(9) \times S L(2) \subset E_{10}$.

Constraints: an intriguing link

Constraints: an intriguing link

Conserved E_{10} current $\mathcal{J}=n \mathcal{V} \mathcal{P} \mathcal{V}^{-1} \quad\left(\equiv\right.$ Noether charge associated with global $\left.E_{10}\right)$:

$$
\begin{aligned}
\mathcal{J}= & \frac{1}{9!} J_{(-3)}^{m_{0} \mid m_{1} \ldots m_{8}} F_{m_{0} \mid m_{1} \ldots m_{8}}+\frac{1}{6!} J_{(-2)}^{m_{1} \ldots m_{6}} F_{m_{1} \ldots m_{6}}+\frac{1}{3!} J_{(-1)}^{m n p} F_{m n p} \\
& +J_{(0) m}^{n} K^{m}{ }_{n}+\frac{1}{3!} J_{(1) m n p} E^{m n p}+\frac{1}{6!} J_{(2) m_{1} \ldots m_{6}} E^{m_{1} \ldots m_{6}}+\ldots
\end{aligned}
$$

Constraints: an intriguing link

Conserved E_{10} current $\mathcal{J}=n \mathcal{V} \mathcal{P} \mathcal{V}^{-1} \quad\left(\equiv\right.$ Noether charge associated with global $\left.E_{10}\right)$:

$$
\begin{aligned}
\mathcal{J}= & \frac{1}{9!} J_{(-3)}^{m_{0} \mid m_{1} \ldots m_{8}} F_{m_{0} \mid m_{1} \ldots m_{8}}+\frac{1}{6!} J_{(-2)}^{m_{1} \ldots m_{6}} F_{m_{1} \ldots m_{6}}+\frac{1}{3!} J_{(-1)}^{m n p} F_{m n p} \\
& +J_{(0) m}^{n} K^{m}{ }_{n}+\frac{1}{3!} J_{(1) m n p} E^{m n p}+\frac{1}{6!} J_{(2) m_{1} \ldots m_{6}} E^{m_{1} \ldots m_{6}}+\ldots
\end{aligned}
$$

Consider Sugawara-like ($\propto \mathcal{J} \otimes \mathcal{J}$) expressions $\quad[D K N$, hep-th 0709.2691]

$$
\begin{aligned}
\mathfrak{L}_{(-6)}^{m_{1} \ldots m_{10} ; n_{0} \mid n_{1} \ldots n_{7}} & =J_{(-3)}^{n_{0} \mid m_{1} \ldots m_{8}} J_{(-3)}^{m_{9} \mid m_{10} n_{1} \ldots n_{7}} \\
\mathfrak{L}_{(-5)}^{m_{1} \ldots m_{10} ; n_{1} \ldots n_{5}} & =J_{(-2)}^{n_{1} \ldots n_{4} m_{1} m_{2}} J_{(-3)}^{m_{3} \ldots m_{10}} \\
\mathfrak{L}_{(-4)}^{m_{1} \ldots m_{10} ; n_{1} n_{2}} & =\frac{21}{5} J_{(-2)}^{n_{1} m_{1} \ldots m_{5}} J_{(-2)}^{n_{2} m_{6} \ldots m_{10}}+J_{(-1)}^{n_{1} m_{1} m_{2}} J_{(-3)}^{n_{2} \mid m_{3} \ldots m_{10}}
\end{aligned}
$$

Constraints: an intriguing link

Conserved E_{10} current $\mathcal{J}=n \mathcal{V} \mathcal{P} \mathcal{V}^{-1} \quad\left(\equiv\right.$ Noether charge associated with global $\left.E_{10}\right)$:

$$
\begin{aligned}
\mathcal{J}= & \frac{1}{9!} J_{(-3)}^{m_{0} \mid m_{1} \ldots m_{8}} F_{m_{0} \mid m_{1} \ldots m_{8}}+\frac{1}{6!} J_{(-2)}^{m_{1} \ldots m_{6}} F_{m_{1} \ldots m_{6}}+\frac{1}{3!} J_{(-1)}^{m n p} F_{m n p} \\
& +J_{(0) m}^{n} K^{m}{ }_{n}+\frac{1}{3!} J_{(1) m n p} E^{m n p}+\frac{1}{6!} J_{(2) m_{1} \ldots m_{6}} E^{m_{1} \ldots m_{6}}+\ldots
\end{aligned}
$$

Consider Sugawara-like $(\propto \mathcal{J} \otimes \mathcal{J})$ expressions [DKN, hep-th 0709.2691]

$$
\begin{aligned}
\mathfrak{L}_{(-6)}^{m_{1} \ldots m_{10} ; n_{0} \mid n_{1} \ldots n_{7}} & =J_{(-3)}^{n_{0} \mid m_{1} \ldots m_{8}} J_{(-3)}^{m_{9} \mid m_{10} n_{1} \ldots n_{7}} \\
\mathfrak{L}_{(-5)}^{m_{1} \ldots m_{10} ; n_{1} \ldots n_{5}} & =J_{(-2)}^{n_{1} \ldots n_{4} m_{1} m_{2}} J_{(-3)}^{m_{3} \ldots m_{10}} \\
\mathfrak{L}_{(-4)}^{m_{1} \ldots m_{10} ; n_{1} n_{2}} & =\frac{21}{5} J_{(-2)}^{n_{1} m_{1} \ldots m_{5}} J_{(-2)}^{n_{2} m_{6} \ldots m_{10}}+J_{(-1)}^{n_{1} m_{1} m_{2}} J_{(-3)}^{n_{2} \mid m_{3} \ldots m_{10}}
\end{aligned}
$$

(with appropriate antisymmetrizations) to re-express canonical constraints:

$$
\begin{array}{rlll}
\mathfrak{L}_{(-6)}^{m_{1} \ldots m_{10} ; n_{0} \mid n_{1} \ldots n_{7}} & \propto \epsilon^{m_{1} \ldots m_{10}} \epsilon^{n_{1} \ldots n_{7} p q r} R_{p q} r n_{0} & \text { Bianchi (I) } \\
\mathfrak{L}_{(-5)}^{m_{1} \ldots m_{10} ; n_{1} \ldots n_{5}} & \propto \epsilon^{m_{1} \ldots m_{10}} \epsilon^{n_{1} \ldots n_{5} p_{1} \ldots p_{5}} D_{p_{1}} F_{p_{2} \ldots p_{5}} & \text { Bianchi (II) } \\
\mathfrak{L}_{(-4)}^{m_{1} \ldots m_{10} ; n_{1} n_{2}} & \propto & \epsilon^{m_{1} \ldots m_{10}} \mathcal{M}^{0 n_{1} n_{2}} & \text { Gauss constraint } \\
\mathfrak{L}_{(-3)}^{m_{1} \ldots m_{9}} & \propto & \epsilon^{m_{1} \ldots m_{9} n} \mathcal{E}_{0 n} & \text { Momentum constraint }
\end{array}
$$

Summary

The 'maximally extended' hyperbolic KM algebra E_{10}

Summary

The 'maximally extended' hyperbolic KM algebra E_{10}

- incorporates and unites many relations between maximal supergravity theories, generalizing known duality symmetries (including affine Geroch group)

Summary

The 'maximally extended' hyperbolic KM algebra E_{10}

- incorporates and unites many relations between maximal supergravity theories, generalizing known duality symmetries (including affine Geroch group)
- provides a concise algorithmic scheme via 'geodesic' σ-model and triangular (and level) decomposition.

Summary

The 'maximally extended' hyperbolic KM algebra E_{10}

- incorporates and unites many relations between maximal supergravity theories, generalizing known duality symmetries (including affine Geroch group)
- provides a concise algorithmic scheme via 'geodesic' σ-model and triangular (and level) decomposition.
- yields same information as maximal supersymmetry:
- correct supermultiplets of SUGRA $_{11}$ and all $D<11$ maximal supergravities
- in particular: self-duality of 5 -form fi eld strength in IIB;
- unique (bosonic) action, Chern-Simons couplings;
- no cosmological constant in $D=11$;
- (partial) information about R^{4}, R^{7}, \ldots corrections?

Summary

The 'maximally extended' hyperbolic KM algebra E_{10}

- incorporates and unites many relations between maximal supergravity theories, generalizing known duality symmetries (including affine Geroch group)
- provides a concise algorithmic scheme via 'geodesic' σ-model and triangular (and level) decomposition.
- yields same information as maximal supersymmetry:
- correct supermultiplets of SUGRA $_{11}$ and all $D<11$ maximal supergravities
- in particular: self-duality of 5 -form fi eld strength in IIB;
- unique (bosonic) action, Chern-Simons couplings;
- no cosmological constant in $D=11$;
- (partial) information about R^{4}, R^{7}, \ldots corrections?
- Fermions correctly described by R symmetry $K\left(E_{10}\right)$.

Outlook

Outlook

- New mechanism for (de-)emergence of space-time?
- Space from Lie algebra
- Time 'operationally' from Wheeler-DeWitt equation
- General covariance as an emergent property?

Outlook

- New mechanism for (de-)emergence of space-time?
- Space from Lie algebra
- Time 'operationally' from Wheeler-DeWitt equation
- General covariance as an emergent property?
- \rightarrow new perspectives for background independence?

Outlook

- New mechanism for (de-)emergence of space-time?
- Space from Lie algebra
- Time 'operationally' from Wheeler-DeWitt equation
- General covariance as an emergent property?
- \rightarrow new perspectives for background independence?
- Quantization: wave function of the universe as a modular form over $E_{10}(\mathbb{Z})$? [Ganor, hep-th/9903110].

Outlook

- New mechanism for (de-)emergence of space-time?
- Space from Lie algebra
- Time 'operationally' from Wheeler-DeWitt equation
- General covariance as an emergent property?
- \rightarrow new perspectives for background independence?
- Quantization: wave function of the universe as a modular form over $E_{10}(\mathbb{Z})$? [Ganor, hep-th/9903110].
- Any relation to zero tension limit of string theory?

Outlook

- New mechanism for (de-)emergence of space-time?
- Space from Lie algebra
- Time 'operationally' from Wheeler-DeWitt equation
- General covariance as an emergent property?
- \rightarrow new perspectives for background independence?
- Quantization: wave function of the universe as a modular form over $E_{10}(\mathbb{Z})$? [Ganor, hep-th/9903110].
- Any relation to zero tension limit of string theory?
- Further exploration of these links could lead to important advances in physics and mathematics.

Outlook

- New mechanism for (de-)emergence of space-time?
- Space from Lie algebra
- Time 'operationally' from Wheeler-DeWitt equation
- General covariance as an emergent property?
- \rightarrow new perspectives for background independence?
- Quantization: wave function of the universe as a modular form over $E_{10}(\mathbb{Z})$? [Ganor, hep-th/9903110].
- Any relation to zero tension limit of string theory?
- Further exploration of these links could lead to important advances in physics and mathematics.

Thank you for your attention

