Matching Wilson loops into scattering amplitudes in gauge theories

Gregory Korchemsky
Université Paris XI, LPT, Orsay

Based on work in collaboration with
James Drummond, Johannes Henn, and Emery Sokatchev (LAPTH, Annecy)
arXiv[hep-th]: 0707.0243, 0709.2368, 0712.1223, 0712.4138, 0803.1466, 0807.???? (to appear)

Outline

\checkmark On-shell gluon scattering amplitudes
\checkmark Iterative structure of gluon amplitudes in $\mathcal{N}=4$ SYM
\checkmark Dual conformal invariance - hidden symmetry of planar MHV amplitudes
\checkmark Wilson loop/MHV amplitude duality in $\mathcal{N}=4$ SYM
\checkmark Dual superconformal invariance of MHV and next-to-MHV amplitudes
\checkmark Wilson loop/all amplitudes (MHV, NMHV, $\mathrm{N}^{2} \mathrm{MHV}, \ldots$) duality in $\mathcal{N}=4$ SYM

On-shell gluon scattering amplitudes in $\mathcal{N}=4$ SYM

$\checkmark \mathcal{N}=4$ SYM - (super)conformal gauge theory with the $S U\left(N_{c}\right)$ gauge group Inherits all symmetries of the classical Lagrangian ... but are there some 'hidden' symmetries?
\checkmark Gluon scattering amplitudes in $\mathcal{N}=4$ SYM

\checkmark Color-ordered planar partial amplitudes

$$
\mathcal{A}_{n}=\operatorname{tr}\left[T^{a_{1}} T^{a_{2}} \ldots T^{a_{n}}\right] A_{n}^{h_{1}, h_{2}, \ldots, h_{n}}\left(p_{1}, p_{2}, \ldots, p_{n}\right)+[\text { Bose symmetry }]
$$

\checkmark Recent activity is inspired by two findings
\times The amplitude \mathcal{A}_{4} reveals interesting iterative structure at weak coupling [Bern,Dixon,Kosower,Smirnov]
x The same structure emerges at strong coupling via AdS/CFT
[Alday,Maldacena]
Where does this structure come from? Dual conformal symmetry!

Four-gluon amplitude in $\mathcal{N}=4$ SYM at weak coupling

$$
\mathcal{A}_{4} / \mathcal{A}_{4}^{(\text {tree })}=1+a \overbrace{1}^{2}+O\left(a^{2}\right), \quad a=\frac{g_{\mathrm{YM}}^{2} N_{c}}{8 \pi^{2}}
$$

All-loop planar amplitude can be split into a IR divergent and a finite part

$$
\ln \mathcal{A}_{4}(s, t)=\operatorname{Div}\left(s, t, \epsilon_{\mathrm{IR}}\right)+\operatorname{Fin}(s / t)
$$

\checkmark IR divergences appear to all loops as poles in $\epsilon_{\text {IR }}$ (in dim.reg. with $D=4-2 \epsilon_{\text {IR }}$)
\checkmark IR divergences exponentiate (in any gauge theory!) [Mueller,|Sen],[Collins],[Serman],[GK]78-86

$$
\operatorname{Div}\left(s, t, \epsilon_{\mathrm{IR}}\right)=-\frac{1}{2} \sum_{l=1}^{\infty} a^{l}\left(\frac{\Gamma_{\mathrm{cusp}}^{(l)}}{\left(l \epsilon_{\mathrm{IR}}\right)^{2}}+\frac{G^{(l)}}{l \epsilon_{\mathrm{IR}}}\right)\left[(-s)^{l \epsilon_{\mathrm{IR}}}+(-t)^{l \epsilon_{\mathrm{IR}}}\right]
$$

\checkmark IR divergences are in the one-to-one correspondence with UV divergences of Wilson loops
[lvanov,GK,Radyushkin'86]

$$
\begin{aligned}
\Gamma_{\text {cusp }}(a) & =\sum_{l} a^{l} \Gamma_{\text {cusp }}^{(l)}=\text { cusp anomalous dimension of Wilson loops } \\
G(a) & =\sum_{l} a^{l} G_{\text {cusp }}^{(l)}=\text { collinear anomalous dimension }
\end{aligned}
$$

\checkmark What about finite part of the amplitude Fin (s / t) ? Does it have a simple structure?

$$
\operatorname{Fin}_{\mathrm{QCD}}(s / t)=[4 \text { pages long mess }], \quad \operatorname{Fin}_{\mathcal{N}=4}(s / t)=\text { BDS conjecture }
$$

Four-gluon amplitude in $\mathcal{N}=4$ SYM at weak coupling II

\checkmark Bern-Dixon-Smirnov (BDS) conjecture:

$$
\operatorname{Fin}(s / t)=a\left[\frac{1}{2} \ln ^{2}(s / t)+4 \zeta_{2}\right]+O\left(a^{2}\right) \xrightarrow{\text { allloops }} \frac{1}{4} \Gamma_{\text {cusp }}(a) \ln ^{2}(s / t)+\text { const }
$$

x Compared to QCD,
(i) the complicated functions of s / t are replaced by the elementary function $\ln ^{2}(s / t)$;
(ii) no higher powers of logs appear in $\ln (\operatorname{Fin}(s / t))$ at higher loops;
(iii) the coefficient of $\ln ^{2}(s / t)$ is determined by the cusp anomalous dimension $\Gamma_{\text {cusp }}(a)$ just like the coefficient of the double IR pole.
x The conjecture has been verified up to three loops
x A similar conjecture exists for n-gluon MHV amplitudes
x It has been confirmed for $n=5$ at two loops [Cachazo,Spradilin,Volovich'04], [Ber,Czakon,Kosower,Roiban,Smirnovi06]
x Agrees with the strong coupling prediction from the AdS/CFT correspondence [Alday,Maldacena'06]
\checkmark Surprising features of the finite part of the MHV amplitudes in planar $\mathcal{N}=4$ SYM:
Why should finite corrections exponentiate?
Why should they be related to the cusp anomaly of Wilson loop?

Dual conformal symmetry

Examine one-loop 'scalar box' diagram
\checkmark Change variables to go to a dual 'coordinate space' picture (not a Fourier transform!)

$$
p_{1}=x_{1}-x_{2} \equiv x_{12}, \quad p_{2}=x_{23}, \quad p_{3}=x_{34}, \quad p_{4}=x_{41}, \quad k=x_{15}
$$

$$
=\int \frac{d^{4} k\left(p_{1}+p_{2}\right)^{2}\left(p_{2}+p_{3}\right)^{2}}{k^{2}\left(k-p_{1}\right)^{2}\left(k-p_{1}-p_{2}\right)^{2}\left(k+p_{4}\right)^{2}}=\int \frac{d^{4} x_{5} x_{13}^{2} x_{24}^{2}}{x_{15}^{2} x_{25}^{2} x_{35}^{2} x_{45}^{2}}
$$

Check conformal invariance by inversion $x_{i}^{\mu} \rightarrow x_{i}^{\mu} / x_{i}^{2}$
[Broadhurst],[Drummond,Henn,Smirnov,Sokatchev]
\checkmark The integral is invariant under conformal $S O(2,4)$ transformations in the dual space!
\checkmark The symmetry is not related to conformal $S O(2,4)$ symmetry of $\mathcal{N}=4$ SYM
\checkmark All scalar integrals contributing to A_{4} up to four loops possess the dual conformal invariance!
\checkmark If the dual conformal symmetry survives to all loops, it allows us to determine four- and five-gluon planar scattering amplitudes to all loops!
[Drummond,Henn,GK,Sokatchev],[Alday,Maldacena]
\checkmark Dual conformality is slightly broken by the infrared regulator
\checkmark For planar integrals only!

From gluon amplitudes to Wilson loops

Common properties of gluon scattering amplitudes at both weak and strong coupling:
(1) IR divergences of \mathcal{A}_{4} are in one-to-one correspondence with UV div. of cusped Wilson loops
(2) The gluons scattering amplitudes possess a hidden dual conformal symmetry

Is it possible to identify the object in $\mathcal{N}=4$ SYM for which both properties are manifest?
Yes! The expectation value of light-like Wilson loop in $\mathcal{N}=4$ SYM
[Drummond-Henn-GK-Sokatchev]

$$
W\left(C_{4}\right)=\frac{1}{N_{c}}\langle 0| \operatorname{Tr} \mathrm{P} \exp \left(i g \oint_{C_{4}} d x^{\mu} A_{\mu}(x)\right)|0\rangle,
$$

\checkmark Gauge invariant functional of the integration contour C_{4} in Minkowski space-time
\checkmark The contour is made out of 4 light-like segments $C_{4}=\ell_{1} \cup \ell_{2} \cup \ell_{3} \cup \ell_{4}$ joining the cusp points x_{i}^{μ}

$$
x_{i}^{\mu}-x_{i+1}^{\mu}=p_{i}^{\mu}=\text { on-shell gluon momenta }
$$

\checkmark The contour C_{4} has four light-like cusps $\mapsto W\left(C_{4}\right)$ has UV divergencies
\checkmark Conformal symmetry of $\mathcal{N}=4 \mathrm{SYM} \mapsto$ conformal invariance of $W\left(C_{4}\right)$ in dual coordinates x^{μ}

Gluon scattering amplitudes/Wilson loop duality I

The one-loop expression for the light-like Wilson loop (with $x_{j k}^{2}=\left(x_{j}-x_{k}\right)^{2}$) [Drummond, GK,Sokatchev]
$\ln W\left(C_{4}\right)=$

$$
=\frac{g^{2}}{4 \pi^{2}} C_{F}\left\{-\frac{1}{\epsilon_{\mathrm{UV}}{ }^{2}}\left[\left(-x_{13}^{2} \mu^{2}\right)^{\epsilon_{\mathrm{UV}}}+\left(-x_{24}^{2} \mu^{2}\right)^{\epsilon_{\mathrm{UV}}}\right]+\frac{1}{2} \ln ^{2}\left(\frac{x_{13}^{2}}{x_{24}^{2}}\right)+\mathrm{const}\right\}+O\left(g^{4}\right)
$$

The one-loop expression for the gluon scattering amplitude

$$
\ln \mathcal{A}_{4}(s, t)=\frac{g^{2}}{4 \pi^{2}} C_{F}\left\{-\frac{1}{\epsilon_{\mathrm{IR}}^{2}}\left[\left(-s / \mu_{\mathrm{IR}}^{2}\right)^{\epsilon_{\mathrm{IR}}}+\left(-t / \mu_{\mathrm{IR}}^{2}\right)^{\epsilon_{\mathrm{IR}}}\right]+\frac{1}{2} \ln ^{2}\left(\frac{s}{t}\right)+\mathrm{const}\right\}+O\left(g^{4}\right)
$$

\checkmark Identity the light-like segments with the on-shell gluon momenta $x_{i, i+1}^{\mu} \equiv x_{i}^{\mu}-x_{i+1}^{\mu}:=p_{i}^{\mu}$:

$$
x_{13}^{2} \mu^{2}:=s / \mu_{\mathrm{IR}}^{2}, \quad x_{24}^{2} \mu^{2}:=t / \mu_{\mathrm{IR}}^{2}, \quad x_{13}^{2} / x_{24}^{2}:=s / t
$$

UV divergencies of the light-like Wilson loop match IR divergences of the gluon amplitude the finite $\sim \ln ^{2}(s / t)$ corrections coincide to one loop!

Gluon scattering amplitudes/Wilson loop duality II

Drummond-(Henn)-GK-Sokatchev proposal: gluon amplitudes are dual to light-like Wilson loops

$$
\ln \mathcal{A}_{4}=\ln W\left(C_{4}\right)+O\left(1 / N_{c}^{2}, \epsilon_{\mathrm{IR}}\right) .
$$

\checkmark At strong coupling, the relation holds to leading order in $1 / \sqrt{\lambda}$
\checkmark At weak coupling, the relation was verified to two loops
\checkmark Generalization to $n \geq 5$ gluon MHV amplitudes

$$
\ln \mathcal{A}_{n}^{(\mathrm{MHV})}=\ln W\left(C_{n}\right)+O\left(1 / N_{c}^{2}\right), \quad C_{n}=\text { light-like } n-\text { (poly) gon }
$$

x At weak coupling, matches the BDS ansatz to one loop
\times The duality relation for $n=5$ (pentagon) was verified to two loops

Conformal Ward identities for light-like Wilson loop

Main idea: make use of conformal invariance of light-like Wilson loops in $\mathcal{N}=4$ SYM + duality relation to fix the finite part of n-gluon amplitudes
\checkmark Conformal $S O(2,4)$ transformations map light-like polygon C_{n} into another light-like polygon C_{n}^{\prime}
\checkmark If the Wilson loop $W\left(C_{n}\right)$ were well-defined (=finite) in $D=4$ dimensions then

$$
W\left(C_{n}\right)=W\left(C_{n}^{\prime}\right)
$$

$\checkmark \ldots$ but $W\left(C_{n}\right)$ has cusp UV singularities \mapsto dim.reg. breaks conformal invariance

$$
W\left(C_{n}\right)=W\left(C_{n}^{\prime}\right) \times[\text { cusp anomaly }]
$$

\checkmark All-loop anomalous conformal Ward identities for the finite part of the Wilson loop

$$
W\left(C_{n}\right)=\exp \left(F_{n}\right) \times[\text { UV divergencies }]
$$

under dilatations, \mathbb{D}, and special conformal transformations, \mathbb{K}^{μ},

$$
\begin{aligned}
\mathbb{D} F_{n} & \equiv \sum_{i=1}^{n}\left(x_{i} \cdot \partial_{x_{i}}\right) F_{n}=0 \\
\mathbb{K}^{\mu} F_{n} & \equiv \sum_{i=1}^{n}\left[2 x_{i}^{\mu}\left(x_{i} \cdot \partial_{x_{i}}\right)-x_{i}^{2} \partial_{x_{i}}^{\mu}\right] F_{n}=\frac{1}{2} \Gamma_{\operatorname{cusp}}(a) \sum_{i=1}^{n} x_{i, i+1}^{\mu} \ln \left(\frac{x_{i, i+2}^{2}}{x_{i-1, i+1}^{2}}\right)
\end{aligned}
$$

The same relations also hold at strong coupling

Finite part of light-like Wilson loops

The consequences of the conformal Ward identity for the finite part of the Wilson loop W_{n}
$\checkmark n=4,5$ are special: there are no conformal invariants (too few distances due to $x_{i, i+1}^{2}=0$)
\Longrightarrow the Ward identity has a unique all-loop solution (up to an additive constant)

$$
\begin{aligned}
& F_{4}=\frac{1}{4} \Gamma_{\text {cusp }}(a) \ln ^{2}\left(\frac{x_{13}^{2}}{x_{24}^{2}}\right)+\text { const }, \\
& F_{5}=-\frac{1}{8} \Gamma_{\text {cusp }}(a) \sum_{i=1}^{5} \ln \left(\frac{x_{i, i+2}^{2}}{x_{i, i+3}^{2}}\right) \ln \left(\frac{x_{i+1, i+3}^{2}}{x_{i+2, i+4}^{2}}\right)+\mathrm{const}
\end{aligned}
$$

Exactly the functional forms of the BDS ansatz for the 4- and 5-point MHV amplitudes!
\checkmark Starting from $n=6$ there are conformal invariants in the form of cross-ratios

$$
u_{1}=\frac{x_{13}^{2} x_{46}^{2}}{x_{14}^{2} x_{36}^{2}}, \quad u_{2}=\frac{x_{24}^{2} x_{15}^{2}}{x_{25}^{2} x_{14}^{2}}, \quad u_{3}=\frac{x_{35}^{2} x_{26}^{2}}{x_{36}^{2} x_{25}^{2}}
$$

Hence the general solution of the Ward identity for $W\left(C_{n}\right)$ with $n \geq 6$ contains an arbitrary function of the conformal cross-ratios.
\checkmark The BDS ansatz is a solution of the conformal Ward identity for arbitrary n but the ansatz should be modified for $n \geq 6$ starting from two loops... what is a missing function of u_{1}, u_{2} and u_{3} ?

Discrepancy function

\checkmark We computed the two-loop hexagon Wilson loop $W\left(C_{6}\right)$...

... and found a discrepancy
$\ln W\left(C_{6}\right) \neq \ln \mathcal{M}_{6}^{(\mathrm{BDS})}$
\checkmark Bern-Dixon-Kosower-Roiban-Spradlin-Vergu-Volovich computed 6-gluon amplitude to 2 loops

... and found a discrepancy

$$
\ln \mathcal{M}_{6}^{(\mathrm{MHV})} \neq \ln \mathcal{M}_{6}^{(\mathrm{BDS})}
$$

The BDS ansatz fails for $n=6$ starting from two loops.
What about Wilson loop duality? $\ln \mathcal{M}_{6}^{(\mathrm{MHV})} \stackrel{?}{=} \ln W\left(C_{6}\right)$

6-gluon amplitude/hexagon Wilson loop duality

\checkmark Comparison between the DHKS discrepancy function $\Delta_{\text {WL }}$ and the BDKRSVV results for the six-gluon amplitude Δ_{MHV} :

Kinematical point	$\left(u_{1}, u_{2}, u_{3}\right)$	$\Delta_{\mathrm{WL}}-\Delta_{\mathrm{WL}}^{(0)}$	$\Delta_{\mathrm{MHV}}-\Delta_{\mathrm{MHV}}^{(0)}$
$K^{(1)}$	$(1 / 4,1 / 4,1 / 4)$	$<10^{-5}$	-0.018 ± 0.023
$K^{(2)}$	$(0.547253,0.203822,0.88127)$	-2.75533	-2.753 ± 0.015
$K^{(3)}$	$(28 / 17,16 / 5,112 / 85)$	-4.74460	-4.7445 ± 0.0075
$K^{(4)}$	$(1 / 9,1 / 9,1 / 9)$	4.09138	4.12 ± 0.10
$K^{(5)}$	$(4 / 81,4 / 81,4 / 81)$	9.72553	10.00 ± 0.50

evaluated for different kinematical configurations, e.g.

$$
\begin{aligned}
K^{(1)}: & x_{13}^{2}=-0.7236200, \\
& x_{24}^{2}=-0.9213500,
\end{aligned} \quad x_{35}^{2}=-0.2723200, \quad x_{46}^{2}=-0.3582300, \quad x_{36}^{2}=-0.4825841,
$$

\checkmark Two nontrivial functions coincide with an accuracy $<10^{-4}$!

ษ The Wilson loop/MHV amplitude duality holds at $n=6$ to two loops!!
\& There are now little doubts that the duality relation also holds for arbitrary n to all loops!!!
What about next-to-MHV amplitudes?

MHV superamplitude

\checkmark All tree MHV amplitudes can be combined into a single (Nair) superamplitude by introducing Grassmann variables η_{i}^{A} (with $A=1, \ldots, 4$), one for each external particle.
\checkmark Perturbative corrections to all MHV amplitudes are factorized into a universal factor $M_{n}^{(\mathrm{MHV})}$
\checkmark The all-loop generalization of the MHV superamplitude as

$$
\mathcal{A}_{n}^{\mathrm{MHV}}\left(p_{1}, \eta_{1} ; \ldots ; p_{n}, \eta_{n}\right)=i(2 \pi)^{4} \frac{\delta^{(4)}\left(\sum_{i=1}^{n} p_{i}\right) \delta^{(8)}\left(\sum_{i=1}^{n} \lambda_{i}^{\alpha} \eta_{i}^{A}\right)}{\langle 12\rangle\langle 23\rangle \ldots\langle n 1\rangle} M_{n}^{(\mathrm{MHV})},
$$

\checkmark The all-loop MHV amplitudes appear as coefficients in the expansion of $\mathcal{A}_{n ; 0}^{\mathrm{MHV}}$ in powers of η_{i}. In particular, the gluon MHV amplitude arises as

$$
\begin{equation*}
\mathcal{A}_{n}^{\mathrm{MHV}}=(2 \pi)^{4} \delta^{(4)}\left(\sum_{i=1}^{n} p_{i}\right) \sum_{1 \leq j<k \leq n}\left(\eta_{j}\right)^{4}\left(\eta_{k}\right)^{4} A_{n}^{(\mathrm{MHV})}\left(1^{+} \ldots j^{-} \ldots k^{-} \ldots n^{+}\right)+\ldots \tag{1}
\end{equation*}
$$

\checkmark The function $M_{n}^{(\mathrm{MHV})}$ is dual to light-like Wison loop

$$
\ln M_{n}^{(\mathrm{MHV})}=\ln W_{n}+O\left(\epsilon, 1 / N^{2}\right)
$$

\checkmark The MHV superamplitude possesses a much bigger, dual superconformal symmetry which acts on the dual coordinates x_{i}^{μ} and their superpartners $\theta_{i \alpha}^{A}$
[Drummond, Henn, GK, Sokatchev]

$$
\lambda_{i}^{\alpha} \tilde{\lambda}_{i}^{\dot{\alpha}}=x_{i}^{\alpha \dot{\alpha}}-x_{i+1}^{\alpha \dot{\alpha}}, \quad \lambda_{i}^{\alpha} \eta_{i}^{A}=\theta_{i}^{A \alpha}-\theta_{i+1}^{A \alpha}
$$

Next-to-MHV amplitudes

\checkmark Are known to have a much more complicated structure compared with MHV amplitudes
\checkmark Simplest example: the six-gluon nMHV amplitudes A^{+++---}, A^{++-+--}and A^{+-+-+-}

$$
A^{+++---}=A_{6 ; 0}+g^{2} A_{6 ; 1}+O\left(g^{4}\right)
$$

x Involves few Lorentz structures, each coming with its own perturbative corrections

$$
\begin{aligned}
& A_{6 ; 0}=\frac{1}{2}\left[B_{1}+B_{2}+B_{3}\right] \\
& A_{6 ; 1}=c_{\Gamma} N\left[B_{1} F_{6}^{(1)}+B_{2} F_{6}^{(2)}+B_{3} F_{6}^{(3)}\right] .
\end{aligned}
$$

[Bern,Dixon,Dunbar,Kosower'94]
\times Expressions for B_{i} in the dual coordinates $p_{i}=x_{i}-x_{i+1}$

$$
\begin{aligned}
B_{1} & =i \frac{\left(x_{14}^{2}\right)^{3}}{\left.\left.\langle 12\rangle\langle 23\rangle[45][56]\langle 1| x_{14} \mid 4\right]\langle 3| x_{36} \mid 6\right]} \\
B_{2} & =\left.\left(\frac{[23]\langle 56\rangle}{x_{25}^{2}}\right)^{4} B_{1}\right|_{i \rightarrow i-2}+\left.\left(\frac{\left.\langle 4| x_{41} \mid 1\right]}{x_{25}^{2}}\right)^{4} B_{1}\right|_{i \rightarrow i+1}, \\
B_{3} & =\left.\left(\frac{[12]\langle 45\rangle}{x_{36}^{2}}\right)^{4} B_{1}\right|_{i \rightarrow i+2}+\left.\left(\frac{\left.\langle 6| x_{63} \mid 3\right]}{x_{36}^{2}}\right)^{4} B_{1}\right|_{i \rightarrow i-1}
\end{aligned}
$$

$\times F_{6}^{(i)}=$ combination of box (IR-divergent) integrals evaluated within the dim. regularization Do NMHV amplitudes have some (hidden) symmetry? Yes! Dual superconformal symmetry!

Six-point next-to-MHV superamplitude

$$
\mathcal{A}_{6}^{\mathrm{NMHV}}=\mathcal{A}_{6}^{\mathrm{MHV}}\left[\tilde{c}_{146} \delta^{(4)}\left(\Xi_{146}\right)\left(1+a V_{146}+O(\epsilon)\right)+(\text { cyclic })\right],
$$

\checkmark Supercovariant Ξ_{146} is a linear combination of three Grassmann η-variables

$$
\Xi_{146}=\langle 61\rangle\langle 45\rangle\left(\eta_{4}[56]+\eta_{5}[64]+\eta_{6}[45]\right),
$$

\checkmark 'Even' Lorentz factor \tilde{c}_{146} in the dual coordinates

$$
\left.\left.\left.\tilde{c}_{146}=\frac{1}{2}\langle 34\rangle\langle 56\rangle\left(x_{14}^{2}\langle 1| x_{14} \mid 4\right]\langle 3| x_{36} \right\rvert\, 6\right](\langle 45\rangle\langle 61\rangle)^{3}[45][56]\right)^{-1},
$$

\checkmark The scalar function $V_{146}=$ linear combination of scalar box integrals

$$
V_{146}=-\ln u_{1} \ln u_{2}+\frac{1}{2} \sum_{k=1}^{3}\left[\ln u_{k} \ln u_{k+1}+\operatorname{Li}_{2}\left(1-u_{k}\right)\right]=\text { conformal invariant! }
$$

conformal ratios in the dual coordinates $u_{1}=\frac{x_{13}^{2} x_{46}^{2}}{x_{14}^{2} x_{36}^{2}}, \quad u_{2}=\frac{x_{24}^{2} x_{15}^{2}}{x_{25}^{2} x_{14}^{2}}, \quad u_{3}=\frac{x_{35}^{2} x_{26}^{2}}{x_{36}^{2} x_{25}^{2}}$
\checkmark From $n=6$ NMHV superamplitude to six-gluon NMHV amplitudes

$$
\mathcal{A}_{6}^{\mathrm{NMHV}}=(2 \pi)^{4} \delta^{(4)}\left(\sum_{i=1}^{6} p_{i}\right)\left[\left(\eta_{1}\right)^{4}\left(\eta_{2}\right)^{4}\left(\eta_{3}\right)^{4} A\left(1^{-} 2^{-} 3^{-} 4^{+} 5^{+} 6^{+}\right)+\ldots\right]
$$

Reproduces all known results [Bern,Dixon,Dunbar,Kosower94] for one-loop six-point NMHV amplitudes!

n-point Next-to-MHV superamplitude

\checkmark The dual superconformal symmetry also allows us to understand the complicated structure of n-point NMHV amplitudes.
\checkmark In a close analogy with the MHV amplitude $\mathcal{A}_{n}^{\mathrm{MHV}}$, all NMHV amplitudes can be combined into a single superamplitude $\mathcal{A}_{n}^{\mathrm{NMHV}}$.
\checkmark The ratio of the two superamplitudes is given by a linear combination of superinvariants

$$
\mathcal{A}_{n}^{\mathrm{NMHV}}=\mathcal{A}_{n}^{\mathrm{MHV}}\left(\sum_{p, q, r=1}^{n} c_{p q r} \delta^{(4)}\left(\Xi_{p q r}\right)\left[1+a V_{p q r}+O(\epsilon)\right]+O\left(a^{2}\right)\right)
$$

Ingredients: 'odd’ supercovariants $\Xi_{p q r}$, 'even' spinor made $c_{p q r}$, conformal invariant $V_{p q r}$ made of scalar boxes
\checkmark The gluon NMHV amplitudes arise as coefficients in front of $\left(\eta_{i}\right)^{4}\left(\eta_{j}\right)^{4}\left(\eta_{k}\right)^{4}$, i.e.

$$
\mathcal{A}_{n}^{\mathrm{NMHV}}=(2 \pi)^{4} \delta^{(4)}\left(\sum_{i=1}^{n} p_{i}\right) \sum_{i, j, k}\left(\eta_{i}\right)^{4}\left(\eta_{j}\right)^{4}\left(\eta_{k}\right)^{4} A_{n}^{(\mathrm{NMHV})}\left(1^{+} \ldots i^{-} \ldots j^{-} \ldots k^{-} \ldots n^{+}\right)+\ldots
$$

\checkmark Reproduces all known results [Bern,Dixon,Dunbar:Kosower'04|,Risangerios] for one-loop n-point NMHV amplitudes!
\checkmark The dual conformal invariance of the superamplitudes $\mathcal{A}_{n}^{\mathrm{MHV}}$ and $\mathcal{A}_{n}^{\mathrm{NMHV}}$ is broken by infrared divergences in such a way that their ratio remains conformal as $\epsilon \rightarrow 0$.

All $\mathcal{N}=4$ superamplitudes to all loops

Drummond-Henn-GK-Sokatchev proposal for n-particle superamplitude

$$
\mathcal{A}_{n}\left(x_{i}, \lambda_{i}, \theta_{i}^{A}\right)=\mathcal{A}_{n}^{\mathrm{MHV}}+\mathcal{A}_{n}^{\mathrm{NMHV}}+\mathcal{A}_{n}^{\mathrm{N}^{2} \mathrm{MHV}}+\ldots+\mathcal{A}_{n}^{\overline{\mathrm{MHV}}}
$$

\checkmark The tree superamplitude $\mathcal{A}_{n}^{(\text {tree) }}$ is covariant under superconformal transformations in the dual superspace (x, λ, θ)
\checkmark At loop level, this symmetry becomes anomalous due to IR divergences
$\checkmark \quad$ The dual superconformal symmetry is restored in the ratio of superamplitudes \mathcal{A}_{n} and $\mathcal{A}_{n}^{\mathrm{MHV}}$

$$
\mathcal{A}_{n}\left(x_{i}, \lambda_{i}, \theta_{i}^{A}\right)=\mathcal{A}_{n}^{\mathrm{MHV}} \times\left[R_{n}\left(x_{i}, \lambda_{i}, \theta_{i}^{A}\right)+O(\epsilon)\right]
$$

The ratio function

$$
R_{n}=1+R_{n}^{\mathrm{NMHV}}+R_{n}^{\mathrm{N}^{2} \mathrm{MHV}}+\ldots
$$

is IR finite and, most importantly, it is superconformal invariant!
\checkmark Wilson loop/superamplitude duality involves a new ingredient

$$
\mathcal{A}_{n}\left(x_{i}, \lambda_{i}, \theta_{i}^{A}\right) / W_{n}\left(x_{i}\right)=\mathcal{A}_{n}^{\mathrm{MHV}(\text { tree })} \times\left[R_{n}\left(x_{i}, \lambda_{i}, \theta_{i}^{A}\right)+O(\epsilon)\right]
$$

Wilson loop $W_{n}\left(x_{i}\right)$ takes care of anomalous contribution, $R_{n}=$ dual superconformal invariant

$$
\mathbb{K}^{\mu} R_{n}\left(x_{i}, \lambda_{i}, \theta_{i}^{A}\right)=\mathbb{D} R_{n}\left(x_{i}, \lambda_{i}, \theta_{i}^{A}\right)=0
$$

Wonders of Gauge theory

\checkmark Various MHV amplitudes possess the dual conformal symmetry at both weak and strong coupling (is not a symmetry of the full $\mathcal{N}=4$ SYM!)
\checkmark This symmetry is a part of much bigger dual superconformal symmetry of all planar superamplitudes in $\mathcal{N}=4 \mathrm{SYM}$
\checkmark The symmetry becomes manifest within the Wilson loops/superamplitudes duality
\checkmark We do not understand the origin of this symmetry but we do know how to make use of it (anomalous conformal Ward identities)
\checkmark The fact that the DHKS discrepancy function for the $n=6$ Wilson loop coincides with the BDKRSVV discrepancy function for the six-gluon amplitude indicates that there exists yet another hidden symmetry
\checkmark We have now good reasons to believe that the Wilson loop/superamplitude duality holds for all superamplitudes to all loops... but
x What is the origin of the dual superconformal symmetry?
x Who controls a nontrivial discrepancy function of conformal ratios?
x What is a dual description of the superconformal ratio function $R_{n}\left(x_{i}, \lambda_{i}, \theta_{i}\right)$?
Should be related to integrability of planar $\mathcal{N}=4 \mathrm{SYM}$. More work is needed!

Back-up slides

What is the cusp anomalous dimension

\checkmark Cusp anomaly is a very 'unfortunate' feature of Wilson loops evaluated over an Euclidean closed contour with a cusp - generates the anomalous dimension

$$
\left\langle\operatorname{tr} \mathrm{P} \exp \left(i \oint_{C} d x \cdot A(x)\right)\right\rangle \sim\left(\Lambda_{\mathrm{UV}}\right)^{\Gamma_{\text {cusp }}(g, \vartheta)}
$$

\checkmark A very 'fortunate' property of Wilson loop - the cusp anomaly controls the infrared asymptotics of scattering amplitudes in gauge theories
x The integration contour C is defined by the particle momenta
x The cusp angle ϑ is related to the scattering angles in Minkowski space-time, $|\vartheta| \gg 1$

$$
\Gamma_{\text {cusp }}(g, \vartheta)=\vartheta \Gamma_{\text {cusp }}(g)+O\left(\vartheta^{0}\right),
$$

\checkmark The cusp anomalous dimension $\Gamma_{\text {cusp }}(g)$ is an ubiquitous observable in gauge theories: [GK89]
x Logarithmic scaling of anomalous dimensions of high-spin Wilson operators;
x IR singularities of on-shell gluon scattering amplitudes;
x Gluon Regge trajectory;
x Sudakov asymptotics of elastic form factors;
X ...

Four-gluon amplitude/Wilson loop duality in QCD

Finite part of four-gluon amplitude in QCD at two loops

$$
\operatorname{Fin}_{\mathrm{QCD}}{ }^{(2)}(s, t, u)=A(x, y, z)+O\left(1 / N_{c}^{2}, n_{f} / N_{c}\right)
$$

with notations $x=-\frac{t}{s}, y=-\frac{u}{s}, z=-\frac{u}{t}, X=\log x, Y=\log y, S=\log z$

$$
\begin{aligned}
& A=\left\{\left(48 \mathrm{Li}_{4}(x)-48 \mathrm{Li}_{4}(y)-128 \mathrm{Li}_{4}(z)+40 \mathrm{Li}_{3}(x) X-64 \mathrm{Li}_{3}(x) Y-\frac{98}{3} \mathrm{Li}_{3}(x)+64 \mathrm{Li}_{3}(y) X-40 \mathrm{Li}_{3}(y) Y+18 \mathrm{Li}_{3}(y)\right.\right. \\
& +\frac{98}{3} \mathrm{Li}_{2}(x) X-\frac{16}{3} \mathrm{Li}_{2}(x) \pi^{2}-18 \mathrm{Li}_{2}(y) Y-\frac{37}{6} X^{4}+28 X^{3} Y-\frac{23}{3} X^{3}-16 X^{2} Y^{2}+\frac{49}{3} X^{2} Y-\frac{35}{3} X^{2} \pi^{2}-\frac{38}{3} X^{2} \\
& -\frac{22}{3} S X^{2}-\frac{20}{3} X Y^{3}-9 X Y^{2}+8 X Y \pi^{2}+10 X Y-\frac{31}{12} X \pi^{2}-22 \zeta_{3} X+\frac{22}{3} S X+\frac{37}{27} X+\frac{11}{6} Y^{4}-\frac{41}{9} Y^{3}-\frac{11}{3} Y^{2} \pi \\
& -\frac{22}{3} S Y^{2}+\frac{266}{9} Y^{2}-\frac{35}{12} Y \pi^{2}+\frac{418}{9} S Y+\frac{257}{9} Y+18 \zeta_{3} Y-\frac{31}{30} \pi^{4}-\frac{11}{9} S \pi^{2}+\frac{31}{9} \pi^{2}+\frac{242}{9} S^{2}+\frac{418}{9} \zeta_{3}+\frac{2156}{27} S \\
& \left.-\frac{11093}{81}-8 S \zeta_{3}\right) \frac{t^{2}}{s^{2}}+\left(-256 \mathrm{Li}_{4}(x)-96 \mathrm{Li}_{4}(y)+96 \mathrm{Li}_{4}(z)+80 \mathrm{Li}_{3}(x) X+48 \mathrm{Li}_{3}(x) Y-\frac{64}{3} \mathrm{Li}_{3}(x)-48 \mathrm{Li}_{3}(y) X\right. \\
& +96 \mathrm{Li}_{3}(y) Y-\frac{304}{3} \mathrm{Li}_{3}(y)+\frac{64}{3} \mathrm{Li}_{2}(x) X-\frac{32}{3} \mathrm{Li}_{2}(x) \pi^{2}+\frac{304}{3} \mathrm{Li}_{2}(y) Y+\frac{26}{3} X^{4}-\frac{64}{3} X^{3} Y-\frac{64}{3} X^{3}+20 X^{2} Y^{2} \\
& +\frac{136}{3} X^{2} Y+24 X^{2} \pi^{2}+76 X^{2}-\frac{88}{3} S X^{2}+\frac{8}{3} X Y^{3}+\frac{104}{3} X Y^{2}-\frac{16}{3} X Y \pi^{2}+\frac{176}{3} S X Y-\frac{136}{3} X Y-\frac{50}{3} X \pi^{2} \\
& -48 \zeta_{3} X+\frac{2350}{27} X+\frac{440}{3} S X+4 Y^{4}-\frac{176}{9} Y^{3}+\frac{4}{3} Y^{2} \pi^{2}-\frac{176}{3} S Y^{2}-\frac{494}{9} Y \pi^{2}+\frac{5392}{27} Y-64 \zeta_{3} Y+\frac{496}{45} \pi^{4} \\
& \left.-\frac{308}{9} S \pi^{2}+\frac{200}{9} \pi^{2}+\frac{968}{9} S^{2}+\frac{8624}{27} S-\frac{44372}{81}+\frac{1864}{9} \zeta_{3}-32 S \zeta_{3}\right) \frac{t}{u}+\left(\frac{88}{3} \operatorname{Li}_{3}(x)-\frac{88}{3} \operatorname{Li}_{2}(x) X+2 X^{4}-8 X^{3} Y\right. \\
& -\frac{220}{9} X^{3}+12 X^{2} Y^{2}+\frac{88}{3} X^{2} Y+\frac{8}{3} X^{2} \pi^{2}-\frac{88}{3} S X^{2}+\frac{304}{9} X^{2}-8 X Y^{3}-\frac{16}{3} X Y \pi^{2}+\frac{176}{3} S X Y-\frac{77}{3} X \pi^{2} \\
& +\frac{1616}{27} X+\frac{968}{9} S X-8 \zeta_{3} X+4 Y^{4}-\frac{176}{9} Y^{3}-\frac{20}{3} Y^{2} \pi^{2}-\frac{176}{3} S Y^{2}-\frac{638}{9} Y \pi^{2}-16 \zeta_{3} Y+\frac{5392}{27} Y-\frac{4}{15} \pi^{4}-\frac{308}{9} \\
& \left.-20 \pi^{2}-32 S \zeta_{3}+\frac{1408}{9} \zeta_{3}+\frac{968}{9} S^{2}-\frac{44372}{81}+\frac{8624}{27} S\right) \frac{t^{2}}{u^{2}}+\left(\frac{44}{3} \operatorname{Li}_{3}(x)-\frac{44}{3} \operatorname{Li}_{2}(x) X-X^{4}+\frac{110}{9} X^{3}-\frac{22}{3} X^{2} Y\right. \\
& +\frac{14}{3} X^{2} \pi^{2}+\frac{44}{3} S X^{2}-\frac{152}{9} X^{2}-10 X Y+\frac{11}{2} X \pi^{2}+4 \zeta_{3} X-\frac{484}{9} S X-\frac{808}{27} X+\frac{7}{30} \pi^{4}-\frac{31}{9} \pi^{2} \\
& \left.+\frac{11}{9} S \pi^{2}-\frac{418}{9} \zeta_{3}-\frac{242}{9} S^{2}-\frac{2156}{27} S+8 S \zeta_{3}+\frac{11093}{81}\right) \frac{u t}{s^{2}}+\left(-176 \operatorname{Li}_{4}(x)+88 \mathrm{Li}_{3}(x) X-168 \operatorname{Li}_{3}(x) Y-\ldots\right.
\end{aligned}
$$

Four-gluon amplitude/Wilson loop duality in QCD II

\checkmark Planar four-gluon QCD scattering amplitude in the Regge limit $s \gg-t$ [Schnitzer'76],FFadin,Kuraev,Lipatov'76]

$$
\mathcal{M}_{4}^{(\mathrm{QCD})}(s, t) \sim(s /(-t))^{\omega_{R}(-t)}+\ldots
$$

The Regge trajectory $\omega_{R}(-t)$ is known to two loops
\checkmark The all-loop gluon Regge trajectory in QCD

$$
\left.\omega_{R}^{(\mathrm{QCD})}(-t)=\frac{1}{2} \int_{(-t)}^{\mu_{\mathrm{IR}}^{2}} \frac{d k_{\perp}^{2}}{k_{\perp}^{2}} \Gamma_{\mathrm{cusp}}\left(a\left(k_{\perp}^{2}\right)\right)+\Gamma_{R}(a(-t))+\text { [poles in } 1 / \epsilon_{\mathrm{IR}}\right]
$$

\checkmark Rectangular Wilson loop in QCD in the Regge limit $\left|x_{13}^{2}\right| \gg\left|x_{24}^{2}\right|$

$$
W^{(\mathrm{QCD})}\left(C_{4}\right) \sim\left(x_{13}^{2} /\left(-x_{24}^{2}\right)\right)^{\omega_{\mathrm{W}}\left(-x_{24}^{2}\right)}+\ldots
$$

\checkmark The all-loop Wilson loop 'trajectory' in QCD

$$
\omega_{\mathrm{W}}^{(\mathrm{QCD})}(-t)=\frac{1}{2} \int_{(-t)}^{\mu_{\mathrm{UV}}^{2}} \frac{d k_{\perp}^{2}}{k_{\perp}^{2}} \Gamma_{\mathrm{cusp}}\left(a\left(k_{\perp}^{2}\right)\right)+\Gamma_{\mathrm{W}}(a(-t))+\left[\text { poles in } 1 / \epsilon_{\mathrm{UV}}\right],
$$

\checkmark The duality relation holds in QCD in the Regge limit only!

$$
\ln \mathcal{M}_{4}^{(\mathrm{QCD})}(s, t)=\ln W^{(\mathrm{QCD})}\left(C_{4}\right)+O(t / s)
$$

while in $\mathcal{N}=4$ SYM it is exact for arbitrary t / s

