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Outline

✔ On-shell gluon scattering amplitudes

✔ Iterative structure of gluon amplitudes in N = 4 SYM

✔ Dual conformal invariance – hidden symmetry of planar MHV amplitudes

✔ Wilson loop/MHV amplitude duality in N = 4 SYM

✔ Dual superconformal invariance of MHV and next-to-MHV amplitudes

✔ Wilson loop/all amplitudes (MHV, NMHV, N2MHV, . . .) duality in N = 4 SYM



Wonders of Gauge theory and Supergravity - p. 3/23

On-shell gluon scattering amplitudes in N = 4 SYM

✔ N = 4 SYM – (super)conformal gauge theory with the SU(Nc) gauge group

Inherits all symmetries of the classical Lagrangian ... but are there some ‘hidden’ symmetries?

✔ Gluon scattering amplitudes in N = 4 SYM

. . .

An = S

1

2

n

✗ Quantum numbers of on-shell gluons |i〉 = |pi, hi, ai〉:
momentum ((pµ

i )2 = 0), helicity (h = ±1), color (a)

✗ On-shell matrix elements of S−matrix

✗ Suffer from IR divergences 7→ require IR regularization

✗ Close cousin to QCD gluon amplitudes

✔ Color-ordered planar partial amplitudes

An = tr
[

Ta1Ta2 . . . Tan
]

Ah1,h2,...,hn
n (p1, p2, . . . , pn) + [Bose symmetry]

✔ Recent activity is inspired by two findings

✗ The amplitude A4 reveals interesting iterative structure at weak coupling [Bern,Dixon,Kosower,Smirnov]

✗ The same structure emerges at strong coupling via AdS/CFT [Alday,Maldacena]

Where does this structure come from? Dual conformal symmetry! [Drummond,Henn,GK,Smirnov,Sokatchev]



Wonders of Gauge theory and Supergravity - p. 4/23

Four-gluon amplitude in N = 4 SYM at weak coupling

A4/A(tree)
4 = 1+a

1

2 3

4

+O(a2) , a =
g2
YMNc

8π2
[Green,Schwarz,Brink’82]

All-loop planar amplitude can be split into a IR divergent and a finite part

lnA4(s, t) = Div(s, t, εIR) + Fin(s/t)

✔ IR divergences appear to all loops as poles in εIR (in dim.reg. with D = 4 − 2εIR )

✔ IR divergences exponentiate (in any gauge theory!) [Mueller],[Sen],[Collins],[Sterman],[GK]’78-86

Div(s, t, εIR) = −1

2

∞
∑

l=1

al

(

Γ
(l)
cusp

(lεIR)2
+

G(l)

lεIR

)

[

(−s)lεIR + (−t)lεIR
]

✔ IR divergences are in the one-to-one correspondence with UV divergences of Wilson loops
[Ivanov,GK,Radyushkin’86]

Γcusp(a) =
∑

l alΓ
(l)
cusp = cusp anomalous dimension of Wilson loops

G(a) =
∑

l alG
(l)
cusp = collinear anomalous dimension

✔ What about finite part of the amplitude Fin(s/t)? Does it have a simple structure?

FinQCD(s/t) = [4 pages long mess] , FinN=4(s/t) = BDS conjecture
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Four-gluon amplitude in N = 4 SYM at weak coupling II

✔ Bern-Dixon-Smirnov (BDS) conjecture:

Fin(s/t) = a
[

1
2

ln2 (s/t) + 4ζ2
]

+ O(a2)
all loops
=⇒ 1

4
Γcusp(a)ln2 (s/t) + const

✗ Compared to QCD,

(i) the complicated functions of s/t are replaced by the elementary function ln2(s/t);

(ii) no higher powers of logs appear in ln (Fin(s/t)) at higher loops;

(iii) the coefficient of ln2(s/t) is determined by the cusp anomalous dimension Γcusp(a) just
like the coefficient of the double IR pole.

✗ The conjecture has been verified up to three loops [Anastasiou,Bern,Dixon,Kosower’03],[Bern,Dixon,Smirnov’05]

✗ A similar conjecture exists for n-gluon MHV amplitudes [Bern,Dixon,Smirnov’05]

✗ It has been confirmed for n = 5 at two loops [Cachazo,Spradlin,Volovich’04], [Bern,Czakon,Kosower,Roiban,Smirnov’06]

✗ Agrees with the strong coupling prediction from the AdS/CFT correspondence [Alday,Maldacena’06]

✔ Surprising features of the finite part of the MHV amplitudes in planar N = 4 SYM:

☞ Why should finite corrections exponentiate?

☞ Why should they be related to the cusp anomaly of Wilson loop?
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Dual conformal symmetry

Examine one-loop ‘scalar box’ diagram

✔ Change variables to go to a dual ‘coordinate space’ picture (not a Fourier transform!)

p1 = x1 − x2 ≡ x12 , p2 = x23 , p3 = x34 , p4 = x41 , k = x15

p1

p2 p3

p4
x1

x2

x3

x4x5
=

∫

d4k (p1 + p2)2(p2 + p3)2

k2(k − p1)2(k − p1 − p2)2(k + p4)2
=

∫

d4x5 x2
13x2

24

x2
15x2

25x2
35x2

45

Check conformal invariance by inversion xµ
i → xµ

i /x2
i

[Broadhurst],[Drummond,Henn,Smirnov,Sokatchev]

✔ The integral is invariant under conformal SO(2, 4) transformations in the dual space!

✔ The symmetry is not related to conformal SO(2, 4) symmetry of N = 4 SYM

✔ All scalar integrals contributing to A4 up to four loops possess the dual conformal invariance!

✔ If the dual conformal symmetry survives to all loops, it allows us to determine four- and
five-gluon planar scattering amplitudes to all loops! [Drummond,Henn,GK,Sokatchev],[Alday,Maldacena]

✔ Dual conformality is slightly broken by the infrared regulator

✔ For planar integrals only!
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From gluon amplitudes to Wilson loops

Common properties of gluon scattering amplitudes at both weak and strong coupling:

(1) IR divergences of A4 are in one-to-one correspondence with UV div. of cusped Wilson loops

(2) The gluons scattering amplitudes possess a hidden dual conformal symmetry

☞ Is it possible to identify the object in N = 4 SYM for which both properties are manifest ?

Yes! The expectation value of light-like Wilson loop in N = 4 SYM [Drummond-Henn-GK-Sokatchev]

W (C4) =
1

Nc

〈0|TrP exp

(

ig

∮

C4

dxµAµ(x)

)

|0〉 , C4 =

x1

x2 x3

x4

✔ Gauge invariant functional of the integration contour C4 in Minkowski space-time

✔ The contour is made out of 4 light-like segments C4 = `1 ∪ `2 ∪ `3 ∪ `4 joining the cusp points xµ
i

xµ
i − xµ

i+1 = pµ
i = on-shell gluon momenta

✔ The contour C4 has four light-like cusps 7→ W (C4) has UV divergencies

✔ Conformal symmetry of N = 4 SYM 7→ conformal invariance of W (C4) in dual coordinates xµ
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Gluon scattering amplitudes/Wilson loop duality I

The one-loop expression for the light-like Wilson loop (with x2
jk

= (xj − xk)2) [Drummond,GK,Sokatchev]

ln W (C4) =

x1 x1x1
x2 x2x2

x3 x3x3 x4 x4x4

=
g2

4π2
CF

{

− 1

εUV
2

[(

−x2
13µ2

)εUV +
(

−x2
24µ2

)εUV
]

+
1

2
ln2

(

x2
13

x2
24

)

+ const
}

+ O(g4)

The one-loop expression for the gluon scattering amplitude

lnA4(s, t) =
g2

4π2
CF

{

− 1

εIR2

[

(

−s/µ2
IR

)εIR +
(

−t/µ2
IR

)εIR
]

+
1

2
ln2
( s

t

)

+ const
}

+ O(g4)

✔ Identity the light-like segments with the on-shell gluon momenta xµ
i,i+1 ≡ xµ

i − xµ
i+1 := pµ

i :

x2
13 µ2 := s/µ2

IR , x2
24 µ2 := t/µ2

IR , x2
13/x2

24 := s/t

☞ UV divergencies of the light-like Wilson loop match IR divergences of the gluon amplitude

☞ the finite ∼ ln2(s/t) corrections coincide to one loop!



Wonders of Gauge theory and Supergravity - p. 9/23

Gluon scattering amplitudes/Wilson loop duality II

Drummond-(Henn)-GK-Sokatchev proposal: gluon amplitudes are dual to light-like Wilson loops

lnA4 = ln W (C4) + O(1/N2
c , εIR) .

✔ At strong coupling, the relation holds to leading order in 1/
√

λ [Alday,Maldacena]

✔ At weak coupling, the relation was verified to two loops [Drummond,Henn,GK,Sokatchev]

lnA4 = ln W (C4) =

































x3x2

x1
x4

































=
1

4
Γcusp(g) ln2(s/t) + Div

✔ Generalization to n ≥ 5 gluon MHV amplitudes

lnA(MHV)
n = ln W (Cn) + O(1/N2

c ) , Cn = light-like n−(poly)gon

✗ At weak coupling, matches the BDS ansatz to one loop [Brandhuber,Heslop,Travaglini]

✗ The duality relation for n = 5 (pentagon) was verified to two loops [Drummond,Henn,GK,Sokatchev]
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Conformal Ward identities for light-like Wilson loop

Main idea: make use of conformal invariance of light-like Wilson loops in N = 4 SYM +
duality relation to fix the finite part of n−gluon amplitudes

✔ Conformal SO(2, 4) transformations map light-like polygon Cn into another light-like polygon C′
n

✔ If the Wilson loop W (Cn) were well-defined (=finite) in D = 4 dimensions then

W (Cn)=W (C′
n)

✔ ... but W (Cn) has cusp UV singularities 7→ dim.reg. breaks conformal invariance

W (Cn) = W (C′
n) × [cusp anomaly]

✔ All-loop anomalous conformal Ward identities for the finite part of the Wilson loop

W (Cn) = exp(Fn) × [UV divergencies]

under dilatations, D, and special conformal transformations, K
µ, [Drummond,Henn,GK,Sokatchev]

D Fn ≡
n
∑

i=1

(xi · ∂xi )Fn = 0

K
µ Fn ≡

n
∑

i=1

[

2xµ
i (xi · ∂xi) − x2

i ∂µ
xi

]

Fn =
1

2
Γcusp(a)

n
∑

i=1

xµ
i,i+1 ln

( x2
i,i+2

x2
i−1,i+1

)

The same relations also hold at strong coupling [Alday,Maldacena],[Komargodski]
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Finite part of light-like Wilson loops

The consequences of the conformal Ward identity for the finite part of the Wilson loop Wn

✔ n = 4, 5 are special: there are no conformal invariants (too few distances due to x2
i,i+1 = 0 )

=⇒ the Ward identity has a unique all-loop solution (up to an additive constant)

F4 =
1

4
Γcusp(a) ln2

( x2
13

x2
24

)

+ const ,

F5 = −1

8
Γcusp(a)

5
∑

i=1

ln
( x2

i,i+2

x2
i,i+3

)

ln
( x2

i+1,i+3

x2
i+2,i+4

)

+ const

Exactly the functional forms of the BDS ansatz for the 4- and 5-point MHV amplitudes!

✔ Starting from n = 6 there are conformal invariants in the form of cross-ratios

u1 =
x2
13x2

46

x2
14x2

36

, u2 =
x2
24x2

15

x2
25x2

14

, u3 =
x2
35x2

26

x2
36x2

25

Hence the general solution of the Ward identity for W (Cn) with n ≥ 6 contains an arbitrary
function of the conformal cross-ratios.

✔ The BDS ansatz is a solution of the conformal Ward identity for arbitrary n but the ansatz should
be modified for n ≥ 6 starting from two loops... what is a missing function of u1, u2 and u3?
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Discrepancy function

✔ We computed the two-loop hexagon Wilson loop W (C6) ... [Drummond, Henn, GK, Sokatchev’07]

ln W (C6) =























x6

x5

x4x3

x2

x1

1 2 3 4 5 6 7

8

15 16 2119

18 13 14

1217 20

9 10 11























... and found a discrepancy ln W (C6) 6= lnM(BDS)
6

✔ Bern-Dixon-Kosower-Roiban-Spradlin-Vergu-Volovich computed 6-gluon amplitude to 2 loops

M(MHV)
6 = + . . .

... and found a discrepancy lnM(MHV)
6 6= lnM(BDS)

6

☞ The BDS ansatz fails for n = 6 starting from two loops.

☞ What about Wilson loop duality? lnM(MHV)
6

?
= ln W (C6)
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6-gluon amplitude/hexagon Wilson loop duality

✔ Comparison between the DHKS discrepancy function ∆WL and the BDKRSVV results for the
six-gluon amplitude ∆MHV:

Kinematical point (u1, u2, u3) ∆WL − ∆
(0)
WL ∆MHV − ∆

(0)
MHV

K(1) (1/4, 1/4, 1/4) < 10−5 −0.018 ± 0.023

K(2) (0.547253, 0.203822, 0.88127) −2.75533 −2.753 ± 0.015

K(3) (28/17, 16/5, 112/85) −4.74460 −4.7445 ± 0.0075

K(4) (1/9, 1/9, 1/9) 4.09138 4.12 ± 0.10

K(5) (4/81, 4/81, 4/81) 9.72553 10.00 ± 0.50

evaluated for different kinematical configurations, e.g.

K(1): x2
13=−0.7236200 , x2

24=−0.9213500 , x2
35=−0.2723200 , x2

46=−0.3582300 , x2
36=−0.4825841 ,

x2
15=−0.4235500 , x2

26=−0.3218573 , x2
14=−2.1486192 , x2

25=−0.7264904 .

✔ Two nontrivial functions coincide with an accuracy < 10−4!

✌ The Wilson loop/MHV amplitude duality holds at n = 6 to two loops!!

✌ There are now little doubts that the duality relation also holds for arbitrary n to all loops!!!

What about next-to-MHV amplitudes?



Wonders of Gauge theory and Supergravity - p. 14/23

MHV superamplitude

✔ All tree MHV amplitudes can be combined into a single (Nair) superamplitude by introducing
Grassmann variables ηA

i (with A = 1, . . . , 4), one for each external particle.

✔ Perturbative corrections to all MHV amplitudes are factorized into a universal factor M
(MHV)
n

✔ The all-loop generalization of the MHV superamplitude as

AMHV
n (p1, η1; . . . ; pn, ηn) = i(2π)4

δ(4)
(
∑n

i=1 pi

)

δ(8)
(
∑n

i=1 λα
i ηA

i

)

〈12〉〈23〉 . . . 〈n1〉 M
(MHV)
n ,

✔ The all-loop MHV amplitudes appear as coefficients in the expansion of AMHV
n;0 in powers of ηi.

In particular, the gluon MHV amplitude arises as

AMHV
n = (2π)4δ(4)

(

n
∑

i=1

pi

)

∑

1≤j<k≤n

(ηj)
4(ηk)4A

(MHV)
n (1+... j−... k−... n+) + . . . , (1)

✔ The function M
(MHV)
n is dual to light-like Wison loop

ln M
(MHV)
n = ln Wn + O(ε, 1/N2) ,

✔ The MHV superamplitude possesses a much bigger, dual superconformal symmetry which acts
on the dual coordinates xµ

i and their superpartners θA
i α [Drummond, Henn, GK, Sokatchev]

λα
i λ̃α̇

i = xαα̇
i − xαα̇

i+1 , λα
i ηA

i = θA α
i − θA α

i+1
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Next-to-MHV amplitudes

✔ Are known to have a much more complicated structure compared with MHV amplitudes

✔ Simplest example: the six-gluon nMHV amplitudes A+++−−−, A++−+−− and A+−+−+−

A+++−−− = A6;0 + g2A6;1 + O(g4) ,

✗ Involves few Lorentz structures, each coming with its own perturbative corrections
[Bern,Dixon,Dunbar,Kosower’94]

A6;0 =
1

2
[B1 + B2 + B3]

A6;1 = cΓN
[

B1F
(1)
6 + B2F

(2)
6 + B3F

(3)
6

]

.

✗ Expressions for Bi in the dual coordinates pi = xi − xi+1

B1 =i
(x2

14)3

〈12〉〈23〉[45][56]〈1|x14|4]〈3|x36|6]

B2 =

(

[23]〈56〉
x2
25

)4

B1

∣

∣

i→i−2
+

( 〈4|x41|1]
x2
25

)4

B1

∣

∣

i→i+1
,

B3 =

(

[12]〈45〉
x2
36

)4

B1

∣

∣

i→i+2
+

( 〈6|x63|3]
x2
36

)4

B1

∣

∣

i→i−1

✗ F
(i)
6 = combination of box (IR-divergent) integrals evaluated within the dim. regularization

Do NMHV amplitudes have some (hidden) symmetry? Yes! Dual superconformal symmetry!
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Six-point next-to-MHV superamplitude

ANMHV
6 = AMHV

6

[

c̃146 δ(4)(Ξ146) (1 + aV146 + O(ε)) + (cyclic)
]

,

✔ Supercovariant Ξ146 is a linear combination of three Grassmann η−variables

Ξ146 = 〈61〉〈45〉
(

η4[56] + η5[64] + η6[45]
)

,

✔ ‘Even’ Lorentz factor c̃146 in the dual coordinates

c̃146 =
1

2
〈34〉〈56〉

(

x2
14〈1|x14|4]〈3|x36|6](〈45〉〈61〉)3[45][56]

)−1
,

✔ The scalar function V146 = linear combination of scalar box integrals

V146 = − ln u1 ln u2+
1

2

3
∑

k=1

[

ln uk ln uk+1 + Li2(1 − uk)

]

= conformal invariant!

conformal ratios in the dual coordinates u1 =
x2
13x2

46

x2
14x2

36
, u2 =

x2
24x2

15

x2
25x2

14
, u3 =

x2
35x2

26

x2
36x2

25

✔ From n = 6 NMHV superamplitude to six-gluon NMHV amplitudes

ANMHV
6 = (2π)4δ(4)

(

6
∑

i=1

pi

)

[

(η1)4(η2)4(η3)4A(1−2−3−4+5+6+) + . . .
]

Reproduces all known results [Bern,Dixon,Dunbar,Kosower’94] for one-loop six-point NMHV amplitudes!
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n−point Next-to-MHV superamplitude

✔ The dual superconformal symmetry also allows us to understand the complicated structure of
n−point NMHV amplitudes.

✔ In a close analogy with the MHV amplitude AMHV
n , all NMHV amplitudes can be combined into

a single superamplitude ANMHV
n .

✔ The ratio of the two superamplitudes is given by a linear combination of superinvariants

ANMHV
n = AMHV

n





n
∑

p,q,r=1

cpqr δ(4) (Ξpqr) [1 + aVpqr + O(ε)] + O(a2)





Ingredients: ‘odd’ supercovariants Ξpqr, ‘even’ spinor made cpqr , conformal invariant Vpqr

made of scalar boxes

✔ The gluon NMHV amplitudes arise as coefficients in front of (ηi)
4(ηj)

4(ηk)4, i.e.

ANMHV
n = (2π)4δ(4)

(

n
∑

i=1

pi

)

∑

i,j,k

(ηi)
4(ηj)

4(ηk)4A
(NMHV)
n (1+... i−... j−... k−... n+) + . . .

✔ Reproduces all known results [Bern,Dixon,Dunbar,Kosower’04],[Risanger’08] for one-loop n−point NMHV amplitudes!

✔ The dual conformal invariance of the superamplitudes AMHV
n and ANMHV

n is broken by infrared
divergences in such a way that their ratio remains conformal as ε → 0.
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All N = 4 superamplitudes to all loops

Drummond-Henn-GK-Sokatchev proposal for n−particle superamplitude

An(xi, λi, θ
A
i ) = AMHV

n + ANMHV
n + AN2MHV

n + . . . + AMHV
n

✔ The tree superamplitude A(tree)
n is covariant under superconformal transformations in the dual

superspace (x, λ, θ)

✔ At loop level, this symmetry becomes anomalous due to IR divergences

✔ The dual superconformal symmetry is restored in the ratio of superamplitudes An and AMHV
n

An(xi, λi, θ
A
i ) = AMHV

n ×
[

Rn(xi, λi, θ
A
i ) + O(ε)

]

The ratio function

Rn = 1 + RNMHV
n + RN2MHV

n + . . .

is IR finite and, most importantly, it is superconformal invariant!

✔ Wilson loop/superamplitude duality involves a new ingredient

An(xi, λi, θ
A
i )/Wn(xi) = AMHV (tree)

n ×
[

Rn(xi, λi, θ
A
i ) + O(ε)

]

Wilson loop Wn(xi) takes care of anomalous contribution, Rn = dual superconformal invariant

K
µ Rn(xi, λi, θ

A
i ) = D Rn(xi, λi, θ

A
i ) = 0



Wonders of Gauge theory and Supergravity - p. 19/23

Wonders of Gauge theory

✔ Various MHV amplitudes possess the dual conformal symmetry at both weak and strong
coupling (is not a symmetry of the full N = 4 SYM!)

✔ This symmetry is a part of much bigger dual superconformal symmetry of all planar
superamplitudes in N = 4 SYM

✔ The symmetry becomes manifest within the Wilson loops/superamplitudes duality

✔ We do not understand the origin of this symmetry but we do know how to make use of it
(anomalous conformal Ward identities)

✔ The fact that the DHKS discrepancy function for the n = 6 Wilson loop coincides with the
BDKRSVV discrepancy function for the six-gluon amplitude indicates that there exists yet
another hidden symmetry

✔ We have now good reasons to believe that the Wilson loop/superamplitude duality holds for all
superamplitudes to all loops... but

✗ What is the origin of the dual superconformal symmetry?

✗ Who controls a nontrivial discrepancy function of conformal ratios?

✗ What is a dual description of the superconformal ratio function Rn(xi, λi, θi)?

Should be related to integrability of planar N = 4 SYM. More work is needed!
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Back-up slides
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What is the cusp anomalous dimension

✔ Cusp anomaly is a very ‘unfortunate’ feature of Wilson loops evaluated over an Euclidean closed
contour with a cusp – generates the anomalous dimension [Polyakov’80]

〈tr P exp

(

i

∮

C

dx · A(x)

)

〉 ∼ (ΛUV)Γcusp(g,ϑ) , C =

ϑ

✔ A very ‘fortunate’ property of Wilson loop – the cusp anomaly controls the infrared asymptotics
of scattering amplitudes in gauge theories [GK, Radyushkin’86]

✗ The integration contour C is defined by the particle momenta

✗ The cusp angle ϑ is related to the scattering angles in Minkowski space-time, |ϑ| � 1

Γcusp(g, ϑ) = ϑ Γcusp(g) + O(ϑ0) ,

✔ The cusp anomalous dimension Γcusp(g) is an ubiquitous observable in gauge theories: [GK’89]

✗ Logarithmic scaling of anomalous dimensions of high-spin Wilson operators;
✗ IR singularities of on-shell gluon scattering amplitudes;
✗ Gluon Regge trajectory;
✗ Sudakov asymptotics of elastic form factors;
✗ ...
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Finite part of four-gluon amplitude in QCD at two loops

FinQCD
(2)(s, t, u) = A(x, y, z)+O(1/N2

c , nf /Nc) [Glover,Oleari,Tejeda-Yeomans’01]

with notations x = − t
s

, y = −u
s

, z = −u
t

, X = log x, Y = log y, S = log z

A =
{(

48 Li4(x)−48 Li4(y)−128 Li4(z)+40 Li3(x) X−64 Li3(x) Y −

98
3

Li3(x)+64 Li3(y) X−40 Li3(y) Y +18 Li3(y)

+ 98
3

Li2(x) X−

16
3

Li2(x) π2
−18 Li2(y) Y −

37
6

X4+28 X3 Y −

23
3

X3
−16 X2 Y 2+ 49

3
X2 Y −

35
3

X2 π2
−

38
3

X2

−

22
3

S X2
−

20
3

X Y 3
−9 X Y 2+8 X Y π2+10 X Y −

31
12

X π2
−22 ζ3 X+ 22

3
S X+37

27
X+ 11

6
Y 4

−

41
9

Y 3
−

11
3

Y 2 π2

−

22
3

S Y 2+ 266
9

Y 2
−

35
12

Y π2+ 418
9

S Y + 257
9

Y +18 ζ3 Y −

31
30

π4
−

11
9

S π2+ 31
9

π2+ 242
9

S2+ 418
9

ζ3+ 2156
27

S

−

11093
81

−8 S ζ3

)

t2

s2 +

(
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64
3
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3
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32
3
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+

(

88
3
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✔ Planar four-gluon QCD scattering amplitude in the Regge limit s � −t [Schnitzer’76],[Fadin,Kuraev,Lipatov’76]

M(QCD)
4 (s, t) ∼ (s/(−t))ωR(−t) + . . .

The Regge trajectory ωR(−t) is known to two loops [Fadin,Fiore,Kotsky’96]

✔ The all-loop gluon Regge trajectory in QCD [GK’96]

ω
(QCD)
R

(−t) =
1

2

∫ µ2
IR

(−t)

dk2
⊥

k2
⊥

Γcusp(a(k2
⊥)) + ΓR(a(−t)) + [poles in 1/εIR] ,

✔ Rectangular Wilson loop in QCD in the Regge limit |x2
13| � |x2

24|

W (QCD)(C4) ∼
(

x2
13/(−x2

24)
)ωW(−x2

24)
+ . . .

✔ The all-loop Wilson loop ‘trajectory’ in QCD

ω
(QCD)
W (−t) =

1

2

∫ µ2
UV

(−t)

dk2
⊥

k2
⊥

Γcusp(a(k2
⊥)) + ΓW(a(−t)) + [poles in 1/εUV ] ,

✔ The duality relation holds in QCD in the Regge limit only! [GK’96]

lnM(QCD)
4 (s, t) = ln W (QCD)(C4) + O(t/s)

while in N = 4 SYM it is exact for arbitrary t/s
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