From Supergravity
Backgrounds

to
Pure Spinor Sigma Models

by P.A.Grassi

Unversita’ del Piemonte Orientale ad Alessandria
and INFN di Torino



PARIS 23/6/2008

From Supergravity
Backgrounds

to
Pure Spinor Sigma Models

by P.A.Grassi

Unversita’ del Piemonte Orientale ad Alessandria
and INFN di Torino

Work in collaboration with Y. Oz, L. Mazzuccato, I. Adam, S.
Yankelovich, P. Fré, M. Trigiante, R. D’Auria. |. Kluson



Outline

Pure Spinor Strings on flat space
(Brief Review)

Pure Spinor Strings on curved spaces

Rheonomic parametrization and pure
SpINors

Anti-de Sitter backgrounds and non-
maximally supersymmetric spaces

Results and Future Projects



Brief Review of Pure Spinor String Theory

We start from the fields ™, 0%, p, (0% are| Majorana-Weyl spinors ind=(9,1))

and the free field action
4 )

S = /d2z<3xm5:€m + Py, 00 +ﬁaﬁéa)

- J




Brief Review of Pure Spinor String Theory

We start from the fields ™, 0%, p, (0% are| Majorana-Weyl spinors ind=

and the free field action

-

\_

S = /d22<8xm5:€m + Py, 00 +ﬁaﬁéa)

~

J

i) The total conformal charge is ¢ = (10), + (—32),.0

i) Inserting p, =

Slp

i = 502m7530° 4 5(7050°) (67md6) in S,

—nii == SGTeen—Schwafr‘z

(9,1))

i11) So, do, = po, — P}, &= 0 must be identified with the fundamental constraint.



Brief Review of Pure Spinor String Theory

We start from the fields ™, 0%, p, (0% are| Majorana-Weyl spinors ind=(9,1))

and the free field action

(" )
S = /d2z<@xm5:€m + Py, 00 +ﬁaﬁéa)

\_ J

i) The total conformal charge is ¢ = (10), + (—32),.0

i) Inserting p, = pt = 28xm7$595 + = (vaﬁ95)(6”ym89) in S,

S‘p:p* - SGreen—Schwarz

i11) So, do, = po, — P}, &= 0 must be identified with the fundamental constraint.

Berkovits’ idea is adding a new pair of fields:

(A%, we )

which are commuting spinors.They can play the role of ghost
fields and consequently they lead to a BRST charge of the
conventional form GHOST x CONSTRAINTS



Brief Review of Pure Spinor String Theory

We start from the fields ™, 0%, p, (0% are| Majorana-Weyl spinors ind=(9,1))

and the free field action

4 )
S = /d22<8xm5:€m + Py, 00 +paaéa)

- J

i) The total conformal charge is ¢ = (10), + (—32),.0

i) Inserting p, = pt = 28xm7$595 + = (vaﬁ95 ) (074, 00) in S,

S‘p:p* - SGTeen—Schwafr‘z

i11) So, do, = po, — P}, &= 0 must be identified with the fundamental constraint.

Berkovits’ idea is adding a new pair of fields:

(A%, we )

which are commuting spinors.They can play the role of ghost
fields and consequently they lead to a BRST charge of the
conventional form GHOST x CONSTRAINTS

Q= ¢ dz)%d,,




The nilpotency of the BRST charge implies that
{Q.Q} = $27(2) p X (w)da(x)ds(w) = $ AN Ty = 0

where 11, = 0z, + %nymﬁé



The nilpotency of the BRST charge implies that
{Q,Q} = f/\“ jﬁkﬁ (2)dg(w yﬁ Ay AP L, = 0

where 11, = 0z, + %va(%’ ‘£7

Pure Spinor Constraints A*Yas M =0




The nilpotency of the BRST charge implies that

{Q.Q} = $ A°(2) $ M (w)da(2)dg(w) = $ AN Tl =0
where 11, = 0z, + %vaé%’ ‘J\77
Pure Spinor Constraints A*Yas M =0
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Pure Spinor Constraints A*Yas =4

These are first-class primary constraints and
they generate a gauge symmetry on the conjugate momenta w.

5Am Weq = Am (’Vm)\) Q

Solving the pure spinor constraints one finds that there are | | independent d.o.f’s for the left movers
and | | d.o.f’s for the right movers. Using the gauge symmetries, one finds | | independent d.o.f. for left
movers w’s and | | for the right movers.

The action of the BRST charge on the fields is given by

Qda = II" (f}/m)\)om Qwoz — daa Q2wC\£ — 5Hmwa




Conformal Algebra
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N=1 SYM D=10 OPEN STRING MASSLESS SPECTRUM
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N=1 SYM D=10 OPEN STRING MASSLESS SPECTRUM
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SUGRA IIA/B D =10 CLOSED STRING MASSLESS SPECTRUM
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Action for the fermionic coordinates (gauge fixing of the Kappa symmetry)
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Quadratic Couplings with RR fields

Action for the ghost fields and couplings with the connection, the
gravitino field strengths and the Riemann tensor
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Pure Spinor Strings on Curved Backgrounds

4 p
|. Consider a generic sigma model written in terms of the

fundamental fields and their conjugate momenta
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2. Impose the gauge symmetries and require the pure spinor
conditions. This selects some Lorentz structures such as

S 5= 0% + O ()% Q5 = 670% + QR Bnn)
J

&

3. Compute the fermionic constraints by deriving the Lagrangian
w.r.t. to the licht-cone derivatives of the fermionic coordinates
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4.Then, compute the BRST charges
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{ Type IIA/B Supergravity Constraints !!! J
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Considerations about curved background sigma models

One needs to know the superfields to some extend to perform any
meaningful manipulation on the sigma model.

Radiative corrections in &’ can be computed, but it is hard to put them
into manageable expressions.

The supergravity constraints obtained in this way are different from the
usual superspace constraints and from the rheonomic description of
supergravity.

Given a supergravity background, one needs to find a procedure to
reconstruct the superfields in the sigma models.

Some of these problems can be solved in the case of maximally
supersymetric background

What about less-supersymmetric backgrounds?
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LSuper-Poincaré algebra (MC forms)J

We construct the rheonomic parametrization for type IlA directly
in the string frame (this is the first time that the solution of the
Bianchi ids’ is computed directly in the string frame).

Rcab d&)ab — W A u.’.:JCb
T = DV* —ij (¥ AT%Yr 4+ ¥g A T*4g)

Dyrr = dibrr — w* A Tap ¥R

PL.R

The super-Poincare algebra is common to type IIA and to type IIB,
the only difference is the chirality of the spinors.
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Adding higher forms for NSNS and RR fields J

Free Differential Algebra

In order to describe sugra type IIA/B in 10 dimensions we need to add
some form fields to complete the spectrum with NSNS and RR fields

RY = dw® — % A %
T¢ = DV® —ii(¢p AT + ¥ A T%¢R)
prr = Dyrp = dbrr — w0 A Tyt r
G2 = dCU 4 exp[—¢] ¥y A Y1
il = dop
Vxrr = dxor — 3w A TwXLR
HE® = dB? +1i (Y, ATt — ¥r A Tatbr) A V°

Gl — 4CB + B2 A 4Ol
_% exp [— ¢ (1_)1, N Lgp¥p + ’-‘EH A rﬁ%%) A TVe A Vb



[Solution of Bianchi Identities]

As is well-known there are consistency condition (a.k.a. Bianchi identities)
which can be solved if we choose a given parametrization (rheonomic) of the supergravity fields.

T® = 0
a i 1 if) m i ab m
R® = R%pn VAV + 08 AV™ + 9,08, AV

+i (¥p ATetpp — g A Toihg) HY*
+1, AT ZTUyp
HY = Hg Ve A VEAVE
Gkl = G, Ve AVE + i%exp (— @] (X, Tatr + Xplatr) A V°
il = faVE + j (Xr%r — Xz ¥r)
GY = GuedVEAVEAVEA VY
—il exp[—¢] (XpTabe¥r — XrTare¥r) A VE A VEA VE

Fermionic curvatures
pPL/R = L/RVG/\Vb—I—[,eUen)lD/R—l—ﬁ()dd)w R/L —I—p(LO/’i)
a even (odd)
Do xXr/r V™ + N:I: ) Yr/r + N; ¢R/L

\% XL/R
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As is well-known there are consistency condition (a.k.a. Bianchi identities)
which can be solved if we choose a given parametrization (rheonomic) of the supergravity fields.
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Ghost extensions only of the
fermionic forms

We extend of the fermionic forms and of the differential
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Ghost extensions only of the
fermionic forms

We extend of the fermionic forms and of the differential
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Projection on the worldsheet
and requiring the nilpotency of the BRST charge
. J

As they stand, by requiring the nilpotency, one obtaines strong constraints on
the spinors A, then we need to project onto 2d surface

AL/R(x,H,é)HAL/R(z,Z) Ve = H%_€+ an HQ_ e
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~

J

As they stand, by requiring the nilpotency, one obtaines strong constraints on
the spinors A, then we need to project onto 2d surface

)\L/R(xa (97 é) — )‘L/R(Za 2)

o o O O

Ve = TISet + T2 e”

[ Pure Spinor Constraints j
= (AToAL — ArToAg) AV
— exp:— QO (XR )\L)
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Solution of the pure spinor constraints

® Using an adapted basis, we find that there are
22 independent degrees of freedom for A

® We find the map between our solution and
the pure spinors used by Berkovits et al.

® Analogously, we find that the constraints for
type lIB. It is easy to show the T-duality of the
constraints and of the formulation.



Pure Spinor Sigma model
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A = Ags+ .A;IfA
AGS — /(H%_ Vbna_b A et — H% Vgna_b N e —+ %H%H%nw 77a_b6+ N e + %B[z])
AllA /(a+¢3 Aetrdogp Ae +id, M_d.

— Wy (SrYr) N et —w_ (Sc¥r) N e
L (SaM) o+ A (S M) — b (SpSM Yu_)
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Map = (% explp] G + 57 Xr Fa_bXL)

Maped = — 1—16 exp|] Gabed — Q%YL abed X R




Maximally Supersymmetric Anti-de Sitter Background

The most famous solution is the AdS5 X S? of type |IB supergravity

This background can be completely characterized by the supercoset

PSU(2,2|4)
SO(1,4) x SO(5)

4 )

.

Using the Maurer-Cartan equations, one reconstructs the entire
supergravity solution in terms of the vielbein, the spin connection,
the gravitinos and the RR fields

A A

Em7 anv waa wOé? F5

Using these fields and inserting them in the sigma model, one can
obtain a simplified sigma model. Indeed, the dependence on d,, d

is only quadratic and therefore they can be eliminated.



(Solution of Bianchi identities in the case of AdS x S background ]

T =dVe +wi AVP 404" =0,
T =dV® +w% AVY +iTy* ¥ =0,
Voo ¥ =0,  V, U=0
FUl = b VEA... AV F = epyoae Ve A AV

AdSs

where the F-curvature is parametrized as follows

FBl = dC™ 4 € peqeiTACUAVEN ... AVE,

AdShy AdSs

FI = dC + ey erarer i@y U AV AL AV
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where the induced NSNS B field is written in terms of the MC forms

B =T AT = (x4 ®XaxB® XB’)ZA P ALAP

—A'B /
=S GG



It is convenient to use the decomposition of the original supercoset

SU(2,2)  PSU(2,2/4)  SU(4)
SO(1,4) ~ SU(2,2) x SU4) ~ SO(5)

The 5-beins, the spin connections and the gravitinos are
given in terms of the MC of the supercoset

Ve =B +Xav"xLl"’, V* =B" +X47" x5 L*",

A'B’

AB /b/ /b/ s /b/
L 9 w* = B* —l_XA’fya XB’L )

wab _ Bab +YA’7abXB

;= AN
U=xa®xaLl®, ¥=Y,0XaL

AA B B=lI,.4 aa =1,.,5

The pure spinor constraints are identical to those of Berkovits and the
map between the two set of pure spinor in this case is trivial.

Inserting these data into the action discussed above, one obtains
(Berkovits) Pure Spinor AdSxS action.



AdSs x S? pure spinor sigma-model
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AdSs x S? pure spinor sigma-model

S = /d2 QeI 5 Gegan Jb)+5aﬁ(3JﬁJo‘ JQJB)—F
(waé}\a + NopJ %) + Na’b’j[a/b/]) + (%8% + Ny Jledl 4 Na’b’J[a/b/])+

1 A A /1/
+§(NabNab — Na’b’Na b )}

where JA _ (g—lag)A7 jA _ (g_lég)A

are the left-invariant currents constructed from an element
of the supergroups PSU(2,2|4)

A

Naba Na’ b’ s Nab; Na,’ p are the Lorentz currents for the pure spinors

The action has the SO(5) x SO(1,4) isometry
(a,b refer to SO(1,4),a’,b’ refer to SO(5),and &,B =1,...,16)



Some results for AdSs X S° pure spinor sigma-model

Conformal invariance to all orders

Infinite number of conserved non-local currents (at the classical and
quantum level)

Beta-deformed backgrounds
One-, two-loop computations of the monodromy matrix

New limits for the gauge/gravity correspondence (see N. Berkovits talk)



Pure Spinor String Theory and Non-Ceritical Strings

The supergravity approximation is no longer valid
AdS + RR backgrounds for non-critical strings

We need to keep supersymmetry and Poincare’ symmetry
manifest at all stages of the computation

We need a gauge-fixed action to get a conformal field
theory model

Study of physical states spectrum

Computation of amplitudes in manifestly supersymmetric.



AdS Backgrounds for Non-Critical Models

As an example, we construct the sigma model
for AdS in D=4 with N=2 supersymmetry.

The basic supergroup is

OSp(2|4)

SO(1,3) x SO(2)

g 'dg =L, P" + L, J" + L1 J" + L QY

The action is decomposed into

S = SGS 2R Sd =+ Sghost

SGS:/dzznuvLHEV‘F/ d3yLﬂL?(%7ﬂ)aﬁL§€”
bD M

-

Sa = / d?2(8% + ieij)dml_l;?‘ + (6% — i€)dp; LS |+ QRRdai’Y5a5d5j5ij
Y

J

\_

~

J

Coupling with RR field strengths



Non-maximally symmetric backgrounds

Several interesting models of the type AdS x M are not maximally
supersymmetric backgrounds (they provide very useful checks on
AdS/CFT correspondence with lower supersymmetry)

One of the problem is: Pure Spinor string theory seems to be
very suitable for maximally supersymmetric background since the
superspace contains all needed 0’s, but what happen for less susy
backgrounds, how they enter the model?

Two examples: AdSs X T ; AdSy X CP*’ :

Of course there are several questions (from worldsheet point of
view) such as conformal invariance, conserved currents, radiative
corrections



