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We start from the fields xm, θα, pα (θα are Majorana-Weyl spinor in d = (9, 1))

and the free field action

S =
∫

d2z
(
∂xm∂̄xm + pα∂̄θα + p̂α∂θ̂α

)

i) The total conformal charge is cT = (10)x + (−32)p,θ

ii) Inserting pα = p∗α ≡ 1
2∂xmγm

αβθβ + 1
8 (γm

αβθβ)(θγm∂θ) in S,

S|p=p∗ = SGreen−Schwarz

iii) So, dα ≡ pα − p∗α ≈ 0 must be identified with the fundamental constraint.

Q =
∮

dzλαdα

iv) The nilpotentcy

{Q, Q} =
∮

λα(z)
∮

λβ(w)dα(z)dβ(w) =
∮

λαγm
αβλβΠm = 0

λαγm
αβλβ = 0

v) Vertex Operators (Open/Closed String Massless States)

U (1) = λαAα(x, θ)

{Q,U (1)} = 0

γαβ
[5] D(αAβ) = 0

1

Majorana-Weyl spinors
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(λα, wα)
which are commuting spinors. They can play the role of ghost 
fields and consequently they lead to a BRST charge of the 
conventional form GHOST x CONSTRAINTS 
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2
θγm∂θ
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The nilpotency of the BRST charge implies that 

δΛmwα = Λm(γmλ)α

These are first-class primary constraints and 
they generate a gauge symmetry on the conjugate momenta w. 

Solving the pure spinor constraints one finds that there are 11 independent d.o.f.’s for the left movers 
and 11 d.o.f.’s for the right movers. Using the gauge symmetries, one finds 11 independent d.o.f. for left 
movers w’s and 11 for the right movers. 
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θγm∂θ
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TJ = −8
1

(z − w)3
+

J

(z − w)2
+

∂J

(z − w)
JJ = −4

1
(z − w)2

Conformal Algebra 

Nmn =
1
2
wγmnλwhere  

T = −1
2
ΠmΠm − dα∂θα +

1
10

: NmnNmn : −1
8

: JJ : +∂J

J = wαλα

jBRST = λαdα

TNmn =
Nmn

(z − w)2
+

∂Nmn

(z − w) NmnNpq =
−3ηm[pηq]n

(z − w)2
+

ηm[pNq]n

(z − w)
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Action for the ghost fields and couplings with the connection, the 
gravitino field strengths and the Riemann tensor
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Pure Spinor Strings on Curved Backgrounds

1. Consider a generic sigma model written in terms of the 
fundamental fields and their conjugate momenta

ZM = (xm, θα, θ̂α̂), pα, p̂α̂, λα, λ̂α̂, wzα, ŵz̄α̂

2. Impose the gauge symmetries and require the pure spinor 
conditions. This selects some Lorentz structures such as 

Ωα
M β = Ω(s)

M δα
β + Ωmn

M (γmn)α
β , Ω̂α̂

M β̂
= Ω̂(s)

M δα̂
β̂

+ Ω̂mn
M (γ̂mn)α̂

β̂
,

3. Compute the fermionic constraints by deriving the Lagrangian 
w.r.t. to the light-cone derivatives of the fermionic coordinates 

Dα =
∂L

∂ ∂θα

, D̂α̂ =
∂L

∂ ∂̄θ̂α̂



4. Then, compute the BRST charges  

QL =

∮
dz λαdα , QR =

∮
dz̄ λ̂α̂d̂α̂ ,
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∮
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∮
dz̄ λ̂α̂d̂α̂ ,
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Holomorphicity of 
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Type IIA/B Supergravity Constraints !!!
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• One needs to know the superfields to some extend to perform any 
meaningful manipulation on the sigma model.

• Radiative corrections in α’ can be computed, but it is hard to put them 
into manageable expressions.

• The supergravity constraints obtained in this way are different from the 
usual superspace constraints and from the rheonomic description of 
supergravity.

• Given a supergravity background, one needs to find a procedure to 
reconstruct the superfields in the sigma models. 

• Some of these problems can be solved in the case of maximally 
supersymetric background

• What about less-supersymmetric backgrounds? 

Considerations about curved background sigma models
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Ghost extensions only of the 

fermionic forms

d → d + S
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∑

p

Ω
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Projection on the worldsheet 
and requiring the nilpotency of the BRST charge 



We construct the rheonomic parametrization for type IIA directly 
in the string frame (this is the first time that the solution of the 

Bianchi ids’ is computed directly in the string frame).

The super-Poincaré algebra is common to type IIA and to type IIB, 
the only difference is the chirality of the spinors.

 Super-Poincaré algebra (MC forms)



 Free Differential Algebra

Adding higher forms for NSNS and RR fields

In order to describe sugra type IIA/B in 10 dimensions we need to add 
some form fields to complete the spectrum with NSNS and RR fields



 Solution of Bianchi Identities 

As is well-known there are consistency condition (a.k.a. Bianchi identities) 
which can be solved if we choose a given parametrization (rheonomic) of the supergravity fields. 

+ i 3
4

(
ψL ∧ Γc ψL − ψR ∧ Γc ψR

)
Habc

+ ψL ∧ Γ[aZ Γb] ψR (2.28)

H[3] = HabcV
a ∧ V b ∧ V c (2.29)

G[2] = GabV
a ∧ V b + i 3

2 exp [−ϕ] (χL Γa ψL + χR Γa ψR) ∧ V a (2.30)

f [1] = faV
a + 3

2 (χR ψL − χL ψR) (2.31)

G[4] = GabcdV
a ∧ V b ∧ V c ∧ V d

− i 1
2 exp[−ϕ] (χL Γabc ψL − χR Γabc ψR) ∧ V a ∧ V b ∧ V c (2.32)

Fermionic curvatures

ρL/R = ρL/R
ab V a ∧ V b + L(even)

a± ψL/R + L(odd)
a∓ ψR/L + ρ(0,2)

L/R (2.33)

∇χL/R = Da χL/R V a +N (even)
± ψL/R +N (odd)

∓ ψR/L (2.34)

Note that the components of the generalized curvatures along the bosonic vielbeins do not
coincide with their spacetime components, but rather with their supercovariant extension.
Indeed expanding for example the four-form along the spacetime differentials one finds that

G̃µνρσ ≡ GabcdV
a
µ ∧ V b

ν ∧ V c
ρ ∧ V d

σ = ∂[µC
[4]
νρσ] + B[2]

[µν ∂ρC
[1]
σ] −

−1

2
e−ϕ

(
ψL[µ Γνρ ψRσ] + ψR[µ Γνρ ψLσ]

)
+ i 1

2 exp[−ϕ]
(
χL Γ[µνρ ψLσ] − χR Γ[µνρ ψRσ]

)

where G̃ is the supercovariant field strength.
In the parametrization (2.28) of the Riemann tensor we have used the following definition:

Θab|cL/R = −i
(
ΓaρbcR/L + ΓbρcaR/L − ΓcρabR/L

)
(2.35)

Finally by ρ(0,2)
L/R we have denoted the fermion-fermion part of the gravitino curvature whose

explicit expression can be written in two different forms, equivalent by Fierz rearrangement:

ρ(0,2)
L/R = ± 21

32 Γa χR/L ψ̄L/R ∧ Γa ψL/R

∓ 1
2560 Γa1a2a3a4a5 χR/L

(
ψL/R Γa1a2a3a4a5 ψL/R

)
(2.36)

or

ρ(0,2)
L/R = ± 3

8 i ψL/R ∧ χ̄R/L ψL/R ± 3
16 i Γab ψL/R ∧ χ̄R/L Γab ψL/R (2.37)

2.3 Comments on the curvature structure in the string frame

The rheonomic parametrizations presented in the previous section have some distinctive fea-
tures which are deprived of any relevance in a supergravity context while they turn out to be
crucial for the successful construction of a BRST invariant pure spinor superstring σ-model.
Let us point these features out:

1. The rheonomic parametrization of the Neveu-Schwarz curvature H[3] is purely inner,
namely there are no dilatino terms on the right hand side. As we anticipated this is the
very definition of the string frame and it is important in order to write a κ-symmetric
Green-Schwarz superstring action.
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Ghost extensions only of the 

fermionic forms

d → d + S

Ω
[n]

→

∑

p

Ω
[n−p,p]

We extend of the fermionic forms and of the differential  

C[3] !→ C[3]

ψL/R !→ ψL/R + λL/R (4.1)

Each extended curvature definition R̂[p]
def and each extended curvature parametrization

R̂[p]
par decomposes into ghost sectors according to:

R̂[p]
def = R[p,0]

def + R[p−1,1]
def + R[p−2,2]

def

R̂[p]
par = R[p,0]

par + R[p−1,1]
par + R[p−2,2]

par (4.2)

where we stop at ghost number g = 2 since neither in the curvature definitions nor in the
curvature parametrizations there appear higher than quadratic powers of the ψL/R forms.
Then we have to impose:

R[p,0]
def = R[p,0]

par

R[p−1,1]
def = R[p−1,1]

par

R[p−2,2]
def = R[p−2,2]

par (4.3)

The first of eq.s (4.3) is simply the rheonomic parametrization of the classical curvature we
started from. The second equation defines the constrained BRST transformation of all the
physical fields. The last of eq.s (4.3) defines the BRST transformation of the ghost fields (the

pure spinors) when the right hand side is non zero (R[p−2,2]
par #= 0) and the quadratic pure

spinor constraints R[p−2,2]
def = 0 when the right hand side is zero R[p−2,2]

par = 0.
Let us write the result of these straightforward manipulations.

4.2 The constrained BRST algebra of type IIA theories

It is also convenient to split the BRST operator into two chiral sectors. The BRST operator
is written as:

S = SL + SR (4.4)

where SL/R shifts in the direction of λL/R. In this way from the (p − 1, 1) sector we obtain
the BRST chiral transformations of the physical fields:

SL/R B[2] = ∓ 2 i ψL/R Γa λL/R V a

SL/R C[1] = ∓ exp[−ϕ] ψR/L λL/R + 3
2 i exp[−ϕ] χL/R Γa λL/R V a

SL/R C[3] = ψR/L Γab λL/R V a ∧ V b −B[2] ∧ SL/RC [1]

∓ i 1
2 exp[−ϕ] χL/R Γabc λL/R V a ∧ V b ∧ V c

SL/R V a = i ψL/R Γa λL/R

SL/RψL/R = −D λL/R ∓ 3
8 Γa1a2 λL/R V a3Ha1a2a3 ± 21

16 ΓaχR/L (ψL/R ΓaλL/R)

∓ 1
1280 Γa1...a5χR/L (ψL/R Γa1...a5λL/R)

SR/LψL/R = M± ΓbλR/L V b (4.5)
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while from the sectors (p− 2, 2) we obtain the transformation of the superghosts:

SL/RλL/R = ±21
16 ΓaχR/L (λL/R ΓaλL/R)

∓ 1
1280 Γa1...a5χR/L (λL/R Γa1...a5λL/R)

SR/LλL/R = 0 (4.6)

and the following pure spinor constraints :

0 = λL Γa λL + λR Γa λR (4.7)

0 =
(
λL Γa λL − λR Γa λR

)
∧ V a (4.8)

0 = exp[−ϕ]
(
λR λL

)
(4.9)

0 = exp[−ϕ] λR Γab λL V a ∧ V b (4.10)

Before discussing the complete structure of the BRST transformations on the background
fields as a consequence of the extension of the rheonomic parameterizations, we need to clarify
how the constraints (4.7)-(4.10) have to be understood. It is clear that these constraints are
too strong for a 10d target-space vielbein V a and therefore we have to project them on the 2d
surface by the embedding of the worldsheet into the target-space. In particular the vielbeins
V a must be replaced by the embedding rectangular matrices Πa

±. As will be shown in a
separate paper [26], the set of constraints given above are equivalent to the constraints given
by [2]. This will be proven by showing that the solution of the constraints (4.7)-(4.10) gives
22 independent complex degrees of freedom.1 2

Finally it is also necessary to write down the chiral BRST transformations of the dilatino
field:

SL/R χL/R = N (even)
± λL/R

SR/L χL/R = N (odd)
∓ λR/L (4.11)

Let us give, for the sake of completeness, the formulas defining the action of the BRST
operator on the field strengths, some of which will be needed in the final section

SL/R Gab = e−ϕ
(
±λL/R ρR/L

ab − 3
2 i f[a χL/R Γb] λL/R + 3

2 iD[a χL/R Γb] λL/R

+3
2 i χL/R Γ[a L(even)

b]± λL/R + 3
2 i χR/L Γ[a L(odd)

b]± λL/R

)

SL/R Gabcd = e−ϕ
(
λL/R Γ[abρ

R/L
cd] ±

i
2 f[a χL/R Γbcd] λL/R ∓ i

2 D[a χL/R Γbcd] λL/R

∓ i
2 χL/R Γ[abc L(even)

d]± λL/R ± i
2 χR/L Γ[abc L(odd)

d]± λL/R − 3
2 iH[abc χL/R Γd] λL/R

)

SL/RHabc = ∓2 i λL/R Γ[a ρL/R
bc]

1In [26] will be shown that one can obtain a solution of the constraints (4.7)-(4.10) with 22 dof, in a G2 and
in a SO(8) covariant basis. Finally, it is proven that the constraints are equivalent to Berkovits’ constraints.
As a side result, it is shown that also the geometrically-deduced constraints for IIA and IIB superstrings are
consistent and equivalent.

2The pure spinor constraints for heterotic strings are derived from superembedding formalism in [29, 28].
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Projection on the worldsheet 
and requiring the nilpotency of the BRST charge 

As they stand, by requiring the nilpotency, one obtaines strong constraints on 
the spinors λ, then we need to project onto 2d surface

λL/R(x, θ, θ̄) → λL/R(z, z̄)

In the above two formulae, e± = e0 ± e1 denote the zweibein of the string world-sheet in

light-cone basis for the 2d Lorentz indices, namely ηij =

(
0 1

1 0

)
, while by Πa

± we have

denoted the usual 0-form auxiliary field whose equation identifies it with the projection of
the target vielbein V a onto the world volume zweibein e±. The coefficient q, denoting the
string charge, is fixed in such a way as to obtain a completely κ supersymmetric action in any
background. As we already stressed there is no dilaton prefactor in the above action since
the FDA gauge forms (in particular the vielbein) and curvatures were already transformed to
the string frame.

First of all let us check the relative coefficients in the kinetic action (3.2) by calculating
its variation with respect to the auxiliary field Πa

±. We obtain:

0 =
δAkin

δΠa
±

=

∫ (
± ηab V b ∧ e± + ηab Πb

± e+ ∧ e−
)

⇓
V a = Πa

+ e+ + Πa
− e− (3.4)

which is the required result for the elimination of the auxiliary field Πa
− and the transition to

second order formalism.
Next let us introduce the following short hand notation:

Γ± ≡ Πa
± Γa (3.5)

and let us check the κ-symmetric invariance of the GS action in the A case.

3.2 κ-symmetry in the type IIA case

Relying on the rheonomic parametrizations of the FDA let us calculate the variation of the
Green-Schwarz action (3.1) under a target supersymmetry of parameters εL/R. We obtain:

δsusyAkin =

∫
i
[
(εL Γ+ ψL + εR Γ+ ψR) ∧ e+

− (εL Γ− ψL + εR Γ− ψR) ∧ e−
]

(3.6)

δsusyAWZ = − q

∫
i
[
(εL Γ+ ψL − εR Γ+ ψR) ∧ e+

+ (εL Γ− ψL − εR Γ− ψR) ∧ e−
]

(3.7)

Let us now recall that the rules of the 1.5-order formalism which we use in all our p-brane
constructions impose that, after variation, we should implement the field equations of all the
auxiliary fields whose equation of motion is algebraic and allows for their own elimination in
terms of dynamical fields. In the string action these latter are the 0-form fields Πa

i and the
2-dimensional zweibein ei. The field equation of the first is (3.4) while the field equation of
the zweibein is simply:

ηab Πa
i Πb

j = ηij (3.8)
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while from the sectors (p− 2, 2) we obtain the transformation of the superghosts:

SL/RλL/R = ±21
16 ΓaχR/L (λL/R ΓaλL/R)

∓ 1
1280 Γa1...a5χR/L (λL/R Γa1...a5λL/R)

SR/LλL/R = 0 (4.6)

and the following pure spinor constraints :

0 = λL Γa λL + λR Γa λR (4.7)

0 =
(
λL Γa λL − λR Γa λR

)
∧ V a (4.8)

0 = exp[−ϕ]
(
λR λL

)
(4.9)

0 = exp[−ϕ] λR Γab λL V a ∧ V b (4.10)

Before discussing the complete structure of the BRST transformations on the background
fields as a consequence of the extension of the rheonomic parameterizations, we need to clarify
how the constraints (4.7)-(4.10) have to be understood. It is clear that these constraints are
too strong for a 10d target-space vielbein V a and therefore we have to project them on the 2d
surface by the embedding of the worldsheet into the target-space. In particular the vielbeins
V a must be replaced by the embedding rectangular matrices Πa

±. As will be shown in a
separate paper [26], the set of constraints given above are equivalent to the constraints given
by [2]. This will be proven by showing that the solution of the constraints (4.7)-(4.10) gives
22 independent complex degrees of freedom.1 2

Finally it is also necessary to write down the chiral BRST transformations of the dilatino
field:

SL/R χL/R = N (even)
± λL/R

SR/L χL/R = N (odd)
∓ λR/L (4.11)

Let us give, for the sake of completeness, the formulas defining the action of the BRST
operator on the field strengths, some of which will be needed in the final section

SL/R Gab = e−ϕ
(
±λL/R ρR/L

ab − 3
2 i f[a χL/R Γb] λL/R + 3

2 iD[a χL/R Γb] λL/R

+3
2 i χL/R Γ[a L(even)

b]± λL/R + 3
2 i χR/L Γ[a L(odd)

b]± λL/R

)

SL/R Gabcd = e−ϕ
(
λL/R Γ[abρ

R/L
cd] ±

i
2 f[a χL/R Γbcd] λL/R ∓ i

2 D[a χL/R Γbcd] λL/R

∓ i
2 χL/R Γ[abc L(even)

d]± λL/R ± i
2 χR/L Γ[abc L(odd)

d]± λL/R − 3
2 iH[abc χL/R Γd] λL/R

)

SL/RHabc = ∓2 i λL/R Γ[a ρL/R
bc]

1In [26] will be shown that one can obtain a solution of the constraints (4.7)-(4.10) with 22 dof, in a G2 and
in a SO(8) covariant basis. Finally, it is proven that the constraints are equivalent to Berkovits’ constraints.
As a side result, it is shown that also the geometrically-deduced constraints for IIA and IIB superstrings are
consistent and equivalent.

2The pure spinor constraints for heterotic strings are derived from superembedding formalism in [29, 28].
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Pure Spinor Constraints 



Solution of the pure spinor constraints

• Using an adapted basis, we find that there are 
22 independent degrees of freedom for λ

• We find the map between our solution and 
the pure spinors used by Berkovits et al. 

• Analogously, we find that the constraints for 
type IIB. It is easy to show the T-duality of the 
constraints and of the formulation. 



Table 4: BRST algebra: In this table we display the BRST transformations of the composite
fields, namely of the various field strenghts.

SL/R Gab = e−ϕ
(
±λL/R ρR/L

ab − 3
2 i f[a χL/R Γb] λL/R + 3

2 iD[a χL/R Γb] λL/R

+3
2 iχL/R Γ[a L

(even)
b]± λL/R + 3

2 iχR/L Γ[a L
(odd)
b]± λL/R

)

SL/R Gabcd = e−ϕ
(
λL/R Γ[abρ

R/L
cd] ±

i
2 f[a χL/R Γbcd] λL/R ∓ i

2 D[a χL/R Γbcd] λL/R

∓ i
2 χL/R Γ[abc L

(even)
d]± λL/R ± i

2 χR/L Γ[abc L
(odd)
d]± λL/R − 3

2 iH[abc χL/R Γd] λL/R

)

SL/RHabc = ∓2 iλL/R Γ[a ρL/R
bc]

SL/RDaχL/R = −1
4 (λL/R Θcd,a|R/L) Γcd χL/R +

[
DaN (even)

± − (N La)
(even)
±

]
λL/R

SL/RDaχR/L = −1
4 (λL/R Θcd,a|R/L) Γcd χR/L +

[
DaN (odd)

± − (N La)
(odd)
±

]
λL/R

SL/R ρL/R
ab = Υ(even)

ab± λL/R − 1
4 Rcd,ab Γab λL/R + 2PL/R[λL/R] ρL/R

ab

SL/R ρR/L
ab = Υ(odd)

ab± λL/R

Table 5: Pure Spinor Action:In this table we display the complete form of the pure spinor
action for tyep IIA superstring in a general background. In the formulas below SLM− and
mathcalSRM− are given in (4.37) and SRSLM− is given in (4.39) for χ = 0

A = AGS +AIIA
gf

AGS =

∫ (
Πa

+ V b ηab ∧ e+ − Πa
− V b ηab ∧ e− + 1

2Π
a
i Πb

j ηij ηab e+ ∧ e− + 1
2 B[2]

)

AIIA
gf =

∫ (
d+ ψR ∧ e+ + d− ψL ∧ e− + i

2d+M− d−

− w+ (SRψR) ∧ e+ − w− (SLψL) ∧ e−

− i
2 w+ (SRM−)d− + i

2 d+ (SLM−) w− − i
2 w+

(
SRSLM−

)
w−

)
.

to Sullivan’s second theorem the 3-form A[3] corresponds to the first FDA extension of this
latter generated by a degree 4 cohomology class, while the 6-form A[6] corresponds to a further
extension of the FDA generated by a degree 7 cohomology class of the first extension.

The rheonomic parametrization of the M-theory curvatures is the following one:

Ta = 0 (B.6)

F[4] = Fa1...a4 Va1 ∧ . . . ∧ Va4 (B.7)

F[7] = 1
84F

a1...a4 Vb1 ∧ . . . ∧ Vb7 εa1...a4b1...b7
(B.8)

ρ̂ = ρa1a2 Va1 ∧ Va2 + i13
(
Γa1a2a3Ψ ∧ Va4 − 1

8Γ
a1...a4m Ψ ∧ Vm

)
Fa1...a4 (B.9)

Rab = Rab
cd

Vc ∧ Vd + i ρmn

(
1
2Γ

abmnc − 2
9Γ

mn[a δb]c + 2 Γab[m δn]c
)

Ψ ∧Vc

+Ψ ∧ Γmn Ψ Fmnab + 1
24Ψ ∧ Γabc1...c4 Ψ Fc1...c4 (B.10)
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Pure Spinor Sigma model

where we have set

Table 2: Tensors and Matrices: Recalling that Gab and Gabcd denote the supercovariant
field strengths of the Ramond Ramond 1-form and 3-form respectively, Habc the supercovariant
field strength of the Neveu Schwarz two-form, while χL/R denote the chiral components of the
dilatino spinor field and ϕ, fa denote the dilaton and its supercovariant derivative, the table
below summarizes the precise definition of certain tensors and matrices appearing both in the
sigma model action and in the BRST transformation rules.

Mab =
(

1
8 exp[ϕ]Gab + 9

64 χR Γab χL

)

Mabcd = − 1
16 exp[ϕ]Gabcd − 3i

256 χL Γabcd χR

N0 = 3
4 χL χR

Nab = 1
4 exp[ϕ]Gab + 9

32 χR Γab χL = 2Mab

Nabcd = 1
24 exp[ϕ]Gabcd + 1

128 χR Γabcd χL = −2
3Mabcd

Z = NabΓab + 3Nabcd Γabcd

M± = i
(
∓Mab Γab + Mabcd Γabcd
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N (even)
± = ∓N0 1 + Nab Γab ∓ Nabcd Γabcd

N (odd)
± = ± i

3 fa Γa ± 1
64 χR/L Γabc χR/L Γabc − i

12 Habc Γabc

L(odd)
a± = M∓ Γa ; L(even)

a± = ∓3
8 Habc Γbc

(N La)
(odd)
± ≡ N (even)

∓ L(odd)
a± +N (odd)

± L(even)
a±

(N La)
(even)
± ≡ N (even)

± L(even)
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a±
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PL/R[λL/R] = ±21
32 Γa χR/L λL/R Γa ∓ 1

2560 Γabcde χR/L λL/R Γabcde

B Derivation of type IIA supergravity in the string
frame

The derivation of type IIA supergravity was done in two steps. In the first one, we started
from the D = 11 supergravity FDA and from its rheonomic parametrization and we reduce
them on a circle. Next, we perform a Weyl rescaling and gravitino field redefinition to go to
the string frame. In the second step, we derived the rheonomic parametrization directly by
solving the Bianchi identities in the D = 10 in the string frame. Here, we just sketch such a
derivation.

B.1 The D=11 FDA

We start from the FDA of M -theory whose complete set of curvatures is given below [17, 18]:

Ta = DVa − i12 Ψ ∧ Γa Ψ (B.1)

25

Table 2: Tensors and Matrices: Recalling that Gab and Gabcd denote the supercovariant
field strengths of the Ramond Ramond 1-form and 3-form respectively, Habc the supercovariant
field strength of the Neveu Schwarz two-form, while χL/R denote the chiral components of the
dilatino spinor field and ϕ, fa denote the dilaton and its supercovariant derivative, the table
below summarizes the precise definition of certain tensors and matrices appearing both in the
sigma model action and in the BRST transformation rules.

Mab =
(

1
8 exp[ϕ]Gab + 9

64 χR Γab χL

)

Mabcd = − 1
16 exp[ϕ]Gabcd − 3i

256 χL Γabcd χR

N0 = 3
4 χL χR

Nab = 1
4 exp[ϕ]Gab + 9

32 χR Γab χL = 2Mab

Nabcd = 1
24 exp[ϕ]Gabcd + 1

128 χR Γabcd χL = −2
3Mabcd

Z = NabΓab + 3Nabcd Γabcd

M± = i
(
∓Mab Γab + Mabcd Γabcd

)

N (even)
± = ∓N0 1 + Nab Γab ∓ Nabcd Γabcd

N (odd)
± = ± i

3 fa Γa ± 1
64 χR/L Γabc χR/L Γabc − i

12 Habc Γabc

L(odd)
a± = M∓ Γa ; L(even)

a± = ∓3
8 Habc Γbc

(N La)
(odd)
± ≡ N (even)

∓ L(odd)
a± +N (odd)

± L(even)
a±

(N La)
(even)
± ≡ N (even)

± L(even)
a± +N (odd)

∓ L(odd)
a±

Υ(even)
ab± = D[a L(even)

b]± + L(even)
[a± L(even)

b]± + L(odd)
[a∓ L(odd)

b]±

Υ(odd)
ab± = D[a L(odd)

b]± + L(odd)
[a± L(even)

b]± + L(even)
[a∓ L(odd)

b]±

PL/R[λL/R] = ±21
32 Γa χR/L λL/R Γa ∓ 1

2560 Γabcde χR/L λL/R Γabcde

B Derivation of type IIA supergravity in the string
frame

The derivation of type IIA supergravity was done in two steps. In the first one, we started
from the D = 11 supergravity FDA and from its rheonomic parametrization and we reduce
them on a circle. Next, we perform a Weyl rescaling and gravitino field redefinition to go to
the string frame. In the second step, we derived the rheonomic parametrization directly by
solving the Bianchi identities in the D = 10 in the string frame. Here, we just sketch such a
derivation.

B.1 The D=11 FDA

We start from the FDA of M -theory whose complete set of curvatures is given below [17, 18]:

Ta = DVa − i12 Ψ ∧ Γa Ψ (B.1)

25



Maximally Supersymmetric Anti-de Sitter Background

The most famous solution is the                      of type IIB supergravityAdS5 × S
5

This background can be completely characterized by the supercoset

PSU(2, 2|4)

SO(1, 4) × SO(5)

Using the Maurer-Cartan equations, one reconstructs the entire 
supergravity solution in terms of the vielbein, the spin connection, 

the gravitinos and the RR fields    

Em, Ω
mn , ψα, ψ̂α̂ , F5

Using these fields and inserting them in the sigma model, one can  
obtain a simplified sigma model.  Indeed, the dependence on  dα, d̂α̂

is only quadratic and therefore they can be eliminated. 



where the F-curvature is parametrized as follows

Solution of Bianchi identities in the case of AdS x S background 

where the induced NSNS B field is written in terms of the MC forms 

where the first one is fermionic contribution and the second one is the bosonic part, then
we compute the MC forms and we get

g−1dg = g−1
2 dg2 + g−1

2 (g−1
1 dg1)g2 . (1.10)

The first term is the purely bosonic contributions Ba, Ba′
and they are the coset represen-

tative of SO(2, 4)/SO(1, 4) and SO(6)/SO(5), respectively, while the second term is the
contribution coing form the coset representative of PSU(2, 2|4)/SU(2, 2)× SU(4) dressed
with the coset representative of the bosonic cosets.

The last ingredient is the RR form. In order to discuss the complete structure it is
convenient to write down the parametrizations as follows

T a = dV a + ωa
b ∧ V b + iΨγaΨ = 0 , (1.11)

T a′
= dV a′

+ ωa′

b′ ∧ V b′
+ iΨγa′

Ψ = 0 ,

∇AdS5
Ψ = 0 , ∇

S5 Ψ = 0

F [5]
AdS5

= εabcdeV
a ∧ . . . ∧ V b , F [5]

S5
= εa′b′c′d′e′V a′

∧ . . . ∧ V b′
.

where
F [5]

AdS5
= dC [4]

AdS5
+ εabcdeiΨγdeΨ ∧ V a ∧ . . . ∧ V c , (1.12)

F [5]
S5

= dC [4]
S5

+ εa′b′c′d′e′iΨγd′e′
Ψ ∧ V a′

∧ . . . ∧ V c′
,

In order to check that these parametrizations satisfy the Bianchi identities, one has to
compute the covariant differentiation on each gauge field (for example on T a) and use
the MC equations for the MC forms appearing in the definitions of the background fields
V a, V a′

, ωa
b, ω

a′

b′ , F [5]
AdS5

, F [5]
S5

,Ψ in the above equations. A tedious computation shows that
indeed (1.11) satify the Bianchi identities and the background fields are on-shell.

We still need to understand the role of the NSNS 2-form B[2]. Since the AdS ×
S backgrounds do not contain any flux associated to the that field, we have that its
curvature H[3] has only fermionic contributions (or using the usual parametrization the
total curvature vanishes). Therefore, it is possbie to reabsorb them into a redefinition of
B[2]

B[2] = Ψ ∧Ψ = (χA ⊗ χA′χB ⊗ χB′)LA′B ∧ LAB′
(1.13)

= L
A′B ∧ LAB′

CABCA′B′ .

H[3] = dB[2] + Ψγa ∧Ψ ∧ V a −Ψγa′
∧Ψ ∧ V a′

= 0

where we have used the definition of the gravitinos (1.6), their normalizations and the
properties of Dirac matrices. Notice that H[3] has only the symmetries of the subgroup
SO(1, 4)× SO(5) and not the full SO(1, 9) symmetry. That justifies the fact that H[3] is
closed and exact only in the present case.
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δSO(5)L
a′b′

= dΛa′b′
+ La′c′

Λ b′

c′ − Λa′

c′Lc′b′
, δSO(5)L

ab = 0 .

In the following we should respect the invariance under the isometries, in order to do that,
we have to recall that the gauge invariance under the subgroup SO(1, 4)× SO(5) implies
the invariance under the full group of the isometries.

We define the Killing spinors χA and χA′ and they satisfy the Killing-spinor equations

∇AdS5
χA =

(
d + γaV a + γabω

ab
)
χA = 0 , (1.5)

∇
S5 χA′ =

(
d + γa′V a′

+ γa′b′ωa′b′
)
χA′ = 0 ,

where V a, V a′
, ωab, ωa′b′

are the vielbeins and the connections of SO(1, 4) and SO(5) that
we are going to define below.

The Killing spinors χA are spinors of AdS5 and χA′ are spinors of S5 in terms of
which we can reconstruct the gravitinos

Ψ = χA ⊗ χA′LAA′
, Ψ = χA ⊗ χA′L

AA′

. (1.6)

The Killing spinors are normalized as follows

χAχB = CAB , χA′χB′ = CA′B′ , (1.7)

For the vielbeins it is convenient to decompose the supercoset as follows

SU(2, 2)
SO(1, 4)

× PSU(2, 2|4)
SU(2, 2)× SU(4)

× SU(4)
SO(5)

(1.8)

and we have

V a = Ba + χAγaχBLAB , V a′
= Ba′

+ χA′γa′
χB′LA′B′

, (1.9)

ωab = Bab + χAγabχBLAB , ωa′b′
= Ba′b′

+ χA′γa′b′
χB′LA′B′

,

where Ba, Ba′
, Bab, Ba′b′

are the vielbeins and the connections for the bosonic cosets AdS5

and S5 while the second terms in V a, V a′
, ωab, ωa′b′

are the fermionic contributions from
PSU(2, 2|4)/SU(2, 2)× SU(4). The direct product structure of the supergroup is reflected
into a sum structure of the vielbeins and connections. This means that a suitable vielbein
and connection Ba, Bab can be found in order to decompose V a and ωab as above. The
formulas in (1.9) can be obtained easily by observing that a given representative of the
group PSU(2, 2|4) can be decomposed into a product of two group elements as g = g1g2
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A, A’,B, B’=1,..,4.  a, a’ = 1,..,5

The pure spinor constraints are identical to those of Berkovits and the 
map between the two set of pure spinor in this case is trivial.   

Inserting these data into the action discussed above, one obtains 
(Berkovits) Pure Spinor AdSxS action. 



                pure spinor sigma-model        AdS5 × S
5

S =

∫

d2z
[

1

2

(

ηabJ
aJ̄b

+ ηa′b′J
a′

J̄b′
)

+ δαβ̂

(

3J β̂ J̄α
− JαJ̄ β̂

)

+

(

wα∂̄λ
α

+ NabJ̄
[ab]

+ Na′b′ J̄
[a′

b
′]
)

+

(

ŵα̂∂λ̂
α̂

+ N̂abJ
[ab]

+ N̂a′b′J
[a′

b
′]
)

+

+
1

2
(NabN̂ab − Na′b′N̂

a
′
b
′

)
]
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a
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b
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)
]

where JA = (g−1∂g)A , J̄A = (g−1∂̄g)A

are the left-invariant currents constructed from an element 
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The action has the SO(5) x SO(1,4) isometry 
(a,b refer to SO(1,4), a’,b’ refer to SO(5), and α,β =1,...,16)



• Conformal invariance to all orders 

• Infinite number of conserved non-local currents (at the classical and 
quantum level)

• Beta-deformed backgrounds

• One-, two-loop computations of the monodromy matrix

• New limits for the gauge/gravity correspondence (see N. Berkovits talk)

Some results for                      pure spinor sigma-model        AdS5 × S
5



Pure Spinor String Theory and Non-Critical Strings

• The supergravity approximation is no longer valid

•  AdS + RR backgrounds for non-critical strings

• We need to keep supersymmetry and Poincare’ symmetry 
manifest at all stages of the computation

• We need a gauge-fixed action to get a conformal field 
theory model

• Study of physical states spectrum 

• Computation of amplitudes in manifestly supersymmetric. 



AdS Backgrounds for Non-Critical Models

As an example,  we construct the sigma model 
for AdS in D=4 with N=2 supersymmetry. 

The basic supergroup is 
OSp(2|4)

SO(1, 3) × SO(2)

g−1dg = LµPµ + LµνJµν + LIJJIJ + LI
αQα

I

The action is decomposed into S = SGS + Sd + Sghost

Sd =
∫

Σ
d2z(δij + iεij)dαiL̄

α
j + (δij − iεij)d̄αiL

α
j + qRRdαiγ

5αβdβjδ
ij

SGS =
∫

Σ
d2zηµνLµL̄ν +

∫

M
d3yLµLα

I (γ5γµ)αβLβ
JεIJ

Coupling with RR field strengths



Non-maximally symmetric backgrounds

• Several interesting models of the type AdS x M are not maximally 
supersymmetric backgrounds (they provide very useful checks on 
AdS/CFT correspondence with lower supersymmetry)

• One of the problem is: Pure Spinor string theory seems to be 
very suitable for maximally supersymmetric background since the 
superspace contains all needed θ’s, but what happen for less susy 
backgrounds, how they enter the model?  

• Two examples: 

• Of course there are several questions (from worldsheet point of 
view) such as conformal invariance, conserved currents, radiative 
corrections

AdS5 × T (1,1) , AdS4 × CP
3 ,


