Calculating the NNLO corrections to Jet Observables

Thomas Gehrmann

Universität Zürich

Wonders of Gauge Theory and Supergravity, Paris 26.06.2008

Precision physics

Standard model

- well-established as theory of particle interactions
- testing now at per-mille (electroweak) to per-cent (QCD) level

LEP precision physics: Electroweak processes Tevatron/LHC precision physics: QCD processes

Precision physics with QCD

- precise determination of
 - strong coupling constant
 - quark masses
 - electroweak parameters
 - parton distributions
 - LHC collider luminosity
- precise predictions for
 - new physics effects
 - and their backgrounds

Observing "free" quarks and gluons at colliders QCD describes quarks and gluons; experiments observe hadrons

- describe parton \longrightarrow hadron transition (fragmentation)
- define appropriate final states, independent of particle type in final state (jets)

Jets

- experimentally: hadrons with common momentum direction
- theoretically: partons with common momentum direction

Jet Observables

Event shape variables

Jet Observables

Jets in Perturbation Theory

Jet Description

Partons are combined into jets using the same jet algorithm as in experiment

Current state-of-the-art: NLO plus resummation of all-order logarithms (NLLA) Need for higher orders:

better matching of parton level and hadron level jet algorithm

Jets in Perturbation Theory

General structure:

- Jet algorithm acts differently on different partonic final states
- Divergencies from soft and collinear real and virtual contributions must be extracted before application of jet algorithm

consider $e^+e^- \rightarrow 3$ jets

Ingredients to NNLO $e^+e^- \rightarrow 3$ -jet

Two-loop matrix elements

$|\mathcal{M}|^2_{2}$ -loop,3 partons

|*M*|² **1-loop**,4 partons

explicit infrared poles from loop integrals

L. Garland, N. Glover, A. Koukoutsakis, E. Remiddi, TG; S. Moch, P. Uwer, S. Weinzierl

explicit infrared poles from loop integral and implicit infrared poles due to single unresolved radiation Z. Bern, L. Dixon, D. Kosower, S. Weinzierl;

J. Campbell, D.J. Miller, E.W.N. Glover

Tree level matrix elements

implicit infrared poles due to double unresolved radiation

K. Hagiwara, D. Zeppenfeld;F.A. Berends, W.T. Giele, H. Kuijf;N. Falck, D. Graudenz, G. Kramer

Infrared Poles cancel in the sum

Virtual two-loop corrections feasible due to technical breakthroughs

- algorithms to reduce the ~ 10000 's of integrals to a few (10 30) master integrals
 - Integration-by-parts (IBP)
 K. Chetyrkin, F. Tkachov
 - Lorentz Invariance (LI) E. Remiddi, TG
 - and their implementation in computer algebra
 S. Laporta
- New methods to compute master integrals
 - Mellin-Barnes Transformation V. Smirnov, O. Veretin; B. Tausk;
 MB: M. Czakon; AMBRE: J. Gluza, K. Kajda, T. Riemann
 - Differential Equations E. Remiddi, TG
 - Sector Decomposition (numerically) T. Binoth, G. Heinrich
 - Nested Sums S. Moch, P. Uwer, S. Weinzierl

Reduction to master integrals Identities:

- Integration-by-parts (IBP) K. Chetyrkin, F. Tkachov

$$\int \frac{\mathrm{d}^d k}{(2\pi)^d} \frac{\mathrm{d}^d l}{(2\pi)^d} \frac{\partial}{\partial a^\mu} \left[b^\mu f(k,l,p_i) \right] = 0$$

with: $a^{\mu}=k^{\mu}, l^{\mu} \text{ and } b^{\mu}=k^{\mu}, l^{\mu}, p_{i}^{\mu}$

Lorentz Invariance (LI) E. Remiddi, TG

$$\int \frac{\mathrm{d}^d k}{(2\pi)^d} \frac{\mathrm{d}^d l}{(2\pi)^d} \delta \varepsilon^{\mu}_{\nu} \left(\sum_i p_i^{\nu} \frac{\partial}{\partial p_i^{\mu}} \right) f(k, l, p_i) = 0$$

For each two-loop four-point integral, one has 10 IBP and 3 LI identities.

Master Integrals from differential equations

Example: two-loop off-shell vertex function

- boundary conditions are two-point functions
- Laurent-series: expansion of hypergeometric functions in their parameters HypExp: T. Huber, D. Maître; XSummer: S. Moch, P. Uwer
- yields (generalized) harmonic polylogarithms
 E. Remiddi, J. Vermaseren; A. Goncharov; HPL: D. Maître Calculating the NNLO corrections to Jet Observables p.13

Virtual two-loop matrix elements have been computed for:

- Shabha-Scattering: $e^+e^- \rightarrow e^+e^-$ Z. Bern, L. Dixon, A. Ghinculov
- Hadron-Hadron 2-Jet production: $qq' \rightarrow qq'$, $q\bar{q} \rightarrow q\bar{q}$, $q\bar{q} \rightarrow gg$, $gg \rightarrow gg$ C. Anastasiou, N. Glover, C. Oleari, M. Yeomans-Tejeda Z. Bern, A. De Freitas, L. Dixon [SUSY-YM]
- Photon pair production at LHC: $gg \rightarrow \gamma\gamma$, $q\bar{q} \rightarrow \gamma\gamma$ Z. Bern, A. De Freitas, L. Dixon
 C. Anastasiou, N. Glover, M. Yeomans-Tejeda
- Three-jet production: $e^+e^- \rightarrow \gamma^* \rightarrow q\bar{q}g$ L. Garland, N. Glover, A.Koukoutsakis, E. Remiddi, TG
 S. Moch, P. Uwer, S. Weinzierl
- DIS (2+1) jet production: $\gamma^*g \rightarrow q\bar{q}$, Hadronic (V+1) jet production: $qg \rightarrow Vq$ E. Remiddi, TG

Matrix elements with internal masses: γ^{*} → QQ̄, qq̄ → QQ̄, gg → QQ̄
 M. Czakon, A. Mitov, S. Moch
 R. Bonciani, A. Ferroglia, D. Maître, C. Studerus, TG

Real corrections at NNLO

Double real radiation

$$d\sigma^{(m+2)} = |\mathcal{M}_{m+2}|^2 d\Phi_{m+2} J_m^{(m+2)}(p_1, \dots, p_{m+2}) \sim \frac{1}{\epsilon^4}$$

with $J_n^{(n+2)}$ jet definition for combining m+2 partons into m jets

Two approaches:

- Direct evaluation
 - C. Anastasiou, K. Melnikov, F. Petriello
 - expand $|\mathcal{M}_{m+2}|^2 d\Phi_{m+2}$ in distributions

• decompose $d\Phi_{m+2}$ into sectors corresponding to different singular configurations (Iterated sector decomposition)

- T. Binoth, G. Heinrich
- compute sector integrals numerically
 Results: pp → H + X, pp → V + X, $\mu → e + \nu + \bar{\nu} + X$
- Evaluation with subtraction term

Real Corrections at NNLO

Infrared subtraction terms

 $m + 2 \rightarrow m + 1$ pseudopartons $\rightarrow m$ jets:

- Double unresolved configurations:
 - triple collinear

m+2 partons $\rightarrow m$ jets:

- double single collinear
- soft/collinear
- double soft
- J. Campbell, E.W.N. Glover; S. Catani, M. Grazzini

Issue: find subtraction functions which

- P approximate full m + 2 matrix element in all singular limits
- are sufficiently simple to be integrated analytically

- Single unresolved configurations:
 - collinear
 - soft

NLO Subtraction

Structure of NLO *m*-jet cross section (subtraction formalism): Z. Kunszt, D. Soper

$$\mathrm{d}\sigma_{NLO} = \int_{\mathrm{d}\Phi_{m+1}} \left(\mathrm{d}\sigma_{NLO}^R - \mathrm{d}\sigma_{NLO}^S \right) + \left[\int_{\mathrm{d}\Phi_{m+1}} \mathrm{d}\sigma_{NLO}^S + \int_{\mathrm{d}\Phi_m} \mathrm{d}\sigma_{NLO}^V \right]$$

General methods at NLO

Dipole subtraction

S. Catani, M. Seymour; NNLO: S. Weinzierl

E-prescription

S. Frixione, Z. Kunszt, A. Signer; NNLO: S. Frixione, M. Grazzini; V. Del Duca, G. Somogyi, Z. Trocsanyi

Antenna subtraction

D. Kosower; J. Campbell, M. Cullen, N. Glover; A. Daleo, D. Maître, TG NNLO: A. Gehrmann-De Ridder, E.W.N. Glover, TG

NLO Antenna Subtraction

Building block of $d\sigma_{NLO}^S$: NLO-Antenna function X_{ijk}^0

Contains all singularities of parton j emitted between partons i and k

Phase space factorisation

 $\mathrm{d}\Phi_{m+1}(p_1,\ldots,p_{m+1};q) = \mathrm{d}\Phi_m(p_1,\ldots,\tilde{p}_I,\tilde{p}_K,\ldots,p_{m+1};q) \cdot \mathrm{d}\Phi_{X_{ijk}}(p_i,p_j,p_k;\tilde{p}_I+\tilde{p}_K)$

Integrated subtraction term (analytically)

$$|\mathcal{M}_{m}|^{2} J_{m}^{(m)} d\Phi_{m} \int d\Phi_{X_{ijk}} X_{ijk}^{0} \sim |\mathcal{M}_{m}|^{2} J_{m}^{(m)} d\Phi_{m} \int d\Phi_{3} |M_{ijk}^{0}|^{2}$$

can be combined with $\mathrm{d}\sigma_{NLO}^V$

NNLO Infrared Subtraction

Structure of NNLO *m*-jet cross section:

$$\begin{split} \mathrm{d}\sigma_{NNLO} &= \int_{\mathrm{d}\Phi_{m+2}} \left(\mathrm{d}\sigma_{NNLO}^R - \mathrm{d}\sigma_{NNLO}^S \right) \\ &+ \int_{\mathrm{d}\Phi_{m+1}} \left(\mathrm{d}\sigma_{NNLO}^{V,1} - \mathrm{d}\sigma_{NNLO}^{VS,1} \right) \\ &+ \int_{\mathrm{d}\Phi_m} \mathrm{d}\sigma_{NNLO}^{V,2} + \int_{\mathrm{d}\Phi_{m+2}} \mathrm{d}\sigma_{NNLO}^S + \int_{\mathrm{d}\Phi_{m+1}} \mathrm{d}\sigma_{NNLO}^{VS,1} , \end{split}$$

$$\ \, {\rm d}\sigma^S_{NNLO}: \ \, {\rm real\ radiation\ subtraction\ term\ for\ } {\rm d}\sigma^R_{NNLO}$$

- $d\sigma^{V,2}_{NNLO}$: two-loop virtual corrections

Each line above is finite numerically and free of infrared ϵ -poles \longrightarrow numerical programme

Double Real Subtraction

Distinct Configurations for m + 2 partons $\rightarrow m$ jets

- one unresolved parton (a)
 - three parton antenna function X_{ijk}^0 can be used (as at NLO)
 - this will not yield a finite contribution in all single unresolved limits
- - four-parton antenna function X_{ijkl}^0
- - strongly ordered product of non-independent three-parton antenna functions

product of independent three-parton antenna functions

Double Real Subtraction

Two colour-connected unresolved partons

Phase space factorisation

 $d\Phi_{m+2}(p_1,...,p_{m+2};q) = d\Phi_m(p_1,...,\tilde{p}_I,\tilde{p}_L,...,p_{m+2};q) \cdot d\Phi_{X_{ijkl}}(p_i,p_j,p_k,p_l;\tilde{p}_I+\tilde{p}_L)$

Integrated subtraction term (analytically)

$$|\mathcal{M}_{m}|^{2} J_{m}^{(m)} d\Phi_{m} \int d\Phi_{X_{ijkl}} X_{ijkl}^{0} \sim |\mathcal{M}_{m}|^{2} J_{m}^{(m)} d\Phi_{m} \int d\Phi_{4} |M_{ijkl}^{0}|^{2}$$

Four-particle inclusive phase space integrals are known A. Gehrmann-De Ridder, G. Heinrich, TG

Double Real Subtraction

Example: $1/N^2$ colour factor Single unresolved parton subtraction

$$d\sigma_{NNLO}^{S,a} = \frac{N_5}{N^2} d\Phi_5(p_1, \dots, p_5; q) \frac{1}{3!} \\ \times \sum_{i,j,k \in P_C(3,4,5)} A_3^0(\mathbf{1}_q, \mathbf{i}_g, \mathbf{2}_{\bar{q}}) \tilde{A}_4^0((\widetilde{\mathbf{1}_i})_q, j_g, k_g, (\widetilde{\mathbf{2}_i})_{\bar{q}}) J_3^{(4)}(\widetilde{p_{1i}}, p_j, p_k, \widetilde{p_{2i}})$$

Colour connected double unresolved subtraction

$$d\sigma_{NNLO}^{S,b} = \frac{N_5}{N^2} d\Phi_5(p_1, \dots, p_5; q) \frac{1}{3!} \sum_{i,j,k \in P_C(3,4,5)} \left(\tilde{A}_4^0(1_q, i_g, j_g, 2_{\bar{q}}) - A_3^0(1_q, i_g, 2_{\bar{q}}) A_3^0(\widetilde{(1i)}_q, j_g, \widetilde{(2i)}_{\bar{q}}) - A_3^0(1_q, j_g, 2_{\bar{q}}) A_3^0(\widetilde{(1j)}_q, i_g, \widetilde{(2j)}_{\bar{q}}) \right) \times A_3^0(\widetilde{(1ij)}_q, k_g, \widetilde{(2ij)}_{\bar{q}}) J_3^{(3)}(\widetilde{p_{1ij}}, p_k, \widetilde{p_{2ij}})$$

 $d\sigma_{NNLO}^R - d\sigma_{NNLO}^{S,a} - d\sigma_{NNLO}^{S,b}$ is finite and can be integrated numerically over $d\Phi_5$

One-loop Real Subtraction

Single unresolved limit of one-loop amplitudes

$$Loop_{m+1} \xrightarrow{j \ unresolved} Split_{tree} \times Loop_m + Split_{loop} \times Tree_m$$

Z. Bern, L.D. Dixon, D. Dunbar, D. Kosower; S. Catani, M. Grazzini; D. Kosower, P. UwerZ. Bern, V. Del Duca, W.B. Kilgore, C.R. SchmidtZ. Bern, L.D. Dixon, D. Kosower; S. Badger, E.W.N. Glover

Colour-ordered antenna functions

Antenna Functions

- colour-ordered pair of hard partons (radiators) with radiation in between
 - hard quark-antiquark pair
 - hard quark-gluon pair
 - hard gluon-gluon pair
- \checkmark three-parton antenna \longrightarrow one unresolved parton
- **four-parton antenna** \longrightarrow two unresolved partons
- can be at tree level or at one loop
- all three-parton and four-parton antenna functions can be derived from physical matrix elements, normalised to two-parton matrix elements

 $e^+e^- \rightarrow 3$ jets at NNLO

Structure of $e^+e^- \rightarrow 3$ jets program:

EERAD3: A. Gehrmann-De Ridder, E.W.N. Glover, G. Heinrich, TG

Three-jet cross section at NNLO

NNLO corrections: jet rates

Three-jet fraction in Durham jet algorithm

$$y_{i,j,D} = \frac{2\min(E_i^2, E_j^2) (1 - \cos\theta_{ij})}{E_{vis}^2}$$

• vary
$$\mu = [M_Z/2; 2M_Z]$$

determine minimal and maximal values

$$\delta = \frac{\max(\sigma) - \min(\sigma)}{2\sigma(\mu = M_Z)}$$

- NNLO corrections small
- substantial reduction of scale dependence
- better description towards lower jet resolution

Three-jet cross section at NNLO

NNLO corrections: jet rates

substantial improvement towards lower $y_{
m cut}$

two-jet rate now NNNLO

$$e^+e^- \rightarrow 3$$
 jets and event shapes

Standard Set of LEP

Thrust (E. Farhi)

$$T = \max_{\vec{n}} \left(\sum_{i=1}^{n} |\vec{p_i} \cdot \vec{n}| \right) / \left(\sum_{i=1}^{n} |\vec{p_i}| \right)$$

Heavy jet mass (L. Clavelli, D. Wyler)

$$\rho = M_i^2/s = \frac{1}{E_{\text{vis}}^2} \left(\sum_{k \in H_i} |\vec{p_k}|\right)^2$$

 \frown C-parameter: eigenvalues of the tensor (G. Parisi)

$$\Theta^{\alpha\beta} = \frac{1}{\sum_{k} |\vec{p_k}|} \frac{\sum_{k} p_k^{\alpha} p_k^{\beta}}{\sum_{k} |\vec{p_k}|}$$

Jet broadenings (S. Catani, G. Turnock, B. Webber)

$$B_i = \left(\sum_{k \in H_i} |\vec{p_k} \times \vec{n_T}|\right) / \left(2\sum_k |\vec{p_k}|\right)$$

 $B_W = \max(B_1, B_2)$ $B_T = B_1 + B_2$

 $3j \rightarrow 2j$ transition parameter in Durham algorithm y_{23}^D S.Catani, Y.L.Dokshitzer, M.Olsson, G.Turnock, B.Webber

Event shapes at NNLO

NNLO expression for Thrust

$$(1-T)\frac{1}{\sigma_{\text{had}}}\frac{\mathrm{d}\sigma}{\mathrm{d}T} = \left(\frac{\alpha_s}{2\pi}\right)A(T) + \left(\frac{\alpha_s}{2\pi}\right)^2\left(B(T) - 2A(T)\right) \\ + \left(\frac{\alpha_s}{2\pi}\right)^3\left(C(T) - 2B(T) - 1.64A(T)\right)$$

with LO contribution A(T), NLO contribution B(T), NNLO contribution C(T)

Event shapes at NNLO

NNLO thrust and heavy mass distributions

- **NNLO corrections sizable**: 15-20% in T, 10% in ρ
- theory uncertainty reduced by about 50 %
- Iarge 1 T, $\rho > 0.33$: kinematically forbidden at LO
- Small 1 T, ρ : two-jet region, need matching onto NLL resummation
- **Solution** NNLO corrections for B_W smaller than for B_T
- \square observe: small corrections for Y_3 ; large corrections for C

Event shapes at NLLA+NNLO

Matching onto resummation

G. Luisoni, H. Stenzel, TG

- resummation to NLLA (S. Catani, L. Trentadue, G. Turnock, B. Webber;
 Y.L. Dokshitzer, A. Lucenti, G. Marchesini, G.P. Salam; A. Banfi, G. Zanderighi)
- normalisation in three-jet region was modified between NLO and NLLA+NLO
- normalisation in three-jet region stable between NNLO and NLLA+NNLO
- improved scale-dependence in three-jet region
- scale-dependence of NLLA dominant —> need higher orders in resummation T. Becher, M. Schwartz: thrust beyond NLLA

Comparison with data

High precision data from all LEP experiments, compare here to ALEPH

- include quark mass effects to NLO
 P. Nason, C. Oleari
 W. Bernreuther, A. Brandenburg, P. Uwer
 G. Rodrigo, A. Santamaria
- Include hadronization corrections HERWIG: B. Webber et al. ARIADNE: T. Sjostrand et al.
- try new fit of α_s, based on ALEPH analysis
 G. Dissertori, A. Gehrmann-De Ridder,
 G. Heinrich, H. Stenzel, TG

Extraction of α_s

- clear improvement of NNLO over NLO
- good fit quality
- extended range of good description in 3-jet region
- matched NLO+NNLA still yields a better prediction in 2-jet region
- value of α_s lower than at NLO, but still rather high

Extraction of α_s

Uncertainty from renormalisation scale

Extraction of α_s

Result for all ALEPH event shapes of LEP1/LEP2

 $\alpha_s(M_Z) = 0.1240 \pm 0.0008(stat) \pm 0.0010(exp) \pm 0.0011(had) \pm 0.0029(theo)$

Outlook

Next steps:

- α_s from NLLA+NNLO
 G. Dissertori, A. Gehrmann-De Ridder,
 E.W.N. Glover, G. Heinrich, G. Luisoni, H.
 Stenzel, TG
 study jet rates in different algorithms
 study moments of event shapes
- revisit analytic power corrections
 Y.L. Dokshitzer, A. Lucenti, G. Marchesini, 10
 G.P. Salam
- include electroweak corrections
 C. Carloni-Calame, S. Moretti,
 F. Piccinini, D. Ross
- resummation and matching at NNLLA

Summary and Conclusions

- High precision data on jet observables demand theoretical accuracy beyond NLO
- Principal ingredients to NNLO jet calculations
 - two-loop virtual corrections
 - generic algorithm for singular real emission
- Presented results for event shapes in e^+e^- annihilation
 - improved theoretical uncertainty
 - considerably better consistency between observables
 - new NNLO extraction of α_s , more phenomenology to come
- Precision calculations for jet observables at LHC in progress