Generating functions for $N=4$ and $N=8$ amplitudes

Henriette Elvang (MIT)

Wonders of gauge theory and supergravity
Paris, June 23-28, 2008

- arXiv:0805.0757 w/ Massimo Bianchi and Dan Freedman
- arXiv:0710.1270 w/ Dan Freedman

1. Motivation

Is $\mathcal{N}=8$ supergravity perturbatively finite?

\uparrow
Explicit calculations:
Loop amplitudes \leftrightarrow tree amplitudes

via generalized unitarity cuts [Bern, Dixon, Kosower, ...] \downarrow

Our work focuses on n-point on-shell tree amplitudes in $\mathcal{N}=8$ SG and their relationship with tree amplitudes in $\mathcal{N}=4$ SYM.

Generating function Z_{n} - idea

States $X_{i} \quad \leftrightarrow$ differential operators $D_{X_{i}}$

Amplitude $A_{n}\left(X_{1} X_{2} \ldots X_{n}\right)=D_{X_{1}} D_{X_{2}} \cdots D_{X_{n}} Z_{n}$

Original $\mathcal{N}=4$ SYM generating function by Nair [Nair $(1988,2005)]$. Further developed and extended by Georgio, Glover and Khoze [GGK (2004)] .

Our formulation in terms of derivative operators + extensions to supergravity.

- The simplest amplitudes are MHV (maximally helicity violating)
$-\mathcal{N}=4$ SYM: $A_{n}(-,-,+, \ldots,+)$ gluons.
- $\mathcal{N}=8 \mathrm{SG}: \quad M_{n}(-,-,+, \ldots,+)$ gravitons.

MHV sector: amplitudes related to A_{n} and M_{n}, resp., via SUSY Ward identities.

- The next-to-simplest amplitudes are Next-to-MHV
$-\mathcal{N}=4$ SYM: $A_{n}(-,-,-,+, \ldots,+)$ gluons.
- $\mathcal{N}=8$ SG: $\quad M_{n}(-,-,-,+, \ldots,+)$ gravitons.

NMHV sector: SUSY related (but much harder to solve SUSY Ward identities).

Generating functions encode dependence on external states.

Benefits of Generating Functions

\longrightarrow Easy calculation of MHV and NMHV amplitudes - just differentiate!
\longrightarrow Precise characterization of MHV and NMHV sectors, e.g. $A_{n}\left(\lambda_{+} \lambda_{+} \lambda_{+} \lambda_{+} \phi \phi\right)$ is MHV.
\longrightarrow Counts distinct processes in each sector:
MHV NMHV

$$
\begin{array}{lcc}
\mathcal{N}=4: & 15 & 34 \\
\mathcal{N}=8: & 186 & 919
\end{array}
$$

counting \leftrightarrow partitions of integers!
\longrightarrow Simple relationship $Z_{n}^{\mathcal{N}=8} \propto Z_{n}^{\mathcal{N}=4} \times Z_{n}^{\mathcal{N}=4}(\mathrm{MHV})$ clarifies SUSY and global symmetries in map $[\mathcal{N}=8]=[\mathcal{N}=4]_{\mathcal{L}} \otimes[\mathcal{N}=4]_{R}$ of states and KLT relations $M_{n}=\sum\left(k_{n} A_{n} A_{n}^{\prime}\right)$.
\longrightarrow Applications to intermediate state sums in loop amplitudes.

Outline

(1) Motivation
(2) MHV generating functions
$\rightarrow \mathcal{N}=4$ SYM
$\rightarrow \mathcal{N}=8 \mathrm{SG}$
(3) Spin factors as conformal correlators
(9) Recursion relations \leftrightarrow MHV vertex expansion
(5) Next-to-MHV generating functions
$\rightarrow \mathcal{N}=4$ SYM
$\rightarrow \mathcal{N}=8 \mathrm{SG}$
(0) Intermediate State Spin Sums
(3) Outlook

2. MHV generating function $-\mathcal{N}=4 \mathrm{SYM}$

Amplitude $A_{n}\left(X_{1} X_{2} \ldots X_{n}\right)=D_{X_{1}} D_{X_{2}} \cdots D_{X_{n}} Z_{n}$

First need (state \leftrightarrow diff op) correspondence.

$\mathcal{N}=4 \mathrm{SYM}$

$\mathcal{N}=4$ SYM has 2^{4} massless states:

$$
a, b=1,2,3,4 \in \operatorname{SU}(4)
$$

1 gluon

$$
B^{-}, \quad B_{+}
$$

4 gluini

$$
F_{a}^{-}, \quad F_{+}^{a}
$$

6 self-dual scalars $\quad B^{a b}=\frac{1}{2} \epsilon^{a b c d} B_{c d}$
4 supercharges $\tilde{Q}_{a}=\epsilon_{\dot{\alpha}} \tilde{Q}_{a}^{\dot{\alpha}}$ and $Q^{a}=\tilde{Q}_{a}^{*}$ act on annihilation operators:

$$
\begin{aligned}
{\left[\tilde{Q}_{a}, B_{+}(p)\right] } & =0, \\
{\left[\tilde{Q}_{a}, F_{+}^{b}(p)\right] } & =\langle\epsilon p\rangle \delta_{a}^{b} B_{+}(p), \\
{\left[\tilde{Q}_{a}, B^{b c}(p)\right] } & =\langle\epsilon p\rangle\left(\delta_{a}^{b} F_{+}^{c}(p)-\right. \\
{\left[\tilde{Q}_{a}, B_{b c}(p)\right] } & =\langle\epsilon p\rangle \epsilon_{a b c d} F_{+}^{d}(p), \\
{\left[\tilde{Q}_{a}, F_{b}^{-}(p)\right] } & =\langle\epsilon p\rangle B_{a b}(p), \\
{\left[\tilde{Q}_{a}, B^{-}(p)\right] } & =-\langle\epsilon p\rangle F_{a}^{-}(p)
\end{aligned}
$$

$$
\left[\tilde{Q}_{a}, B^{b c}(p)\right]=\langle\epsilon p\rangle\left(\delta_{a}^{b} F_{+}^{c}(p)-\delta_{a}^{c} F_{+}^{b}(p)\right) \text {, (consistent with crossing sym. }
$$

$\mathcal{N}=4$ SYM (state \leftrightarrow diff op) correspondence

Introduce auxiliary Grassman variable $\eta_{i a}$ i momentum label $p_{i}, \quad a=1, \ldots, 4$ is $S U(4)$ index.

Associate to each state Grassman diff ops $\partial_{i}^{a}=\frac{\partial}{\partial \eta_{i a}}$:

$$
\begin{aligned}
B_{+}\left(p_{i}\right) & \leftrightarrow 1 \\
F_{+}^{a}\left(p_{i}\right) & \leftrightarrow \partial_{i}^{a} \\
B_{+}^{a b}\left(p_{i}\right) & \leftrightarrow \partial_{i}^{a} \partial_{i}^{b} \\
F_{a}^{-}\left(p_{i}\right) & \leftrightarrow-\frac{1}{3!} \epsilon_{a b c d} \partial_{i}^{b} \partial_{i}^{c} \partial_{i}^{d} \\
B^{-}\left(p_{i}\right) & \leftrightarrow \partial_{i}^{1} \partial_{i}^{2} \partial_{i}^{3} \partial_{i}^{4}
\end{aligned}
$$

This is our (state \leftrightarrow diff op) correspondence.

SUSY generators $\tilde{Q}_{a}=\sum_{i=1}^{n}\langle\epsilon i\rangle \eta_{i a}$ and $Q^{a}=\sum_{i=1}^{n}[i \epsilon] \frac{\partial}{\partial \eta_{i j}}$ give correct SUSY algebra
$\left[Q^{a}, \tilde{Q}_{b}\right]=\delta_{b}^{a} \sum_{i=1}^{n}\left[\epsilon_{1} i\right]\left\langle\epsilon_{2}\right\rangle=\delta_{b}^{a} \sum_{i=1}^{n} \epsilon_{1}^{\alpha} p_{i \alpha \dot{\beta}} \tilde{\epsilon}_{2}^{\dot{\beta}} \rightarrow 0 \quad$ (mom. cons.), and
$[\tilde{Q}$, diff op $]=\langle\epsilon p\rangle(\text { diff op })^{\prime}$
produces correct algebra on states.

The MHV generating function is

$$
Z_{n}^{\mathcal{N}=4}\left(\eta_{i a}\right)=\frac{A_{n}\left(1^{-}, 2^{-}, 3^{+}, \ldots, n^{+}\right)}{\langle 12\rangle^{4}} \delta^{(8)}\left(\sum_{i}|i\rangle \eta_{i a}\right)
$$

where $\delta^{(8)}\left(\sum_{i}|i\rangle \eta_{i a}\right)=2^{-4} \prod_{a=1}^{4} \sum_{i, j=1}^{n}\langle i j\rangle \eta_{i a} \eta_{j a}$.
[Nair (1988)] [GGK (2004)]
(δ-function of Grassman variables θ_{a} is $\prod \theta_{a}$)

$$
\begin{array}{ll}
\eta_{i a} & \text { - } \\
a=1,2,3,4 & \text { auxilliary Grassman variables } \\
i, j=1,2, \ldots, n & \text { - } \\
i, j) \text { momentum labels }
\end{array}
$$

Claim: any 8th order derivative operator built from (state \leftrightarrow diff op) correspondence gives an MHV amplitude when applied to $Z_{n}^{\mathcal{N}=4}$:

$$
A_{n}^{\mathrm{MHV}}\left(X_{1}, \ldots, X_{n}\right)=D_{X_{1}} \cdots D_{X_{n}} Z_{n}^{\mathcal{N}=4}
$$

Let's prove this!

Proof: $\quad Z_{n}^{\mathcal{N}=4}\left(\eta_{i a}\right)=\frac{A_{n}\left(1^{-}, 2^{-},,^{+}, \ldots, n^{+}\right)}{\langle 12\rangle^{4}} \delta^{(8)}\left(\sum_{i}|i\rangle \eta_{i a}\right)$

- $Z_{n}^{\mathcal{N}=4}$ reproduces pure MHV gluon amplitude $A_{n}\left(1^{-}, 2^{-}, 3^{+}, \ldots, n^{+}\right)$correctly:

$$
\begin{aligned}
& \left(\partial_{1}^{1} \partial_{1}^{2} \partial_{1}^{3} \partial_{1}^{4}\right)\left(\partial_{2}^{1} \partial_{2}^{2} \partial_{2}^{3} \partial_{2}^{4}\right) \delta^{(8)}\left(\sum_{i}|i\rangle \eta_{i a}\right) \\
& =\left(\partial_{1}^{1} \partial_{1}^{2} \partial_{1}^{3} \partial_{1}^{4}\right)\left(\partial_{2}^{1} \partial_{2}^{2} \partial_{2}^{3} \partial_{2}^{4}\right)\left(2^{-4} \prod_{a=1}^{4} \sum_{i, j=1}^{n}\langle i j\rangle \eta_{i a} \eta_{j a}\right) \\
& =\langle 12\rangle^{4} .
\end{aligned}
$$

Proof: $\quad Z_{n}^{\mathcal{N}=4}\left(\eta_{i a}\right)=\frac{A_{n}\left(1^{-}, 2^{-}, 3^{+}, \ldots, n^{+}\right)}{\langle 12\rangle^{4}} \delta^{(8)}\left(\sum_{i}|i\rangle \eta_{i a}\right)$

- $Z_{n}^{\mathcal{N}=4}$ reproduces pure MHV gluon amplitude $A_{n}\left(1^{-}, 2^{-}, 3^{+}, \ldots, n^{+}\right)$correctly:

$$
\begin{aligned}
& \left(\partial_{1}^{1} \partial_{1}^{2} \partial_{1}^{3} \partial_{1}^{4}\right)\left(\partial_{2}^{1} \partial_{2}^{2} \partial_{2}^{3} \partial_{2}^{4}\right) \delta^{(8)}\left(\sum_{i}|i\rangle \eta_{i a}\right) \\
& =\left(\partial_{1}^{1} \partial_{1}^{2} \partial_{1}^{3} \partial_{1}^{4}\right)\left(\partial_{2}^{1} \partial_{2}^{2} \partial_{2}^{3} \partial_{2}^{4}\right)\left(2^{-4} \prod_{a=1}^{4} \sum_{i, j=1}^{n}\langle i j\rangle \eta_{i a} \eta_{j a}\right) \\
& =\langle 12\rangle^{4} .
\end{aligned}
$$

- $\tilde{Q}_{a} Z_{n}^{\mathcal{N}=4} \propto\left(\sum_{i=1}^{n}|i\rangle \eta_{i a}\right) \delta^{(8)}\left(\sum_{i}|i\rangle \eta_{i a}\right)=0$.

Proof: $\quad Z_{n}^{N=4}\left(\eta_{i a}\right)=\frac{A_{n}\left(1^{-}, 2^{-},,^{+}, \ldots, n^{+}\right)}{\langle 12\rangle^{4}} \delta^{(8)}\left(\sum_{i}|i\rangle \eta_{i a}\right)$

- $Z_{n}^{\mathcal{N}=4}$ reproduces pure MHV gluon amplitude $A_{n}\left(1^{-}, 2^{-}, 3^{+}, \ldots, n^{+}\right)$correctly:

$$
\begin{aligned}
& \left(\partial_{1}^{1} \partial_{1}^{2} \partial_{1}^{3} \partial_{1}^{4}\right)\left(\partial_{2}^{1} \partial_{2}^{2} \partial_{2}^{3} \partial_{2}^{4}\right) \delta^{(8)}\left(\sum_{i}|i\rangle \eta_{i a}\right) \\
& =\left(\partial_{1}^{1} \partial_{1}^{2} \partial_{1}^{3} \partial_{1}^{4}\right)\left(\partial_{2}^{1} \partial_{2}^{2} \partial_{2}^{3} \partial_{2}^{4}\right)\left(2^{-4} \prod_{a=1}^{4} \sum_{i, j=1}^{n}\langle i j\rangle \eta_{i a} \eta_{j a}\right) \\
& =\langle 12\rangle^{4} .
\end{aligned}
$$

- $\tilde{Q}_{a} Z_{n}^{\mathcal{N}=4} \propto\left(\sum_{i=1}^{n}|i\rangle \eta_{i a}\right) \delta^{(8)}\left(\sum_{i}|i\rangle \eta_{i a}\right)=0$.
- $\left[\tilde{Q}_{a}, D^{(9)}\right] Z_{n}^{\mathcal{N}=4}=0$ encode the MHV SUSY Ward identities:

$$
\begin{aligned}
& 0=\left[\tilde{Q}_{a}, D^{(9)}\right] Z_{n}^{\mathcal{N}=4}=\sum_{t} D_{X_{1}} \cdots\left[\tilde{Q}_{a}, D_{X_{t}}\right] \cdots D_{X_{n}} Z_{n}^{\mathcal{N}=4}, \\
& 0=\left\langle\left[\tilde{Q}_{a}, X_{1} \ldots X_{n}\right]\right\rangle=\sum_{t}\left\langle X_{1} \ldots\left[\tilde{Q}_{a}, X_{t}\right] \ldots X_{n}\right\rangle .
\end{aligned}
$$

Proof: $\quad Z_{n}^{N=4}\left(\eta_{i a}\right)=\frac{A_{n}\left(1^{-}, 2^{-}, 3^{+}, \ldots, n^{+}\right)}{\left(124^{4}\right.} \delta^{(8)}\left(\sum_{i}|i\rangle \eta_{i a}\right)$

- $Z_{n}^{\mathcal{N}=4}$ reproduces pure MHV gluon amplitude $A_{n}\left(1^{-}, 2^{-}, 3^{+}, \ldots, n^{+}\right)$correctly:

$$
\begin{aligned}
& \left(\partial_{1}^{1} \partial_{1}^{2} \partial_{1}^{3} \partial_{1}^{4}\right)\left(\partial_{2}^{1} \partial_{2}^{2} \partial_{2}^{3} \partial_{2}^{4}\right) \delta^{(8)}\left(\sum_{i}|i\rangle \eta_{i a}\right) \\
& =\left(\partial_{1}^{1} \partial_{1}^{2} \partial_{1}^{3} \partial_{1}^{4}\right)\left(\partial_{2}^{1} \partial_{2}^{2} \partial_{2}^{3} \partial_{2}^{4}\right)\left(2^{-4} \prod_{a=1}^{4} \sum_{i, j=1}^{n}\langle i j\rangle \eta_{i a} \eta_{j a}\right) \\
& =\langle 12\rangle^{4} .
\end{aligned}
$$

- $\tilde{Q}_{a} Z_{n}^{\mathcal{N}=4} \propto\left(\sum_{i=1}^{n}|i\rangle \eta_{i a}\right) \delta^{(8)}\left(\sum_{i}|i\rangle \eta_{i a}\right)=0$.
- $\left[\tilde{Q}_{a}, D^{(9)}\right] Z_{n}^{\mathcal{N}=4}=0$ encode the MHV SUSY Ward identities:

$$
\begin{aligned}
& 0=\left[\tilde{Q}_{a}, D^{(9)}\right] Z_{n}^{\mathcal{N}=4}=\sum_{t} D_{X_{1}} \cdots\left[\tilde{Q}_{a}, D_{X_{t}}\right] \cdots D_{X_{n}} Z_{n}^{\mathcal{N}=4}, \\
& 0=\left\langle\left[\tilde{Q}_{a}, X_{1} \ldots X_{n}\right]\right\rangle=\sum_{t}\left\langle X_{1} \ldots\left[\tilde{Q}_{a}, X_{t}\right] \ldots X_{n}\right\rangle .
\end{aligned}
$$

- MHV SUSY Ward identities have unique solutions.

Proof: $\quad Z_{n}^{N=4}\left(\eta_{i a}\right)=\frac{A_{n}\left(1^{-}, 2^{-}, 3^{+}, \ldots, n^{+}\right)}{\left(124^{4}\right.} \delta^{(8)}\left(\sum_{i}|i\rangle \eta_{i a}\right)$

- $Z_{n}^{\mathcal{N}=4}$ reproduces pure MHV gluon amplitude $A_{n}\left(1^{-}, 2^{-}, 3^{+}, \ldots, n^{+}\right)$correctly:

$$
\begin{aligned}
& \left(\partial_{1}^{1} \partial_{1}^{2} \partial_{1}^{3} \partial_{1}^{4}\right)\left(\partial_{2}^{1} \partial_{2}^{2} \partial_{2}^{3} \partial_{2}^{4}\right) \delta^{(8)}\left(\sum_{i}|i\rangle \eta_{i a}\right) \\
& =\left(\partial_{1}^{1} \partial_{1}^{2} \partial_{1}^{3} \partial_{1}^{4}\right)\left(\partial_{2}^{1} \partial_{2}^{2} \partial_{2}^{3} \partial_{2}^{4}\right)\left(2^{-4} \prod_{a=1}^{4} \sum_{i, j=1}^{n}\langle i j\rangle \eta_{i a} \eta_{j a}\right) \\
& =\langle 12\rangle^{4} .
\end{aligned}
$$

- $\tilde{Q}_{a} Z_{n}^{\mathcal{N}=4} \propto\left(\sum_{i=1}^{n}|i\rangle \eta_{i a}\right) \delta^{(8)}\left(\sum_{i}|i\rangle \eta_{i a}\right)=0$.
- $\left[\tilde{Q}_{a}, D^{(9)}\right] Z_{n}^{\mathcal{N}=4}=0$ encode the MHV SUSY Ward identities:

$$
\begin{aligned}
& 0=\left[\tilde{Q}_{a}, D^{(9)}\right] Z_{n}^{\mathcal{N}=4}=\sum_{t} D_{X_{1}} \cdots\left[\tilde{Q}_{a}, D_{X_{t}}\right] \cdots D_{X_{n}} Z_{n}^{\mathcal{N}=4}, \\
& 0=\left\langle\left[\tilde{Q}_{a}, X_{1} \ldots X_{n}\right]\right\rangle=\sum_{t}\left\langle X_{1} \ldots\left[\tilde{Q}_{a}, X_{t}\right] \ldots X_{n}\right\rangle .
\end{aligned}
$$

- MHV SUSY Ward identities have unique solutions.
$\Rightarrow Z_{n}^{\mathcal{N}=4}$ produces all MHV amplitudes correctly.

Characterizing amplitudes in the MHV sector of $\mathcal{N}=4$ SYM: $D^{(8)} Z_{n}^{\mathcal{N}=4}=$ MHV amplitude hence \# MHV amplitudes $=$ \# partitions of 8 with $n_{\max }=4$.

MHV amplitudes:

$$
\begin{array}{rlrl}
8 & =4+4 & \leftrightarrow\left\langle B^{-} B^{-} B_{+} \ldots B_{+}\right\rangle \\
& =4+3+1 & \leftrightarrow\left\langle B^{-} F_{a}^{-} F_{+}^{a} B_{+} \ldots B_{+}\right\rangle \\
& \cdots & & \\
& =1+\cdots+1 \leftrightarrow\left\langle F_{+}^{a_{1}} \ldots F_{+}^{a_{8}} B_{+} \ldots B_{+}\right\rangle
\end{array}
$$

Total of 15 MHV amplitudes in $\mathcal{N}=4$ SYM.

Example:

Calculate $\left\langle B^{-}\left(p_{1}\right) F_{+}^{1}\left(p_{2}\right) F_{+}^{2}\left(p_{3}\right) F_{+}^{3}\left(p_{4}\right) F_{+}^{4}\left(p_{5}\right) B^{+}\left(p_{6}\right)\right\rangle$

$$
\begin{aligned}
& \left(\partial_{1}^{1} \partial_{1}^{2} \partial_{1}^{3} \partial_{1}^{4}\right)\left(\partial_{2}^{1}\right)\left(\partial_{3}^{2}\right)\left(\partial_{4}^{3}\right)\left(\partial_{5}^{4}\right) \delta^{(8)}\left(\sum_{i}|i\rangle \eta_{i a}\right) \\
& =\left(\partial_{1}^{1} \partial_{2}^{1}\right)\left(\partial_{2}^{2} \partial_{3}^{2}\right)\left(\partial_{1}^{3} \partial_{4}^{3}\right)\left(\partial_{1}^{4} \partial_{5}^{4}\right) \delta^{(8)}\left(\sum_{i}|i\rangle \eta_{i a}\right) \\
& =\langle 12\rangle\langle 13\rangle\langle 14\rangle\langle 15\rangle
\end{aligned}
$$

using $\delta^{(8)}\left(\sum_{i}|i\rangle \eta_{i a}\right)=\left(2^{-4} \prod_{a=1}^{4} \sum_{i, j=1}^{n}\langle i j\rangle \eta_{i a} \eta_{j a}\right)$,
so

$$
\begin{aligned}
& \left\langle B^{-}\left(p_{1}\right) F_{+}^{1}\left(p_{2}\right) F_{+}^{2}\left(p_{3}\right) F_{+}^{3}\left(p_{4}\right) F_{+}^{4}\left(p_{5}\right) B^{+}\left(p_{6}\right)\right\rangle \\
& \quad=\frac{\langle 12\rangle\langle 13\rangle\langle 14\rangle\langle 15\rangle}{\langle 12\rangle^{4}} A_{n}\left(1^{-}, 2^{-}, 3^{+}, 4^{+}, 5^{+}, 6^{+}\right) .
\end{aligned}
$$

2. MHV generating function $-\mathcal{N}=8 \mathrm{SG}$

Completely analogous setup:

$$
A, B, \cdots=1, \ldots, 8 \in S U(8)
$$

1 graviton

$$
b_{+}\left(p_{i}\right) \quad \leftrightarrow 1
$$

8 gravitino

$$
f_{+}^{A}\left(p_{i}\right) \quad \leftrightarrow \quad \partial_{i}^{A}
$$

28 gravi - photons

$$
b_{+}^{A B}\left(p_{i}\right) \quad \leftrightarrow \quad \partial_{i}^{A} \partial_{i}^{B}
$$

$$
56 \text { gravi }- \text { photinos } \quad f_{+}^{A B C}\left(p_{i}\right) \quad \leftrightarrow \quad \partial_{i}^{A} \partial_{i}^{B} \partial_{i}^{C}
$$

70 self - dual scalars

$$
b^{A B C D}\left(p_{i}\right) \leftrightarrow \partial_{i}^{A} \partial_{i}^{B} \partial_{i}^{C} \partial_{i}^{D}
$$

$$
56 \text { gravi - photinos } \quad f_{A B C}^{-}\left(p_{i}\right) \quad \leftrightarrow \quad-\frac{1}{5!} \epsilon_{A B C D E F G H} \partial_{i}^{D} \cdots \partial_{i}^{H}
$$

28 gravi - photons

$$
b_{A B}^{-}\left(p_{i}\right) \quad \leftrightarrow \frac{1}{6!} \epsilon_{A B C D E F G H} \partial_{i}^{C} \cdots \partial_{i}^{H}
$$

8 gravitino
$f_{+}^{A}\left(p_{i}\right) \quad \leftrightarrow \quad-\frac{1}{7!} \epsilon_{\text {ABCDEFGH }} \partial_{i}^{B} \cdots \partial_{i}^{H}$
1 graviton

Total of $256=2^{8}$ massless states.
8 supercharges $\tilde{Q}_{A}=\epsilon_{\dot{\alpha}} \tilde{Q}_{A}^{\dot{\alpha}}$ and $Q^{A}=\tilde{Q}_{A}^{*}$.

The MHV generating function for $\mathcal{N}=8 \mathrm{SG}$ is

$$
Z_{n}^{\mathcal{N}=8}\left(\eta_{i A}\right)=\frac{M_{n}\left(1^{-}, 2^{-}, 3^{+}, \ldots, n^{+}\right)}{\langle 12\rangle^{8}} \delta^{(16)}\left(\sum_{i}|i\rangle \eta_{i A}\right)
$$

$$
\text { with } \delta^{(16)}\left(\sum_{i}|i\rangle \eta_{i A}\right)=2^{-8} \prod_{A=1}^{8} \sum_{i, j=1}^{n}\langle i j\rangle \eta_{i A} \eta_{j A}
$$

Any 16th order derivative operator built from (state \leftrightarrow diff op) correspondence gives an MHV amplitude when applied to $Z_{n}^{\mathcal{N}}=8$.
$\mathcal{N}=8$ supergravity: \# MHV amplitudes $=\#$ partitions of 16 with $n_{\max }=8$.

MHV amplitudes:

$$
\begin{array}{rlrl}
16 & =8+8 & \leftrightarrow\left\langle b^{-} b^{-} b_{+} \ldots b_{+}\right\rangle \\
& =8+7+1 & \leftrightarrow\left\langle b^{-} f_{A}^{-} f_{+}^{A} b_{+} \ldots b_{+}\right\rangle \\
& \ldots & & \\
& =1+\cdots+1 & \left.\leftrightarrow f_{+}^{A_{1}} \ldots f_{+}^{A_{16}} b_{+} \ldots b_{+}\right\rangle
\end{array}
$$

Total of 186 MHV amplitudes in $\mathcal{N}=8 \mathrm{SYM}$.

Factorization

- Spectrum $[\mathcal{N}=8 \mathrm{SG}]=[\mathcal{N}=4 \mathrm{SYM}]_{L} \otimes[\mathcal{N}=4 \mathrm{SYM}]_{R}$ e.g. $b^{-}=B^{-} \otimes \tilde{B}^{-} \quad(2=1 \otimes 1)$.
- Also, supergravity amplitudes factor in to (sums of) products of SYM amplitudes (KLT relations)

$$
M_{n}=\sum k_{n} A_{n} A_{n}^{\prime}
$$

with k_{n} kinematic factors.

For MHV this works because

- Diff operators factorize $D^{\mathcal{N}=8}=D^{\mathcal{N}=4} \times D^{\mathcal{N}=4}$
- MHV generating function factorizes $Z_{n}^{\mathcal{N}=8} \propto Z_{n(1234)}^{\mathcal{N}=4} \times Z_{n(5678)}^{\mathcal{N}=4}$
\Rightarrow dependence on external states factorizes
$\Rightarrow S U(8) \leftrightarrow S U(4)_{L} \times S U(4)_{R}$ naturally implemented.
- Simple encoding of external states.
- Clean and efficient way to calculate amplitudes.
- Factorization illuminates $[\mathcal{N}=8]=[\mathcal{N}=4]_{L} \otimes[\mathcal{N}=4]_{R}$ and $S U(8) \leftrightarrow S U(4) \times S U(4)$.
- Applications to intermediate spin sums in loop calculations (later).
- Fun conformal analogy (next).

3. Spin factors as conformal correlators

$\mathcal{N}=4$ SYM: (similarly for gravity)
Define

$$
\text { spin factor } \equiv D^{(8)} \delta^{(8)}(I)
$$

so that

$$
\text { MHV amplitude }=(\text { spin factor }) \times \frac{A_{n}(-,-,+, \ldots,+)}{\langle 12\rangle^{4}} .
$$

For n-point amplitudes:

$$
\text { spin factor }=\text { product of } 4 \text { of }\binom{n}{2} \text { independent }\langle i j\rangle \text { 's. }
$$

Example:

$$
(8=3+3+1+1)
$$

$$
\left\langle F_{1}^{-} F_{2}^{-} F_{+}^{2} F_{+}^{1}\right\rangle=\left(-\partial_{1}^{2} \partial_{1}^{3} \partial_{1}^{4}\right)\left(\partial_{2}^{1} \partial_{2}^{3} \partial_{2}^{4}\right)\left(\partial_{3}^{2}\right)\left(\partial_{4}^{1}\right) \delta^{(8)}(I)=-\langle 12\rangle^{2}\langle 13\rangle\langle 24\rangle
$$

- Case $n=3$:
$A_{3}\left(X_{1}\left(p_{1}\right) X_{2}\left(p_{2}\right) X_{3}\left(p_{3}\right)\right)$
with "weights" $r_{i}=$ order of diff op for particle X_{i}. Then

$$
\text { spin factor }=D_{1}^{\left(r_{1}\right)} D_{2}^{\left(r_{2}\right)} D_{3}^{\left(r_{3}\right)} \delta^{(8)}(I)=\langle 12\rangle^{\nu_{12}}\langle 23\rangle^{\nu_{23}}\langle 31\rangle^{\nu_{31}}
$$

where

$$
\nu_{12}+\nu_{31}=r_{1}, \quad \nu_{23}+\nu_{12}=r_{2}, \quad \nu_{31}+\nu_{23}=r_{3}
$$

Solve to find $\quad \nu_{i j}=\frac{1}{2}\left(r_{i}+r_{j}-r_{k}\right)$.
\rightarrow just like 3-point CFT correlator with primary operators of scale dimensions ($r_{i}, 0$),

$$
\left\langle O_{1}\left(z_{1}\right) O_{2}\left(z_{2}\right) O_{3}\left(z_{3}\right)\right\rangle=c_{123} \frac{1}{z_{12}^{\nu_{12}} z_{23}^{\nu_{23}} z_{31}^{\nu_{31}}}
$$

- What about $n=4$?
- spin factor $=\langle 12\rangle^{\nu_{12}}\langle 13\rangle^{\nu_{13}}\langle 14\rangle^{\nu_{14}}\langle 23\rangle^{\nu_{23}}\langle 24\rangle^{\nu_{24}}\langle 34\rangle^{\nu_{34}}$,
but $\nu_{i j} \geq 0$ only constrained by 4 equations.
- Leaves freedom of multiplying by cross-ratio $\zeta=\frac{\langle 12\rangle\langle 34\rangle}{\langle 13\rangle\langle 24\rangle}$.
- If $\bar{\nu}_{i j}$ is one solution, then so is

$$
\text { spin factor }=f(\zeta)\langle 12\rangle^{\nu_{12}}\langle 13\rangle^{\bar{\nu}_{13}}\langle 14\rangle^{\bar{\nu}_{14}}\langle 23\rangle^{\bar{\nu}_{23}}\langle 24\rangle^{\bar{\nu}_{24}}\langle 34\rangle^{\bar{\nu}_{34}},
$$

where f is any function such that powers of $\langle.$.$\rangle remain$ positive and r_{i} are integers.

The freedom to choose f corresponds to the distinct choices of SU(4) indices on the external states.

- What about $n=4$?
- spin factor $=\langle 12\rangle^{\nu_{12}}\langle 13\rangle^{\nu_{13}}\langle 14\rangle^{\nu_{14}}\langle 23\rangle^{\nu_{23}}\langle 24\rangle^{\nu_{24}}\langle 34\rangle^{\nu_{34}}$,
but $\nu_{i j} \geq 0$ only constrained by 4 equations.
- Leaves freedom of multiplying by cross-ratio $\zeta=\frac{\langle 12\rangle\langle 34\rangle}{\langle 13\rangle\langle 24\rangle}$.
- If $\bar{\nu}_{i j}$ is one solution, then so is

$$
\text { spin factor }=f(\zeta)\langle 12\rangle^{\nu_{12}}\langle 13\rangle^{\bar{\nu}_{13}}\langle 14\rangle^{\bar{\nu}_{14}}\langle 23\rangle^{\bar{\nu}_{23}}\langle 24\rangle^{\bar{\nu}_{24}}\langle 34\rangle^{\bar{\nu}_{34}},
$$

where f is any function such that powers of $\langle.$.$\rangle remain$ positive and r_{i} are integers.

The freedom to choose f corresponds to the distinct choices of $S U(4)$ indices on the external states.

Example:

$$
(8=3+3+1+1)
$$

$\left\langle F_{1}^{-} F_{2}^{-} F_{+}^{2} F_{+}^{1}\right\rangle=\langle 12\rangle^{2}\langle 13\rangle\langle 24\rangle$,
$\left\langle F_{1}^{-} F_{2}^{-} F_{+}^{1} F_{+}^{2}\right\rangle=\langle 12\rangle^{2}\langle 14\rangle\langle 23\rangle=(1-\zeta)\langle 12\rangle^{2}\langle 13\rangle\langle 24\rangle$.
using the Schouten identity $\langle 12\rangle\langle 34\rangle+\langle 13\rangle\langle 42\rangle+\langle 14\rangle\langle 23\rangle=0$.

- Note that

$$
|i\rangle \rightarrow\binom{1}{z_{i}} \quad \rightarrow \quad\langle i j\rangle=z_{i}-z_{j}=z_{i j}
$$

makes the conformal analogy precise.

- General n:
$n-3$ independent cross-ratios.

Outline

(1) Motivation
(2) MHV generating functions

$$
\begin{aligned}
& \rightarrow \mathcal{N}=4 \mathrm{SYM} \\
& \rightarrow \mathcal{N}=8 \mathrm{SG}
\end{aligned}
$$

(3) Spin factors as conformal correlators
(9) Recursion relations \leftrightarrow MHV vertex expansion \leftarrow
(6) Next-to-MHV generating functions

$$
\begin{aligned}
& \rightarrow \mathcal{N}=4 \mathrm{SYM} \\
& \rightarrow \mathcal{N}=8 \mathrm{SG}
\end{aligned}
$$

(6) Intermediate State Spin Sums
(1) Conclusions

4. Recursion relations \leftrightarrow MHV vertex expansion

- Recursion relations: express on-shell n-point amplitude in terms of k-point on-shell sub-amplitudes with $k<n$.
- Even better if sub-amplitudes are MHV
\rightarrow MHV vertex expansion.

For gluons:
[Cachazo, Svrcek, Witten (2004)] [Risager (2005)]
For gravitons, $n=6,7$:
[Bjerrum-Bohr, Dunbar, Ita, Perkins, Risager (2005)]

Our strategy

- Use recursion relations to expand NMHV amplitudes in terms of MHV vertex diagrams

- Apply MHV generating functions to MHV vertices \rightarrow generating function $\Omega_{n, l}$ for each diagram / in MHV vertex expansion.
- NMHV generating function is $\Omega_{n}=\sum_{l} \Omega_{n, l}$

3-line shift recursion relations

- Analytically continue amplitudes to complex values by shifts of 3 external momenta:

$$
p_{i}^{\mu} \rightarrow \hat{p}_{i}^{\mu}=p_{i}^{\mu}+z q_{i}^{\mu}, \quad \text { for } \quad i=1,2,3 .
$$

where

$$
\begin{array}{rll}
q_{1}^{\mu}+q_{2}^{\mu}+q_{3}^{\mu}=0 & \leftrightarrow & \text { momentum conservation } \\
q_{i}^{2}=0=q_{i} \cdot p_{i} & \leftrightarrow \quad \text { on }- \text { shell } \quad \hat{p}_{i}^{2}=0
\end{array}
$$

Achieved by $[1] \rightarrow \mid \hat{1}]=\mid 1]+z\langle 23\rangle \mid X] \quad(+$ cyclic $)$ with $\mid X]$ arbitrary "reference spinor".

- The tree amplitude $A_{n}(z)$ has only simple poles, so if $A_{n}(z) \rightarrow 0$ for $z \rightarrow \infty$, then

$$
0=\oint \frac{A_{n}(z)}{z} \rightarrow A_{n}(0)=-\sum_{z \neq 0} \operatorname{Res} \frac{A_{n}(z)}{z}
$$

- Result is on-shell recursion relation

$$
A_{n}(0)=\sum_{l} A_{n_{1}} \frac{1}{P_{l}^{2}} A_{n_{2}}, \quad n_{1}+n_{2}=n+2
$$

The special 3-line shift ensures that the sub-amplitudes are both MHV if A_{n} is NMHV. [Risager (2005)]

\rightarrow Now use this to get NMHV gen func.

5. Next-to-MHV generating functions $-\mathcal{N}=4 \mathrm{SYM}$

- Consider a single MHV vertex diagram:

- Apply MHV gen func to each vertex to derive (details omitted)

$$
\Omega_{n, l}^{\mathcal{N}=4}=\frac{A_{n, I}^{\text {gluons }}}{\left\langle m_{1} P_{I}\right\rangle^{4}\left\langle m_{2} m_{3}\right\rangle^{4}} \delta^{(8)}\left(L_{a}+R_{a}\right) \prod_{a=1}^{4}\left\langle P_{l} L_{a}\right\rangle
$$

$$
\text { where } L_{a}=\sum_{i \in L}|i\rangle \eta_{i a} \text { and } R_{a}=\sum_{j \in R}|j\rangle \eta_{j a} .
$$

[Georgio, Glover and Khoze (2004)]

- Each term in $\Omega_{n, l}^{\mathcal{N}=4}$ is order 12 in $\eta_{i a}$'s.
- Value of diagram is $D^{(12)} \Omega_{n, l}^{\mathcal{N}=4}$ with $D^{(12)}$ built from the external states.
- Sum all diagram gen func's to get full NMHV gen func:

$$
\Omega_{n}^{\mathcal{N}=4}=\sum_{l} \Omega_{n, l}^{\mathcal{N}=4}
$$

Example:

NMHV gluon amplitude

$$
A_{n}\left(1^{-}, 2^{-}, 3^{-}, 4^{+}, \ldots, n^{+}\right)=D_{1}^{(4)} D_{2}^{(4)} D_{3}^{(4)} \Omega_{n}^{\mathcal{N}=4}
$$

Partition $12=4+4+4$.
$\mathcal{N}=4$ SYM:
\# NMHV amplitudes $=\#$ partitions of 12 with $n_{\max }=4$.
Total of 34.

5. Next-to-MHV generating functions $-\mathcal{N}=8 \mathrm{SG}$

Repeat construction in $\mathcal{N}=8 \mathrm{SG} \rightarrow \Omega_{n}^{\mathcal{N}=8} \leftarrow$ order 24 in $\eta_{i A}^{\prime} s$.
Example: NMHV graviton amplitude

$$
M_{n}\left(1^{-}, 2^{-}, 3^{-}, 4^{+}, 5^{+}, 6^{+}\right)=D_{1}^{(8)} D_{2}^{(8)} D_{3}^{(8)} \Omega_{n}^{\mathcal{N}=8}
$$

Partition $24=8+8+8$.
$\mathcal{N}=8 \mathrm{SG}:$
\# NMHV amplitudes $=\#$ partitions of 24 with $n_{\max }=8$.
Total of 919.

- Now sum over more diagrams, since not color-ordered.

For $\mathrm{n}=6$ there are up to 21 diagrams.

- Spin factors factorize, but only diagram-by-diagram

$$
\Omega_{n, l}^{\mathcal{N}=8} \propto \Omega_{n, l(1234)}^{\mathcal{N}=4} \times \Omega_{n, l(5678)}^{\mathcal{N}=4} .
$$

But. . .

We used MHV vertex expansion from 3-line shift recursion relations, which assumed

$$
A_{n}(z) \rightarrow 0 \quad \text { for } \quad z \rightarrow \infty
$$

Is this OK?

- $\ln \mathcal{N}=4$ SYM we have shown that one can always choose 3 lines such that under a subsequent shift of these 3 lines each diagram in the corresponding MHV vertex expansion falls off at least as $1 / z$ for large z.
\rightarrow so only "bad" large z behavior could come from a term "at infinity" missed by Cauchy's thm.
\rightarrow Have not seen any signs of such trouble.

Note

- Complex shifts included an arbitrary "reference spinor" $\mid X]$ $\mathrm{NB}: \mid 1] \rightarrow \mid \hat{1}]=\mid 1]+z\langle 23\rangle \mid X]$ and $\operatorname{cyclic}(123)$ copies.
- If $\left.A_{n}(z ; \mid X]\right) \rightarrow 0$ as $z \rightarrow \infty$ for all $\left.\mid X\right]$, then the recursion sum of MHV vertex diagrams must be independent of $\mid X]$.

Note: Generally each MHV vertex diagram depends on $\mid X]$, but sum of all diagrams must be $\mid X]$-independent.

- Indep of $\mid X]$ is very useful check of correctness of amplitude calculation.
- In $\mathcal{N}=8$ SG we encounter for 6-point NMHV amplitudes:
- "Good" amplitudes: $A_{n}(z) \rightarrow 0$ as $z \rightarrow \infty$

Ex. $\left\langle b^{1234} b^{1234} b^{1234} b^{5678} b^{5678} b^{5678}\right\rangle$
NMHV generating function valid.

- In $\mathcal{N}=8$ SG we encounter for 6-point NMHV amplitudes:
- "Good" amplitudes: $A_{n}(z) \rightarrow 0$ as $z \rightarrow \infty$

Ex. $\left\langle b^{1234} b^{1234} b^{1234} b^{5678} b^{5678} b^{5678}\right\rangle$
NMHV generating function valid.

- "Bad" amplitudes: $A_{n}(z) \rightarrow O(1)$ as $z \rightarrow \infty$

Ex. $\left\langle b^{1234} b^{1358} b^{1278} b^{5678} b^{2467} b^{3456}\right\rangle$
NMHV generating function valid for special $\mid X]$'s such that $O(1)_{X}=0$.

- In $\mathcal{N}=8$ SG we encounter for 6-point NMHV amplitudes:
- "Good" amplitudes: $A_{n}(z) \rightarrow 0$ as $z \rightarrow \infty$

Ex. $\left\langle b^{1234} b^{1234} b^{1234} b^{5678} b^{5678} b^{5678}\right\rangle$
NMHV generating function valid.

- "Bad" amplitudes: $A_{n}(z) \rightarrow O(1)$ as $z \rightarrow \infty$

Ex. $\left\langle b^{1234} b^{1358} b^{1278} b^{5678} b^{2467} b^{3456}\right\rangle$
NMHV generating function valid for special $\mid X]$'s such that $O(1)_{X}=0$.

- "Very bad" amplitudes: $A_{n}(z) \rightarrow O(z)$ as $z \rightarrow \infty$

2 such amplitudes
No choice of $\mid X]$ makes $O(z)_{X} \rightarrow O(1 / z)$.
These 2 amplitudes can be determined by SUSY WI in terms of other 6-point NMHV amplitudes.

Graviton n-point amplitude

Large z for pure graviton n-point amplitude:

$$
M_{n}\left(\hat{1}^{-}, \hat{2}^{-}, \hat{3}^{-}, 4^{+}, \ldots, n^{+}\right) \rightarrow z^{n-12} \quad \text { for } \quad z \rightarrow \infty
$$

Numerically verified for $n=5, \ldots, 11$.

How:

1. Calculate M_{n} with MHV vertex expansion. Test $\mid X]$-independence of sum of $3\left(2^{n-3}-1\right)$ diagrams.
2. Calculate M_{n} using 2 -line shift recursion relations $[-,-\rangle$. Test numerically agreement with M_{n} from MHV vertex expansion.
3. Perform $\mid 1,2,3]$-shift on M_{n} and expand for large z with numerical values of all momentum spinors.

Also numerical test that the sum of 1533 MHV vertex diagrams for $n=12$ is $\mid X]$-dependent.

Expect the MHV vertex expansion to fail for $n \geq 12$.

NMHV generating functions - summarized

- When it is valid, the NMHV generating function provides very effective method for calculating NMHV amplitudes.
- Easy to automate.
- Useful checks of indep of reference spinor.
- Evidence that NMHV generating function valid for all n-point NMHV amplitudes of $\mathcal{N}=4$ SYM.
- Examples, and a general analysis, shows that NMHV generating function is valid for a large set of NMHV amplitudes of $\mathcal{N}=8 \mathrm{SG}$, BUT not for all due to failure of MHV vertex expansion.
- Must be careful in applications.

6. Intermediate state sum

Example: One-loop MHV amplitude

Use MHV generating function to compute intermediate state sum of unitarity cut:

$$
D_{l_{1}}^{(4)} D_{l_{2}}^{(4)}\left(D_{i}^{(4)} \delta^{(8)}(I)\right)\left(D_{j}^{(4)} \delta^{(8)}(J)\right)
$$

$D_{l_{1}}$ and $D_{l_{2}}$ distribute themselves between $\delta^{(8)}(I)$ and $\delta^{(8)}(J)$. This automatically takes care of the intermediate state sum.

Have done 1- and 2-loop sums with NMHV generating function, but care is needed to avoid "bad" shifts, especially in SG.

7. Outlook

Role of $E_{7,7}$?

- 70 scalars of $\mathcal{N}=8 \mathrm{SG}$ are Goldstone bosons of spontaneously broken $E_{7,7} \rightarrow S U(8)$.
- How will $E_{7,7}$ reveal itself?
\rightarrow soft-scalar limits of amplitudes (analogous to soft-pion low-energy theorems of Adler).
- We find that 1 -soft-"pion" limits of $\mathcal{N}=8$ tree amplitudes vanish.
- Note that in pion physics 1 -pion soft limits do not necessarily vanish, even in models with pions and nucleons both massless.

Loops in $\mathcal{N}=8$ supergravity

Is there are connection between "bad" large z behavior in supergravity tree amplitudes and potential UV divergencies?

