Generating functions for N = 4 and N = 8 amplitudes

Henriette Elvang (MIT)

Wonders of gauge theory and supergravity Paris, June 23-28, 2008

arXiv:0805.0757 w/ Massimo Bianchi and Dan Freedman
arXiv:0710.1270 w/ Dan Freedman

Henriette Elvang (MIT) Generating functions for N = 4 and N = 8 amplitudes

1. Motivation

Our work focuses on *n*-point on-shell tree amplitudes in $\mathcal{N} = 8$ SG and their relationship with tree amplitudes in $\mathcal{N} = 4$ SYM.

Generating function Z_n — idea

States $X_i \quad \leftrightarrow \quad \text{differential operators } D_{X_i}$ $\downarrow \qquad \qquad \downarrow \qquad \qquad \downarrow$ Amplitude $A_n(X_1 X_2 \dots X_n) = D_{X_1} D_{X_2} \dots D_{X_n} Z_n$

Original $\mathcal{N} = 4$ SYM generating function by Nair [Nair (1988,2005)] . Further developed and extended by Georgio, Glover and Khoze [GGK (2004)] .

Our formulation in terms of derivative operators + extensions to supergravity.

- The simplest amplitudes are MHV (maximally helicity violating)
 - N = 4 SYM: $A_n(-, -, +, ..., +)$ gluons.
 - N = 8 SG: $M_n(-, -, +, ..., +)$ gravitons.

MHV sector: amplitudes related to A_n and M_n , resp., via SUSY Ward identities.

• The next-to-simplest amplitudes are Next-to-MHV

- N = 4 SYM: $A_n(-, -, -, +, ..., +)$ gluons.

- $\mathcal{N} = 8$ SG: $M_n(-, -, -, +, \dots, +)$ gravitons.

NMHV sector: SUSY related (but much harder to solve SUSY Ward identities).

Generating functions encode dependence on external states.

Benefits of Generating Functions

- $\begin{array}{l} \longrightarrow \mbox{ Precise characterization of MHV and NMHV sectors,} \\ \mbox{ e.g. } A_n(\lambda_+ \ \lambda_+ \ \lambda_+ \ \phi \ \phi \) \ \mbox{is MHV.} \end{array}$

counting \leftrightarrow partitions of integers!

 $\longrightarrow \text{Simple relationship } Z_n^{\mathcal{N}=8} \propto Z_n^{\mathcal{N}=4} \times Z_n^{\mathcal{N}=4} \text{ (MHV)} \\ \text{clarifies SUSY and global symmetries in map} \\ [\mathcal{N}=8] = [\mathcal{N}=4]_L \otimes [\mathcal{N}=4]_R \text{ of states} \\ \text{and KLT relations } M_n = \sum (k_n A_n A'_n).$

 \longrightarrow Applications to intermediate state sums in loop amplitudes.

Outline

- O Motivation
- O MHV generating functions

$$\rightarrow \mathcal{N} = 4 \text{ SYM}$$

 $\rightarrow \mathcal{N} = 8 \text{ SG}$

- Spin factors as conformal correlators
- O Next-to-MHV generating functions

$$\rightarrow \mathcal{N} = 4 \text{ SYM}$$

 $\rightarrow \mathcal{N} = 8 \text{ SG}$

- **6** Intermediate State Spin Sums
- Outlook

2. MHV generating function — $\mathcal{N} = 4$ SYM

First need (state \leftrightarrow diff op) correspondence.

Henriette Elvang (MIT) Generating functions for N = 4 and N = 8 amplitudes

$\mathcal{N}=4$ SYM

 $\mathcal{N} = 4$ SYM has 2^4 massless states: $a, b = 1, 2, 3, 4 \in SU(4)$ B^- , B_+ 1 gluon F_{2}^{-}, F_{\perp}^{a} 4 gluini 6 self-dual scalars $B^{ab} = \frac{1}{2} \epsilon^{abcd} B_{cd}$ 4 supercharges $\tilde{Q}_a = \epsilon_{\dot{\alpha}} \tilde{Q}_a^{\dot{\alpha}}$ and $Q^a = \tilde{Q}_a^*$ act on annihilation operators: $[\tilde{Q}_a, B_+(p)] = 0,$ $[\tilde{Q}_a, F^b_{\pm}(p)] = \langle \epsilon p \rangle \, \delta^b_a \, B_{\pm}(p) \, ,$ $\left[\tilde{Q}_{a}, B^{bc}(p)\right] = \langle \epsilon p \rangle \left(\delta^{b}_{a} F^{c}_{+}(p) - \delta^{c}_{a} F^{b}_{+}(p)\right),$ (consistent with crossing sym. and self - duality) $[\tilde{Q}_a, B_{bc}(p)] = \langle \epsilon p \rangle \epsilon_{abcd} F^d_{\perp}(p),$ $\left[\tilde{Q}_{a},F_{b}^{-}(p)\right] = \langle \epsilon p \rangle B_{ab}(p),$ $[\tilde{Q}_a, B^-(p)] = -\langle \epsilon p \rangle F_a^-(p)$

$\mathcal{N} = 4$ SYM (state \leftrightarrow diff op) correspondence

Introduce auxiliary Grassman variable η_{ia}

i momentum label p_i , $a = 1, \ldots, 4$ is SU(4) index.

Associate to each state Grassman diff ops $\partial_i^a = \frac{\partial}{\partial \eta_{ia}}$:

$$\begin{array}{rcl} B_{+}(p_{i}) & \leftrightarrow & 1 \\ \\ F^{a}_{+}(p_{i}) & \leftrightarrow & \partial^{a}_{i} \\ B^{ab}_{+}(p_{i}) & \leftrightarrow & \partial^{a}_{i} \partial^{b}_{i} \\ \\ F^{-}_{a}(p_{i}) & \leftrightarrow & -\frac{1}{3!} \epsilon_{abcd} \partial^{b}_{i} \partial^{c}_{i} \partial^{d}_{i} \\ \\ B^{-}(p_{i}) & \leftrightarrow & \partial^{1}_{i} \partial^{2}_{i} \partial^{3}_{i} \partial^{4}_{i} \end{array}$$

This is our (state \leftrightarrow diff op) correspondence.

SUSY generators $\tilde{Q}_a = \sum_{i=1}^n \langle \epsilon i \rangle \eta_{ia}$ and $Q^a = \sum_{i=1}^n [i \epsilon] \frac{\partial}{\partial \eta_{ia}}$ give correct SUSY algebra

$$\begin{split} & [Q^a, \tilde{Q}_b] = \delta^a_b \sum_{i=1}^n [\epsilon_1 i] \langle i \epsilon_2 \rangle = \delta^a_b \sum_{i=1}^n \epsilon^\alpha_1 \, p_{i_{\alpha\dot{\beta}}} \, \tilde{\epsilon}^{\dot{\beta}}_2 \to 0 \quad (\text{mom. cons.}), \\ & \text{and} \end{split}$$

 $[\tilde{Q}, \text{diff op}] = \langle \epsilon p \rangle (\text{diff op})'$

produces correct algebra on states.

The MHV generating function is

$$Z_n^{\mathcal{N}=4}(\eta_{ia}) = rac{A_n(1^-,2^-,3^+,\ldots,n^+)}{\langle 12
angle^4} \; \delta^{(8)}ig(\sum_i |i
angle \eta_{ia}ig) \; ,$$

where $\delta^{(8)}\left(\sum_{i}|i\rangle\eta_{ia}\right) = 2^{-4}\prod_{a=1}^{4}\sum_{i,j=1}^{n}\langle ij\rangle\eta_{ia}\eta_{ja}$.

[Nair (1988)] [GGK (2004)] $(\delta$ -function of Grassman variables θ_a is $\prod \theta_a$)

η_{ia}	_	auxilliary Grassman variables
a = 1, 2, 3, 4		SU(4) indices
$i, j = 1, 2, \dots, n$	_	momentum labels

Claim: any 8th order derivative operator built from (state \leftrightarrow diff op) correspondence gives an MHV amplitude when applied to $Z_n^{\mathcal{N}=4}$:

$$A_n^{\mathrm{MHV}}(X_1,\ldots,X_n)=D_{X_1}\cdots D_{X_n}Z_n^{\mathcal{N}=4}$$
.

Let's prove this!

Proof: $Z_n^{\mathcal{N}=4}(\eta_{ia}) = \frac{A_n(1^-, 2^-, 3^+, ..., n^+)}{\langle 12 \rangle^4} \, \delta^{(8)}(\sum_i |i\rangle \eta_{ia})$

• $Z_n^{\mathcal{N}=4}$ reproduces pure MHV gluon amplitude $A_n(1^-, 2^-, 3^+, \dots, n^+)$ correctly:

 $\begin{aligned} & \left(\partial_{1}^{1}\partial_{1}^{2}\partial_{1}^{3}\partial_{1}^{4}\right)\left(\partial_{2}^{1}\partial_{2}^{2}\partial_{2}^{3}\partial_{2}^{4}\right)\delta^{(8)}\left(\sum_{i}|i\rangle\eta_{ia}\right) \\ &= \left(\partial_{1}^{1}\partial_{1}^{2}\partial_{1}^{3}\partial_{1}^{4}\right)\left(\partial_{2}^{1}\partial_{2}^{2}\partial_{2}^{3}\partial_{2}^{4}\right)\left(2^{-4}\prod_{a=1}^{4}\sum_{i,j=1}^{n}\langle ij\rangle\eta_{ia}\eta_{ja}\right) \\ &= \langle 12\rangle^{4}. \end{aligned}$

Proof: $Z_n^{\mathcal{N}=4}(\eta_{ia}) = \frac{A_n(1^-, 2^-, 3^+, \dots, n^+)}{\langle 12 \rangle^4} \, \delta^{(8)}(\sum_i |i\rangle \eta_{ia})$

- $Z_n^{\mathcal{N}=4}$ reproduces pure MHV gluon amplitude $A_n(1^-, 2^-, 3^+, \dots, n^+)$ correctly:
 - $\begin{aligned} & \left(\partial_{1}^{1}\partial_{1}^{2}\partial_{1}^{3}\partial_{1}^{4}\right)\left(\partial_{2}^{1}\partial_{2}^{2}\partial_{2}^{3}\partial_{2}^{4}\right)\delta^{(8)}\left(\sum_{i}|i\rangle\eta_{ia}\right) \\ &= \left(\partial_{1}^{1}\partial_{1}^{2}\partial_{1}^{3}\partial_{1}^{4}\right)\left(\partial_{2}^{1}\partial_{2}^{2}\partial_{2}^{3}\partial_{2}^{4}\right)\left(2^{-4}\prod_{a=1}^{4}\sum_{i,j=1}^{n}\langle ij\rangle\eta_{ia}\eta_{ja}\right) \\ &= \langle 12\rangle^{4}. \end{aligned}$
- $\tilde{Q}_a Z_n^{\mathcal{N}=4} \propto \left(\sum_{i=1}^n |i\rangle \eta_{ia}\right) \delta^{(8)}\left(\sum_i |i\rangle \eta_{ia}\right) = 0.$

Proof: $Z_n^{\mathcal{N}=4}(\eta_{ia}) = \frac{A_n(1^-, 2^-, 3^+, \dots, n^+)}{\langle 12 \rangle^4} \, \delta^{(8)}(\sum_i |i\rangle \eta_{ia})$

• $Z_n^{\mathcal{N}=4}$ reproduces pure MHV gluon amplitude $A_n(1^-, 2^-, 3^+, \dots, n^+)$ correctly:

 $\begin{aligned} & \left(\partial_{1}^{1}\partial_{1}^{2}\partial_{1}^{3}\partial_{1}^{4}\right)\left(\partial_{2}^{1}\partial_{2}^{2}\partial_{2}^{3}\partial_{2}^{4}\right)\delta^{(8)}\left(\sum_{i}|i\rangle\eta_{ia}\right) \\ &= \left(\partial_{1}^{1}\partial_{1}^{2}\partial_{1}^{3}\partial_{1}^{4}\right)\left(\partial_{2}^{1}\partial_{2}^{2}\partial_{2}^{3}\partial_{2}^{4}\right)\left(2^{-4}\prod_{a=1}^{4}\sum_{i,j=1}^{n}\langle ij\rangle\eta_{ia}\eta_{ja}\right) \\ &= \langle 12\rangle^{4}. \end{aligned}$

- $\tilde{Q}_a Z_n^{\mathcal{N}=4} \propto \left(\sum_{i=1}^n |i\rangle \eta_{ia}\right) \delta^{(8)}\left(\sum_i |i\rangle \eta_{ia}\right) = 0.$
- $[\tilde{Q}_a, D^{(9)}] Z_n^{\mathcal{N}=4} = 0$

encode the MHV SUSY Ward identities:

 $0 = [\tilde{Q}_a, D^{(9)}] Z_n^{\mathcal{N}=4} = \sum_t D_{X_1} \cdots [\tilde{Q}_a, D_{X_t}] \cdots D_{X_n} Z_n^{\mathcal{N}=4},$ $0 = \langle [\tilde{Q}_a, X_1 \dots X_n] \rangle = \sum_t \langle X_1 \dots [\tilde{Q}_a, X_t] \dots X_n \rangle.$ **Proof:** $Z_n^{\mathcal{N}=4}(\eta_{ia}) = \frac{A_n(1^-, 2^-, 3^+, \dots, n^+)}{(12)^4} \, \delta^{(8)}(\sum_i |i\rangle \eta_{ia})$

• $Z_n^{\mathcal{N}=4}$ reproduces pure MHV gluon amplitude $A_n(1^-, 2^-, 3^+, \dots, n^+)$ correctly:

 $\begin{aligned} & \left(\partial_{1}^{1}\partial_{1}^{2}\partial_{1}^{3}\partial_{1}^{4}\right)\left(\partial_{2}^{1}\partial_{2}^{2}\partial_{2}^{3}\partial_{2}^{4}\right)\delta^{(8)}\left(\sum_{i}|i\rangle\eta_{ia}\right) \\ &= \left(\partial_{1}^{1}\partial_{1}^{2}\partial_{1}^{3}\partial_{1}^{4}\right)\left(\partial_{2}^{1}\partial_{2}^{2}\partial_{2}^{3}\partial_{2}^{4}\right)\left(2^{-4}\prod_{a=1}^{4}\sum_{i,j=1}^{n}\langle ij\rangle\eta_{ia}\eta_{ja}\right) \\ &= \langle 12\rangle^{4}. \end{aligned}$

- $\tilde{Q}_a Z_n^{\mathcal{N}=4} \propto \left(\sum_{i=1}^n |i\rangle \eta_{ia}\right) \delta^{(8)}\left(\sum_i |i\rangle \eta_{ia}\right) = 0.$
- $[\tilde{Q}_a, D^{(9)}] Z_n^{\mathcal{N}=4} = 0$

encode the MHV SUSY Ward identities:

 $0 = [\tilde{Q}_a, D^{(9)}] Z_n^{\mathcal{N}=4} = \sum_t D_{X_1} \cdots [\tilde{Q}_a, D_{X_t}] \cdots D_{X_n} Z_n^{\mathcal{N}=4}$,

$$0 = \langle [\tilde{Q}_a, X_1 \dots X_n] \rangle = \sum_t \langle X_1 \dots [\tilde{Q}_a, X_t] \dots X_n \rangle.$$

MHV SUSY Ward identities have unique solutions.

Proof: $Z_n^{\mathcal{N}=4}(\eta_{ia}) = \frac{A_n(1^-, 2^-, 3^+, ..., n^+)}{\langle 12 \rangle^4} \, \delta^{(8)}(\sum_i |i\rangle \eta_{ia})$

• $Z_n^{\mathcal{N}=4}$ reproduces pure MHV gluon amplitude $A_n(1^-, 2^-, 3^+, \dots, n^+)$ correctly:

 $\begin{aligned} & \left(\partial_{1}^{1}\partial_{1}^{2}\partial_{1}^{3}\partial_{1}^{4}\right)\left(\partial_{2}^{1}\partial_{2}^{2}\partial_{2}^{3}\partial_{2}^{4}\right)\delta^{(8)}\left(\sum_{i}|i\rangle\eta_{ia}\right) \\ &= \left(\partial_{1}^{1}\partial_{1}^{2}\partial_{1}^{3}\partial_{1}^{4}\right)\left(\partial_{2}^{1}\partial_{2}^{2}\partial_{2}^{3}\partial_{2}^{4}\right)\left(2^{-4}\prod_{a=1}^{4}\sum_{i,j=1}^{n}\langle ij\rangle\eta_{ia}\eta_{ja}\right) \\ &= \langle 12\rangle^{4}. \end{aligned}$

• $\tilde{Q}_a Z_n^{\mathcal{N}=4} \propto \left(\sum_{i=1}^n |i\rangle \eta_{ia}\right) \delta^{(8)}\left(\sum_i |i\rangle \eta_{ia}\right) = 0.$

• $[\tilde{Q}_a, D^{(9)}] Z_n^{\mathcal{N}=4} = 0$

encode the MHV SUSY Ward identities:

 $0 = [\tilde{Q}_a, D^{(9)}] Z_n^{\mathcal{N}=4} = \sum_t D_{X_1} \cdots [\tilde{Q}_a, D_{X_t}] \cdots D_{X_n} Z_n^{\mathcal{N}=4},$

$$0 = \langle [\tilde{Q}_a, X_1 \dots X_n] \rangle = \sum_t \langle X_1 \dots [\tilde{Q}_a, X_t] \dots X_n \rangle \,.$$

• MHV SUSY Ward identities have unique solutions.

 $\Rightarrow Z_n^{\mathcal{N}=4}$ produces all MHV amplitudes correctly.

Characterizing amplitudes in the MHV sector of $\mathcal{N} = 4$ SYM:

 $D^{(8)} Z_n^{\mathcal{N}=4} = \mathsf{MHV}$ amplitude

hence

MHV amplitudes = # partitions of 8 with $n_{\text{max}} = 4$.

MHV amplitudes:

$$8 = 4 + 4 \qquad \leftrightarrow \qquad \langle B^- B^- B_+ \dots B_+ \rangle$$

= 4 + 3 + 1
$$\leftrightarrow \qquad \langle B^- F_a^- F_a^a B_+ \dots B_+ \rangle$$

...
= 1 + ... + 1
$$\leftrightarrow \qquad \langle F_+^{a_1} \dots F_+^{a_8} B_+ \dots B_+ \rangle$$

Total of 15 MHV amplitudes in $\mathcal{N} = 4$ SYM.

Henriette Elvang (MIT)

Generating functions for N = 4 and N = 8 amplitudes

Example:

Calculate $\langle B^{-}(p_1) F^{1}_{+}(p_2) F^{2}_{+}(p_3) F^{3}_{+}(p_4) F^{4}_{+}(p_5) B^{+}(p_6) \rangle$

 $\begin{aligned} &(\partial_1^1 \partial_1^2 \partial_1^3 \partial_1^4) (\partial_2^1) (\partial_3^2) (\partial_3^3) (\partial_4^3) (\partial_5^4) \,\,\delta^{(8)} \Big(\sum_i |i\rangle \eta_{ia}\Big) \\ &= (\partial_1^1 \partial_2^1) (\partial_2^2 \partial_3^2) (\partial_1^3 \partial_4^3) (\partial_1^4 \partial_5^4) \,\,\delta^{(8)} \Big(\sum_i |i\rangle \eta_{ia}\Big) \\ &= \langle 12 \rangle \langle 13 \rangle \langle 14 \rangle \langle 15 \rangle \end{aligned}$

using
$$\delta^{(8)}\left(\sum_{i}|i\rangle\eta_{ia}\right) = \left(2^{-4}\prod_{a=1}^{4}\sum_{i,j=1}^{n}\langle ij\rangle\eta_{ia}\eta_{ja}\right)$$
,

so

$$\langle B^{-}(p_1) F^{1}_{+}(p_2) F^{2}_{+}(p_3) F^{3}_{+}(p_4) F^{4}_{+}(p_5) B^{+}(p_6) \rangle$$

= $\frac{\langle 12 \rangle \langle 13 \rangle \langle 14 \rangle \langle 15 \rangle}{\langle 12 \rangle^4} A_n(1^-, 2^-, 3^+, 4^+, 5^+, 6^+).$

2. MHV generating function — $\mathcal{N} = 8$ SG

Completely analogous setup:			$A,B,\cdots=1,\ldots,8 \in SU(8)$
1 graviton	$b_+(p_i)$	\leftrightarrow	1
8 gravitino	$f_+^A(p_i)$	\leftrightarrow	$\partial_i^{\mathcal{A}}$
28 gravi - photons	$b_+^{AB}(p_i)$	\leftrightarrow	$\partial_i^A \partial_i^B$
56 gravi - photinos	$f_+^{ABC}(p_i)$	\leftrightarrow	$\partial_i^A \partial_i^B \partial_i^C$
70 self - dual scalars	$b^{ABCD}(p_i)$	\leftrightarrow	$\partial_i^A \partial_i^B \partial_i^C \partial_i^D$
56 gravi - photinos	$f^{ABC}(p_i)$	\leftrightarrow	$-\frac{1}{5!}\epsilon_{ABCDEFGH}\partial_i^D\cdots\partial_i^H$
28 gravi - photons	$b^{AB}(p_i)$	\leftrightarrow	$\frac{1}{6!} \epsilon_{ABCDEFGH} \partial_i^C \cdots \partial_i^H$
8 gravitino	$f_+^A(p_i)$	\leftrightarrow	$-\frac{1}{7!}\epsilon_{ABCDEFGH}\partial_i^B\cdots\partial_i^H$
1 graviton	$b^-(p_i)$	\leftrightarrow	$\partial_i^1 \cdots \partial_i^8$

Total of $256 = 2^8$ massless states.

8 supercharges $\tilde{Q}_A = \epsilon_{\dot{\alpha}} \tilde{Q}_A^{\dot{\alpha}}$ and $Q^A = \tilde{Q}_A^*$.

The **MHV generating function** for
$$\mathcal{N} = 8$$
 SG is

$$Z_n^{\mathcal{N}=8}(\eta_{iA}) = \frac{M_n(1^-, 2^-, 3^+, \dots, n^+)}{\langle 12 \rangle^8} \, \delta^{(16)}(\sum_i |i\rangle \eta_{iA})$$
with $\delta^{(16)}(\sum_i |i\rangle \eta_{iA}) = 2^{-8} \prod_{A=1}^8 \sum_{i,j=1}^n \langle ij \rangle \eta_{iA} \eta_{jA}$

Any 16th order derivative operator built from (state \leftrightarrow diff op) correspondence gives an MHV amplitude when applied to $Z_n^{\mathcal{N}=8}$.

 $\mathcal{N} = 8$ supergravity: # MHV amplitudes = # partitions of 16 with $n_{\text{max}} = 8$.

MHV amplitudes:

$$\begin{array}{rcl} 16 & = & 8+8 & \leftrightarrow & \langle b^- \ b^- \ b_+ \dots \ b_+ \rangle \\ & = & 8+7+1 & \leftrightarrow & \langle b^- \ f_A^- \ f_+^A \ b_+ \dots \ b_+ \rangle \\ & \dots \\ & = & 1+\dots+1 & \leftrightarrow & \langle f_+^{A_1} \dots \ f_+^{A_{16}} \ b_+ \dots \ b_+ \end{array}$$

Total of 186 MHV amplitudes in $\mathcal{N} = 8$ SYM.

Factorization

- Spectrum $[\mathcal{N} = 8 \text{ SG}] = [\mathcal{N} = 4 \text{ SYM}]_L \otimes [\mathcal{N} = 4 \text{ SYM}]_R$ e.g. $b^- = B^- \otimes \tilde{B}^-$ (2 = 1 \otimes 1).
- Also, supergravity amplitudes factor in to (sums of) products of SYM amplitudes (KLT relations)

$$M_n=\sum k_n\,A_n\,A'_n\,,$$

with k_n kinematic factors.

For MHV this works because

- Diff operators factorize $D^{\mathcal{N}=8} = D^{\mathcal{N}=4} \times D^{\mathcal{N}=4}$
- MHV generating function factorizes $Z_n^{\mathcal{N}=8} \propto Z_n^{\mathcal{N}=4} \times Z_n^{\mathcal{N}=4}$ (5678)
 - \Rightarrow dependence on external states factorizes
 - $\Rightarrow SU(8) \leftrightarrow SU(4)_L \times SU(4)_R \text{ naturally implemented.}$

- Simple encoding of external states.
- Clean and efficient way to calculate amplitudes.
- Factorization illuminates $[\mathcal{N} = 8] = [\mathcal{N} = 4]_L \otimes [\mathcal{N} = 4]_R$ and $SU(8) \leftrightarrow SU(4) \times SU(4)$.
- Applications to intermediate spin sums in loop calculations (later).
- Fun conformal analogy (next).

3. Spin factors as conformal correlators

 $\mathcal{N} = 4$ SYM: (similarly for gravity)

Define

spin factor $\equiv D^{(8)}\delta^{(8)}(I)$,

so that

MHV amplitude = (spin factor)
$$\times \frac{A_n(-,-,+,..,+)}{\langle 12 \rangle^4}$$
.

For *n*-point amplitudes:

spin factor = product of 4 of $\binom{n}{2}$ independent $\langle ij \rangle$'s.

Example:

(8=3+3+1+1)

 $\langle F_1^- F_2^- F_+^2 F_+^1 \rangle = (-\partial_1^2 \partial_1^3 \partial_1^4) (\partial_2^1 \partial_2^3 \partial_2^4) (\partial_3^2) (\partial_4^1) \, \delta^{(8)}(I) = -\langle 12 \rangle^2 \langle 13 \rangle \langle 24 \rangle$

 $\begin{aligned} A_{3}(X_{1}(p_{1})X_{2}(p_{2})X_{3}(p_{3})) \\ \text{with "weights" } r_{i} &= \text{ order of diff op for particle } X_{i}. \text{ Then} \\ \text{spin factor } &= D_{1}^{(r_{1})}D_{2}^{(r_{2})}D_{3}^{(r_{3})}\,\delta^{(8)}(I) = \langle 12 \rangle^{\nu_{12}} \langle 23 \rangle^{\nu_{23}} \langle 31 \rangle^{\nu_{31}}. \end{aligned}$

where

 $\nu_{12} + \nu_{31} = r_1, \quad \nu_{23} + \nu_{12} = r_2, \quad \nu_{31} + \nu_{23} = r_3.$

Solve to find $\nu_{ij} = \frac{1}{2}(r_i + r_j - r_k).$

 \rightarrow just like 3-point CFT correlator with primary operators of scale dimensions (r_i , 0),

$$\langle O_1(z_1) O_2(z_2) O_3(z_3) \rangle = c_{123} \frac{1}{z_{12}^{\nu_{12}} z_{23}^{\nu_{23}} z_{31}^{\nu_{31}}}$$

What about n = 4?

• spin factor = $\langle 12 \rangle^{\nu_{12}} \langle 13 \rangle^{\nu_{13}} \langle 14 \rangle^{\nu_{14}} \langle 23 \rangle^{\nu_{23}} \langle 24 \rangle^{\nu_{24}} \langle 34 \rangle^{\nu_{34}}$,

but $\nu_{ij} \ge 0$ only constrained by 4 equations.

- Leaves freedom of multiplying by cross-ratio $\zeta = \frac{\langle 12 \rangle \langle 34 \rangle}{\langle 13 \rangle \langle 24 \rangle}$.
- If $\bar{\nu}_{ij}$ is one solution, then so is

spin factor = $f(\zeta) \langle 12 \rangle^{\nu_{12}} \langle 13 \rangle^{\bar{\nu}_{13}} \langle 14 \rangle^{\bar{\nu}_{14}} \langle 23 \rangle^{\bar{\nu}_{23}} \langle 24 \rangle^{\bar{\nu}_{24}} \langle 34 \rangle^{\bar{\nu}_{34}}$,

where f is any function such that powers of $\langle .. \rangle$ remain positive and r_i are integers.

The freedom to choose f corresponds to the distinct choices of SU(4) indices on the external states.

• What about n = 4?

 $\blacktriangleright \text{ spin factor} = \langle 12 \rangle^{\nu_{12}} \langle 13 \rangle^{\nu_{13}} \langle 14 \rangle^{\nu_{14}} \langle 23 \rangle^{\nu_{23}} \langle 24 \rangle^{\nu_{24}} \langle 34 \rangle^{\nu_{34}},$

but $\nu_{ij} \ge 0$ only constrained by 4 equations.

- Leaves freedom of multiplying by cross-ratio $\zeta = \frac{\langle 12 \rangle \langle 34 \rangle}{\langle 13 \rangle \langle 24 \rangle}$.
- If $\overline{\nu}_{ij}$ is one solution, then so is

spin factor $= f(\zeta) \langle 12
angle^{
u_{12}} \langle 13
angle^{ar{
u}_{13}} \langle 14
angle^{ar{
u}_{14}} \langle 23
angle^{ar{
u}_{23}} \langle 24
angle^{ar{
u}_{24}} \langle 34
angle^{ar{
u}_{34}}$,

where f is any function such that powers of $\langle .. \rangle$ remain positive and r_i are integers.

The freedom to choose f corresponds to the distinct choices of SU(4) indices on the external states.

Example: (8=3+3+1+1) $\langle F_1^- F_2^- F_2^+ F_1^+ \rangle = \langle 12 \rangle^2 \langle 13 \rangle \langle 24 \rangle,$ $\langle F_1^- F_2^- F_1^+ F_2^+ \rangle = \langle 12 \rangle^2 \langle 14 \rangle \langle 23 \rangle = (1-\zeta) \langle 12 \rangle^2 \langle 13 \rangle \langle 24 \rangle.$ using the Schouten identity $\langle 12 \rangle \langle 34 \rangle + \langle 13 \rangle \langle 42 \rangle + \langle 14 \rangle \langle 23 \rangle = 0.$

Note that

$$|i\rangle \rightarrow {\binom{1}{z_i}} \rightarrow {\binom{1}{z_j}} \rightarrow {\binom{1}{ij}} = z_i - z_j = z_{ij}$$

makes the conformal analogy precise.

• <u>General n</u>:

n-3 independent cross-ratios.

Outline

- Motivation
- 2 MHV generating functions

$$\rightarrow \mathcal{N} = 4 \text{ SYM}$$

- $\rightarrow \mathcal{N} = 8 \text{ SG}$
- Spin factors as conformal correlators
- ④ Recursion relations ↔ MHV vertex expansion
- O Next-to-MHV generating functions

$$\rightarrow \mathcal{N} = 4 \text{ SYM}$$

- $\rightarrow \mathcal{N} = 8 \text{ SG}$
- Intermediate State Spin Sums
- Occurrent Conclusions

4. Recursion relations \leftrightarrow MHV vertex expansion

- **Recursion relations**: express on-shell *n*-point amplitude in terms of *k*-point on-shell sub-amplitudes with *k* < *n*.
- Even better if sub-amplitudes are MHV
 → MHV vertex expansion.

```
For gluons:

[Cachazo, Svrcek, Witten (2004)] [Risager (2005)]

For gravitons, n = 6, 7:

[Bjerrum-Bohr, Dunbar, Ita, Perkins, Risager (2005)]
```

 Use recursion relations to expand NMHV amplitudes in terms of MHV vertex diagrams

$$\stackrel{\text{NMHV}}{\longrightarrow} = \sum_{I} \stackrel{\text{MHV MHV}}{\longrightarrow} P_{I}$$

- Apply MHV generating functions to MHV vertices \rightarrow generating function $\Omega_{n,l}$ for each diagram l in MHV vertex
 - expansion.
- NMHV generating function is $\Omega_n = \sum_I \Omega_{n,I}$

3-line shift recursion relations

 Analytically continue amplitudes to complex values by *shifts* of 3 external momenta:

$$p_i^{\mu} \to \hat{p}_i^{\mu} = p_i^{\mu} + z \, q_i^{\mu}$$
, for $i = 1, 2, 3$.

where

 $egin{aligned} q_1^\mu + q_2^\mu + q_3^\mu &= 0 & \leftrightarrow & ext{momentum conservation} \ & q_i^2 &= 0 &= q_i \cdot p_i & \leftrightarrow & ext{on-shell} \quad \hat{p}_i^2 &= 0. \end{aligned}$

Achieved by $|1] \rightarrow |\hat{1}] = |1] + z\langle 23 \rangle |X]$ (+ cyclic) with |X] arbitrary "reference spinor".

► The tree amplitude $A_n(z)$ has only simple poles, so **if** $A_n(z) \rightarrow 0$ for $z \rightarrow \infty$, then

$$0 = \oint \frac{A_n(z)}{z} \quad \rightarrow \quad A_n(0) = -\sum_{z \neq 0} \operatorname{Res} \frac{A_n(z)}{z}$$

Generating functions for N = 4 and N = 8 amplitudes

Result is on-shell recursion relation

$$A_n(0) = \sum_I A_{n_1} \frac{1}{P_I^2} A_{n_2}, \qquad n_1 + n_2 = n + 2$$

The special 3-line shift ensures that the sub-amplitudes are both MHV if A_n is NMHV. [Risager (2005)]

 \rightarrow Now use this to get NMHV gen func.

5. Next-to-MHV generating functions — $\mathcal{N} = 4$ SYM

- ► Consider a single MHV vertex diagram:
- ► Apply MHV gen func to each vertex to derive (details omitted)

$$\Omega_{n,I}^{\mathcal{N}=4} = \frac{A_{n,I}^{\text{gluons}}}{\langle m_1 P_I \rangle^4 \langle m_2 m_3 \rangle^4} \delta^{(8)}(L_a + R_a) \prod_{a=1}^4 \langle P_I L_a \rangle$$

where $L_a = \sum_{i \in L} |i\rangle \eta_{ia}$ and $R_a = \sum_{j \in R} |j\rangle \eta_{ja}$. [Georgio, Glover and Khoze (2004)]

- Each term in $\Omega_{n,l}^{\mathcal{N}=4}$ is order 12 in η_{ia} 's.
- ► Value of diagram is D⁽¹²⁾ Ω^{N=4}_{n,l} with D⁽¹²⁾ built from the external states.
- ► Sum all diagram gen func's to get full NMHV gen func:

 $\Omega_n^{\mathcal{N}=4} = \sum_I \Omega_{n,I}^{\mathcal{N}=4}$

Example: NMHV gluon amplitude

$$A_n(1^-, 2^-, 3^-, 4^+, \dots, n^+) = D_1^{(4)} D_2^{(4)} D_3^{(4)} \Omega_n^{\mathcal{N}=4}$$

Partition 12 = 4 + 4 + 4.

 $\mathcal{N} = 4$ SYM: # NMHV amplitudes = # partitions of 12 with $n_{\text{max}} = 4$. Total of 34.

Henriette Elvang (MIT) Generating functions for N = 4 and N = 8 amplitudes

5. Next-to-MHV generating functions — $\mathcal{N} = 8$ SG

Repeat construction in $\mathcal{N} = 8 \text{ SG} \rightarrow \Omega_n^{\mathcal{N}=8} \leftarrow \text{ order } 24 \text{ in } \eta_{iA}'s.$

Example: NMHV graviton amplitude

$$M_n(1^-, 2^-, 3^-, 4^+, 5^+, 6^+) = D_1^{(8)} D_2^{(8)} D_3^{(8)} \Omega_n^{\mathcal{N}=8}$$

Partition 24 = 8 + 8 + 8.

 $\mathcal{N} = 8$ SG: # NMHV amplitudes = # partitions of 24 with $n_{\text{max}} = 8$. Total of 919.

- ► Now sum over more diagrams, since not color-ordered. For n=6 there are up to 21 diagrams.
- ▶ Spin factors factorize, but only diagram-by-diagram

 $\Omega_{n,l}^{\mathcal{N}=8} \propto \Omega_{n,l~(1234)}^{\mathcal{N}=4} \times \Omega_{n,l~(5678)}^{\mathcal{N}=4}.$

We used MHV vertex expansion from 3-line shift recursion relations, which *assumed*

 $A_n(z) \to 0 \quad \text{for} \quad z \to \infty.$

Is this OK?

• In $\mathcal{N} = 4$ SYM we have shown that one can always choose 3 lines such that under a subsequent shift of these 3 lines each *diagram* in the corresponding MHV vertex expansion falls off at least as 1/z for large z.

 \rightarrow so only "bad" large z behavior could come from a term "at infinity" missed by Cauchy's thm.

 \rightarrow Have not seen any signs of such trouble.

Note

- Complex shifts included an arbitrary "reference spinor" |X]NB: $|1] \rightarrow |\hat{1}] = |1] + z\langle 23 \rangle |X]$ and cyclic(123) copies.
- If A_n(z; |X]) → 0 as z → ∞ for all |X], then the recursion sum of MHV vertex diagrams must be *independent* of |X].

Note: Generally each MHV vertex diagram depends on |X], but sum of all diagrams must be |X]-independent.

• Indep of |X] is very useful check of correctness of amplitude calculation.

• In $\mathcal{N} = 8$ SG we encounter for 6-point NMHV amplitudes:

▶ "Good" amplitudes: $A_n(z) \rightarrow 0$ as $z \rightarrow \infty$ **Ex.** $\langle b^{1234} b^{1234} b^{1234} b^{5678} b^{5678} b^{5678} \rangle$ *NMHV generating function valid.* • In $\mathcal{N} = 8$ SG we encounter for 6-point NMHV amplitudes:

- ▶ "Good" amplitudes: $A_n(z) \rightarrow 0$ as $z \rightarrow \infty$ **Ex.** $\langle b^{1234} b^{1234} b^{1234} b^{5678} b^{5678} \rangle$ *NMHV generating function valid.*
- "Bad" amplitudes: $A_n(z) \to O(1)$ as $z \to \infty$ **Ex.** $\langle b^{1234} \ b^{1358} \ b^{1278} \ b^{5678} \ b^{2467} \ b^{3456} \rangle$

NMHV generating function valid for special |X|'s such that $O(1)_X = 0$.

• In $\mathcal{N} = 8$ SG we encounter for 6-point NMHV amplitudes:

- ▶ "Good" amplitudes: $A_n(z) \rightarrow 0$ as $z \rightarrow \infty$ **Ex.** $\langle b^{1234} b^{1234} b^{1234} b^{5678} b^{5678} b^{5678} \rangle$ *NMHV generating function valid.*
- "Bad" amplitudes: $A_n(z) \rightarrow O(1)$ as $z \rightarrow \infty$

Ex. $\langle b^{1234} \ b^{1358} \ b^{1278} \ b^{5678} \ b^{2467} \ b^{3456} \rangle$

NMHV generating function valid for special |X|'s such that $O(1)_X = 0$.

• "Very bad" amplitudes: $A_n(z) \rightarrow O(z)$ as $z \rightarrow \infty$

2 such amplitudes

No choice of |X| makes $O(z)_X \to O(1/z)$.

These 2 amplitudes can be determined by SUSY WI in terms of other 6-point NMHV amplitudes.

Graviton *n*-point amplitude

Large *z* for pure graviton *n*-point amplitude:

 $M_n(\hat{1}^-, \hat{2}^-, \hat{3}^-, 4^+, \dots, n^+) \to z^{n-12} \quad \text{for} \quad z \to \infty$

Numerically verified for $n = 5, \ldots, 11$.

How:

- 1. Calculate M_n with MHV vertex expansion. Test |X]-independence of sum of $3(2^{n-3} - 1)$ diagrams.
- 2. Calculate M_n using 2-line shift recursion relations $[-, -\rangle$. Test numerically agreement with M_n from MHV vertex expansion.
- 3. Perform [1, 2, 3]-shift on M_n and expand for large z with numerical values of all momentum spinors.

Also numerical test that the sum of 1533 MHV vertex diagrams for n = 12 is |X]-dependent.

Expect the MHV vertex expansion to *fail* for $n \ge 12$.

NMHV generating functions — summarized

- When it is valid, the NMHV generating function provides very effective method for calculating NMHV amplitudes.
 - ► Easy to automate.
 - ► Useful checks of indep of reference spinor.
- Evidence that NMHV generating function valid for all *n*-point NMHV amplitudes of $\mathcal{N} = 4$ SYM.
- Examples, and a general analysis, shows that NMHV generating function is valid for a large set of NMHV amplitudes of $\mathcal{N} = 8$ SG, BUT *not* for all due to failure of MHV vertex expansion.
 - ► Must be careful in applications.

6. Intermediate state sum

Example: One-loop MHV amplitude

Use $\ensuremath{\mathsf{MHV}}$ generating function to compute intermediate state sum of unitarity cut:

$$D_{l_1}^{(4)} D_{l_2}^{(4)} (D_i^{(4)} \delta^{(8)}(I)) (D_j^{(4)} \delta^{(8)}(J))$$

 D_{l_1} and D_{l_2} distribute themselves between $\delta^{(8)}(I)$ and $\delta^{(8)}(J)$. This automatically takes care of the intermediate state sum.

Have done 1- and 2-loop sums with NMHV generating function, but care is needed to avoid "bad" shifts, especially in SG.

7. Outlook

Role of $E_{7,7}$?

- 70 scalars of $\mathcal{N} = 8$ SG are Goldstone bosons of spontaneously broken $E_{7,7} \rightarrow SU(8)$.
- How will E_{7,7} reveal itself?
 → soft-scalar limits of amplitudes (analogous to soft-pion low-energy theorems of Adler).
- We find that 1-soft-"pion" limits of $\mathcal{N} = 8$ tree amplitudes vanish.
- Note that in pion physics 1-pion soft limits do not necessarily vanish, even in models with pions and nucleons both massless.

Loops in $\mathcal{N} = 8$ supergravity

Is there are connection between "bad" large *z* behavior in supergravity tree amplitudes and potential UV divergencies?