Gauging WONDERS.

$\mathcal{N}=4$ SYM helping QCD:
Whether. How. When.

Yuri Dokshitzer
kicking-off the discussion in a provocative manner

Saclay
26.062008

exploring one idea

exploring one idea

Inheritance

exploring one idea

Inheritance:

x Higher loops inherit complexity from lower orders

exploring one idea

Inheritance:

X Higher loops inherit complexity from lower orders
x QCD inherits from SYM-4

$$
P_{\mathrm{ns}}^{(2)+}(x)=16 C_{A} C_{F} n_{f}\left(\frac { 1 } { 6 } p _ { \mathrm { qq } } (x) \left[\frac{10}{3} \zeta_{2}-\frac{209}{36}-9 \zeta_{3}-\frac{167}{18} \mathrm{H}_{0}+2 \mathrm{H}_{0} \zeta_{2}-7 \mathrm{H}_{0}\right.\right.
$$

$$
\left.+3 \mathrm{H}_{1,0,0}-\mathrm{H}_{3}\right]+\frac{1}{3} p_{\mathrm{qq}}(-x)\left[\frac{3}{2} \zeta_{3}-\frac{5}{3} \zeta_{2}-\mathrm{H}_{-2,0}-2 \mathrm{H}_{-1} \zeta_{2}-\frac{10}{3} \mathrm{H}_{-1,0}-\mathrm{H}_{-}\right.
$$

$$
\left.+2 \mathrm{H}_{-1,2}+\frac{1}{2} \mathrm{H}_{0} \zeta_{2}+\frac{5}{3} \mathrm{H}_{0,0}+\mathrm{H}_{0,0,0}-\mathrm{H}_{3}\right]+(1-x)\left[\frac{1}{6} \zeta_{2}-\frac{257}{54}-\frac{43}{18} \mathrm{H}_{0}-\right.
$$

$$
-(1+x)\left[\frac{2}{3} \mathrm{H}_{-1,0}+\frac{1}{2} \mathrm{H}_{2}\right]+\frac{1}{3} \zeta_{2}+\mathrm{H}_{0}+\frac{1}{6} \mathrm{H}_{0,0}+\delta(1-x)\left[\frac{5}{4}-\frac{167}{54} \zeta_{2}+\frac{1}{20} \zeta_{2}\right.
$$

$$
+16 C_{A} C_{F}^{2}\left(p _ { \mathrm { qq } } (x) \left[\frac{5}{6} \zeta_{3}-\frac{69}{20} \zeta_{2}^{2}-\mathrm{H}_{-3,0}-3 \mathrm{H}_{-2} \zeta_{2}-14 \mathrm{H}_{-2,-1,0}+3 \mathrm{H}_{-2,0}\right.\right.
$$

$$
-4 \mathrm{H}_{-2,2}-\frac{151}{48} \mathrm{H}_{0}+\frac{41}{12} \mathrm{H}_{0} \zeta_{2}-\frac{17}{2} \mathrm{H}_{0} \zeta_{3}-\frac{13}{4} \mathrm{H}_{0,0}-4 \mathrm{H}_{0,0} \zeta_{2}-\frac{23}{12} \mathrm{H}_{0,0,0}+5 \mathrm{H}
$$

$$
-24 \mathrm{H}_{1} \zeta_{3}-16 \mathrm{H}_{1,-2,0}+\frac{67}{9} \mathrm{H}_{1,0}-2 \mathrm{H}_{1,0} \zeta_{2}+\frac{31}{3} \mathrm{H}_{1,0,0}+11 \mathrm{H}_{1,0,0,0}+8 \mathrm{H}_{1,1,0,0}
$$

$\left.+\frac{67}{9} \mathrm{H}_{2}-2 \mathrm{H}_{2} \zeta_{2}+\frac{11}{3} \mathrm{H}_{2,0}+5 \mathrm{H}_{2,0,0}+\mathrm{H}_{3,0}\right]+p_{\mathrm{qq}}(-x)\left[\frac{1}{4} \zeta_{2}{ }^{2}-\frac{67}{9} \zeta_{2}+\frac{31}{4} \zeta^{2}\right.$ $-32 \mathrm{H}_{-2} \zeta_{2}-4 \mathrm{H}_{-2,-1,0}-\frac{31}{6} \mathrm{H}_{-2,0}+21 \mathrm{H}_{-2,0,0}+30 \mathrm{H}_{-2,2}-\frac{31}{3} \mathrm{H}_{-1} \zeta_{2}-42 \mathrm{H}$ $-4 \mathrm{H}_{-1,-2,0}+56 \mathrm{H}_{-1,-1} \zeta_{2}-36 \mathrm{H}_{-1,-1,0,0}-56 \mathrm{H}_{-1,-1,2}-\frac{134}{9} \mathrm{H}_{-1,0}-42 \mathrm{H}_{-1}$ $+32 \mathrm{H}_{-1,3}-\frac{31}{6} \mathrm{H}_{-1,0,0}+17 \mathrm{H}_{-1,0,0,0}+\frac{31}{3} \mathrm{H}_{-1,2}+2 \mathrm{H}_{-1,2,0}+\frac{13}{12} \mathrm{H}_{0} \zeta_{2}+\frac{29}{2} \mathrm{H}$ $\left.+13 \mathrm{H}_{0,0} \zeta_{2}+\frac{89}{12} \mathrm{H}_{0,0,0}-5 \mathrm{H}_{0,0,0,0}-7 \mathrm{H}_{2} \zeta_{2}-\frac{31}{6} \mathrm{H}_{3}-10 \mathrm{H}_{4}\right]+(1-x)\left[\frac{133}{36}\right.$ $-\frac{167}{4} \zeta_{3}-2 \mathrm{H}_{0} \zeta_{3}-2 \mathrm{H}_{-3,0}+\mathrm{H}_{-2} \zeta_{2}+2 \mathrm{H}_{-2,-1,0}-3 \mathrm{H}_{-2,0,0}+\frac{77}{4} \mathrm{H}_{0,0,0}-\frac{20}{6}$ $\left.+4 \mathrm{H}_{1,0,0}+\frac{14}{3} \mathrm{H}_{1,0}\right]+(1+x)\left[\frac{43}{2} \zeta_{2}-3 \zeta_{2}^{2}+\frac{25}{2} \mathrm{H}_{-2,0}-31 \mathrm{H}_{-1} \zeta_{2}-14 \mathrm{H}_{-1,-}\right.$ $+24 \mathrm{H}_{-1,2}+23 \mathrm{H}_{-1,0,0}+\frac{55}{2} \mathrm{H}_{0} \zeta_{2}+5 \mathrm{H}_{0,0} \zeta_{2}+\frac{1457}{48} \mathrm{H}_{0}-\frac{1025}{36} \mathrm{H}_{0,0}-\frac{155}{6} \mathrm{H}_{2}$

$$
\left.+2 \mathrm{H}_{2,0,0}-3 \mathrm{H}_{4}\right]-5 \zeta_{2}-\frac{1}{2} \zeta_{2}^{2}+50 \zeta_{3}-2 \mathrm{H}_{-3,0}-7 \mathrm{H}_{-2,0}-\mathrm{H}_{0} \zeta_{3}-\frac{37}{2} \mathrm{H}_{0} \zeta_{2}
$$

$$
-2 \mathrm{H}_{0,0} \zeta_{2}+\frac{185}{6} \mathrm{H}_{0,0}-22 \mathrm{H}_{0,0,0}-4 \mathrm{H}_{0,0,0,0}+\frac{28}{3} \mathrm{H}_{2}+6 \mathrm{H}_{3}+\delta(1-x)\left[\frac{151}{64}+\right.
$$

$$
\left.\left.-\frac{247}{60} \zeta_{2}{ }^{2}+\frac{211}{12} \zeta_{3}+\frac{15}{2} \zeta_{5}\right]\right)+16 C_{A}{ }^{2} C_{F}\left(p _ { \mathrm { qq } } (x) \left[\frac{245}{48}-\frac{67}{18} \zeta_{2}+\frac{12}{5} \zeta_{2}{ }^{2}+\frac{1}{2}\right.\right.
$$

$$
+\mathrm{H}_{-3,0}+4 \mathrm{H}_{-2,-1,0}-\frac{3}{2} \mathrm{H}_{-2,0}-\mathrm{H}_{-2,0,0}+2 \mathrm{H}_{-2,2}-\frac{31}{12} \mathrm{H}_{0} \zeta_{2}+4 \mathrm{H}_{0} \zeta_{3}+\frac{389}{72}
$$

$$
-\mathrm{H}_{0,0,0,0}+9 \mathrm{H}_{1} \zeta_{3}+6 \mathrm{H}_{1,-2,0}-\mathrm{H}_{1,0} \zeta_{2}-\frac{11}{4} \mathrm{H}_{1,0,0}-3 \mathrm{H}_{1,0,0,0}-4 \mathrm{H}_{1,1,0,0}+4 \mathrm{I}
$$

$$
\left.+\frac{11}{12} \mathrm{H}_{3}+\mathrm{H}_{4}\right]+p_{\mathrm{qq}}(-x)\left[\frac{67}{18} \zeta_{2}-\zeta_{2}^{2}-\frac{11}{4} \zeta_{3}-\mathrm{H}_{-3,0}+8 \mathrm{H}_{-2} \zeta_{2}+\frac{11}{6} \mathrm{H}_{-2,0}\right.
$$

$$
-3 \mathrm{H}_{-1,0,0,0}+\frac{11}{3} \mathrm{H}_{-1} \zeta_{2}+12 \mathrm{H}_{-1} \zeta_{3}-16 \mathrm{H}_{-1,-1} \zeta_{2}+8 \mathrm{H}_{-1,-1,0,0}+16 \mathrm{H}_{-1,-1,2}
$$

$$
-8 \mathrm{H}_{-2,2}+11 \mathrm{H}_{-1,0} \zeta_{2}+\frac{11}{6} \mathrm{H}_{-1,0,0}-\frac{11}{3} \mathrm{H}_{-1,2}-8 \mathrm{H}_{-1,3}-\frac{3}{4} \mathrm{H}_{0}-\frac{1}{6} \mathrm{H}_{0} \zeta_{2}-4
$$

$$
\begin{aligned}
& \left.-3 \mathrm{H}_{0,0} \zeta_{2}-\frac{31}{12} \mathrm{H}_{0,0,0}+\mathrm{H}_{0,0,0,0}+2 \mathrm{H}_{2} \zeta_{2}+\frac{11}{6} \mathrm{H}_{3}+2 \mathrm{H}_{4}\right]+(1-x)\left[\frac{1883}{108}-\frac{1}{2}\right. \\
& -\mathrm{H}_{-2,-1,0}+\frac{1}{2} \mathrm{H}_{-3,0}-\frac{1}{2} \mathrm{H}_{-2} \zeta_{2}+\frac{1}{2} \mathrm{H}_{-2,0,0}+\frac{523}{36} \mathrm{H}_{0}+\mathrm{H}_{0} \zeta_{3}-\frac{13}{3} \mathrm{H}_{0,0}-\frac{5}{2} \mathrm{H} \\
& \left.-2 \mathrm{H}_{1,0,0}\right]+(1+x)\left[8 \mathrm{H}_{-1} \zeta_{2}+4 \mathrm{H}_{-1,-1,0}+\frac{8}{3} \mathrm{H}_{-1,0}-5 \mathrm{H}_{-1,0,0}-6 \mathrm{H}_{-1,2}-\frac{13}{3}\right. \\
& -\frac{43}{4} \zeta_{3}-\frac{5}{2} \mathrm{H}_{-2,0}-\frac{11}{2} \mathrm{H}_{0} \zeta_{2}-\frac{1}{2} \mathrm{H}_{2} \zeta_{2}-\frac{5}{4} \mathrm{H}_{0,0} \zeta_{2}+7 \mathrm{H}_{2}-\frac{1}{4} \mathrm{H}_{2,0,0}+3 \mathrm{H}_{3}+\frac{3}{4}
\end{aligned}
$$

$$
+\frac{1}{4} \zeta_{2}^{2}-\frac{8}{3} \zeta_{2}+\frac{17}{2} \zeta_{3}+\mathrm{H}_{-2,0}-\frac{19}{2} \mathrm{H}_{0}+\frac{5}{2} \mathrm{H}_{0} \zeta_{2}-\mathrm{H}_{0} \zeta_{3}+\frac{13}{3} \mathrm{H}_{0,0}+\frac{5}{2} \mathrm{H}_{0,0,0}
$$

$$
\left.-\delta(1-x)\left[\frac{1657}{576}-\frac{281}{27} \zeta_{2}+\frac{1}{8} \zeta_{2}^{2}+\frac{97}{9} \zeta_{3}-\frac{5}{2} \zeta_{5}\right]\right)+16 C_{F} n_{f}^{2}\left(\frac { 1 } { 1 8 } p _ { \mathrm { qq } } (x) \left[\mathrm{H}_{0,}\right.\right.
$$

$$
\left.+(1-x)\left[\frac{13}{54}+\frac{1}{9} \mathrm{H}_{0}\right]-\delta(1-x)\left[\frac{17}{144}-\frac{5}{27} \zeta_{2}+\frac{1}{9} \zeta_{3}\right]\right)+16 C_{F}^{2} n_{f}\left(\frac{1}{3} p_{\mathrm{qq}}(x)[\right.
$$

$$
\begin{aligned}
& \left.-\frac{55}{16}+\frac{5}{8} \mathrm{H}_{0}+\mathrm{H}_{0} \zeta_{2}+\frac{3}{2} \mathrm{H}_{0,0}-\mathrm{H}_{0,0,0}-\frac{10}{3} \mathrm{H}_{1,0}-\frac{10}{3} \mathrm{H}_{2}-2 \mathrm{H}_{2,0}-2 \mathrm{H}_{3}\right]+\frac{2}{3} \\
& -\frac{3}{2} \zeta_{3}+\mathrm{H}_{-2,0}+2 \mathrm{H}_{-1} \zeta_{2}+\frac{10}{3} \mathrm{H}_{-1,0}+\mathrm{H}_{-1,0,0}-2 \mathrm{H}_{-1,2}-\frac{1}{2} \mathrm{H}_{0} \zeta_{2}-\frac{5}{3} \mathrm{H}_{0,0}- \\
& -(1-x)\left[\frac{10}{9}+\frac{19}{18} \mathrm{H}_{0,0}-\frac{4}{3} \mathrm{H}_{1}+\frac{2}{3} \mathrm{H}_{1,0}+\frac{4}{3} \mathrm{H}_{2}\right]+(1+x)\left[\frac{4}{3} \mathrm{H}_{-1,0}-\frac{25}{24} \mathrm{H}_{0}+\right. \\
& \left.+\frac{7}{9} \mathrm{H}_{0,0}+\frac{4}{3} \mathrm{H}_{2}-\delta(1-x)\left[\frac{23}{16}-\frac{5}{12} \zeta_{2}-\frac{29}{30} \zeta_{2}^{2}+\frac{17}{6} \zeta_{3}\right]\right)+16 C_{F}^{3}\left(p_{\mathrm{qq}}(x)[\right. \\
& +6 \mathrm{H}_{-2} \zeta_{2}+12 \mathrm{H}_{-2,-1,0}-6 \mathrm{H}_{-2,0,0}-\frac{3}{16} \mathrm{H}_{0}-\frac{3}{2} \mathrm{H}_{0} \zeta_{2}+\mathrm{H}_{0} \zeta_{3}+\frac{13}{8} \mathrm{H}_{0,0}-2 \mathrm{H}_{0} \\
& +12 \mathrm{H}_{1} \zeta_{3}+8 \mathrm{H}_{1,-2,0}-6 \mathrm{H}_{1,0,0}-4 \mathrm{H}_{1,0,0,0}+4 \mathrm{H}_{1,2,0}-3 \mathrm{H}_{2,0}+2 \mathrm{H}_{2,0,0}+4 \mathrm{H}_{2,1} \\
& \left.+4 \mathrm{H}_{3,0}+4 \mathrm{H}_{3,1}+2 \mathrm{H}_{4}\right]+p_{\mathrm{qq}}(-x)\left[\frac{7}{2} \zeta_{2}^{2}-\frac{9}{2} \zeta_{3}-6 \mathrm{H}_{-3,0}+32 \mathrm{H}_{-2} \zeta_{2}+8 \mathrm{H}_{-2}\right. \\
& -26 \mathrm{H}_{-2,0,0}-28 \mathrm{H}_{-2,2}+6 \mathrm{H}_{-1} \zeta_{2}+36 \mathrm{H}_{-1} \zeta_{3}+8 \mathrm{H}_{-1,-2,0}-48 \mathrm{H}_{-1,-1} \zeta_{2}+40
\end{aligned}
$$

$$
-\frac{3}{2} \mathrm{H}_{0} \zeta_{2}-13 \mathrm{H}_{0} \zeta_{3}-14 \mathrm{H}_{0,0} \zeta_{2}-\frac{9}{2} \mathrm{H}_{0,0,0}+6 \mathrm{H}_{0,0,0,0}+6 \mathrm{H}_{2} \zeta_{2}+3 \mathrm{H}_{3}+2 \mathrm{H}_{3,0}
$$

$$
+(1-x)\left[2 \mathrm{H}_{-3,0}-\frac{31}{8}+4 \mathrm{H}_{-2,0,0}+\mathrm{H}_{0,0} \zeta_{2}-3 \mathrm{H}_{0,0,0,0}+35 \mathrm{H}_{1}+6 \mathrm{H}_{1} \zeta_{2}-\mathrm{H}_{1},\right.
$$

$$
+(1+x)\left[\frac{37}{10} \zeta_{2}^{2}-\frac{93}{4} \zeta_{2}-\frac{81}{2} \zeta_{3}-15 \mathrm{H}_{-2,0}+30 \mathrm{H}_{-1} \zeta_{2}+12 \mathrm{H}_{-1,-1,0}-2 \mathrm{H}_{-1,0}\right.
$$

$$
-24 \mathrm{H}_{-1,2}-\frac{539}{16} \mathrm{H}_{0}-28 \mathrm{H}_{0} \zeta_{2}+\frac{191}{8} \mathrm{H}_{0,0}+20 \mathrm{H}_{0,0,0}+\frac{85}{4} \mathrm{H}_{2}-3 \mathrm{H}_{2,0,0}-2 \mathrm{H}_{3}
$$

$$
\left.-\mathrm{H}_{4}\right]+4 \zeta_{2}+33 \zeta_{3}+4 \mathrm{H}_{-3,0}+10 \mathrm{H}_{-2,0}+\frac{67}{2} \mathrm{H}_{0}+6 \mathrm{H}_{0} \zeta_{3}+19 \mathrm{H}_{0} \zeta_{2}-25 \mathrm{H}_{0,0}
$$

$$
\left.-2 \mathrm{H}_{2}-\mathrm{H}_{2,0}-4 \mathrm{H}_{3}+\delta(1-x)\left[\frac{29}{32}-2 \zeta_{2} \zeta_{3}+\frac{9}{8} \zeta_{2}+\frac{18}{5} \zeta_{2}^{2}+\frac{17}{4} \zeta_{3}-15 \zeta_{5}\right]\right)
$$

2×2 anomalous dimension matrix occupies
1 st loop: 1/10 page
2×2 anomalous dimension matrix occupies
1 st loop: 1/10 page
2 nd loop: 1 page
2×2 anomalous dimension matrix occupies
1 st loop: $1 / 10$ page
2 nd loop: 1 page
3 rd loop: 100 pages (200 K asci)
Moch, Vermaseren and Vogt
[waterfall of results launched
March 2004, and counting]
2×2 anomalous dimension matrix occupies
1 st loop: $1 / 10$ page
2 nd loop: 1 page
3 rd loop: 100 pages (200 K asci)
Moch, Vermaseren and Vogt
[waterfall of results launched
March 2004, and counting]
$V \sim\left\{\begin{array}{l}10^{\frac{N(N-1)}{2}-1} \\ 10^{2^{N-1}-2}\end{array}\right.$

facing music of the spheres

2×2 anomalous dimension matrix occupies
1 st loop: $1 / 10$ page
2 nd loop: 1 page
3 rd loop: 100 pages (200 K asci)
Moch, Vermaseren and Vogt
[waterfall of results launched March 2004, and counting]
$V \sim\left\{\begin{array}{l}10^{\frac{N(N-1)}{2}-1} \\ 10^{2^{N-1}-2}\end{array}\right.$ not too encouraging a trend ...

How to reduce complexity?

Guidelines

How to reduce complexity?

Guidelines

exploit internal properties :

- Drell-Levy-Yan relation
- Gribov-Lipatov reciprocity

How to reduce complexity?

Guidelines

\checkmark exploit internal properties:

- Drell-Levy-Yan relation
- Gribov-Lipatov reciprocity

How to reduce complexity?

Guidelines

\checkmark exploit internal properties:

- Drell-Levy-Yan relation
- Gribov-Lipatov reciprocity
\checkmark separate classical \& quantum effects in the gluon sector

How to reduce complexity?

Guidelines

\checkmark exploit internal properties :

- Drell-Levy-Yan relation
- Gribov-Lipatov reciprocity
\checkmark separate classical \& quantum effects in the gluon sector

Extract

Solve

How to reduce complexity?

Guidelines

\checkmark exploit internal properties:

- Drell-Levy-Yan relation
- Gribov-Lipatov reciprocity
\checkmark separate classical \& quantum effects in the gluon sector

Extract

Solve

An essential part of gluon dynamics is Classical.

How to reduce complexity?

Guidelines

\checkmark exploit internal properties:

- Drell-Levy-Yan relation
- Gribov-Lipatov reciprocity
\checkmark separate classical \& quantum effects in the gluon sector

An essential part of gluon dynamics is Classical. "Classical" does not mean "Simple". However, it has a good chance to be Exactly Solvable.

How to reduce complexity?

Guidelines

\checkmark exploit internal properties :

- Drell-Levy-Yan relation
- Gribov-Lipatov reciprocity
\checkmark separate classical \& quantum effects in the gluon sector

An essential part of gluon dynamics is Classical. "Classical" does not mean "Simple". However, it has a good chance to be Exactly Solvable.
\Leftrightarrow A playing ground for theoretical theory: SUSY, AdS/CFT, ...

The origin of the GL reciprocity violation is essentially kinematical : inherited from previous loops !

Space-Time bookkeeping

The origin of the GL reciprocity violation is essentially kinematical : inherited from previous loops !

Hypothesis of the new RR evolution kernel \mathcal{P}
D-r, Marchesini \& Salam (2005)
was verified at 3 loops for the nonsinglet channel, $\left(\gamma^{(T)}-\gamma^{(S)}\right)=$ OK Mitov, Moch \& Vogt (2006)

Space-Time bookkeeping

The origin of the GL reciprocity violation is essentially kinematical : inherited from previous loops !

Hypothesis of the new RR evolution kernel \mathcal{P}
D-r, Marchesini \& Salam (2005)
was verified at 3 loops for the nonsinglet channel, $\left(\gamma^{(T)}-\gamma^{(S)}\right)=$ OK Mitov, Moch \& Vogt (2006)
In the moment space, the GL symmetry, $x \rightarrow 1 / x \Leftrightarrow N \rightarrow-(N+1)$, translates into dependence on the conformal Casimir $J^{2}=N(N+1)$.
By means of the large N expansion, $\quad \mathcal{P}=\alpha_{\text {phys }} \cdot \ln J^{2}+\Sigma_{n}\left(J^{2}\right)^{-n}$

Space-Time bookkeeping

The origin of the GL reciprocity violation is essentially kinematical :

 inherited from previous loops !Hypothesis of the new RR evolution kernel \mathcal{P}
D-r, Marchesini \& Salam (2005)
was verified at 3 loops for the nonsinglet channel, $\left(\gamma^{(T)}-\gamma^{(S)}\right)=$ OK Mitov, Moch \& Vogt (2006)
In the moment space, the GL symmetry, $x \rightarrow 1 / x \Leftrightarrow N \rightarrow-(N+1)$, translates into dependence on the conformal Casimir $J^{2}=N(N+1)$. By means of the large N expansion, $\quad \mathcal{P}=\alpha_{\text {phys }} \cdot \ln J^{2}+\Sigma_{n}\left(J^{2}\right)^{-n}$ Extra QCD checks: Basso \& Korchemsky, in coll. with S.Moch (2006)

- 3loop singlet unpolarized
- 2loop quark transversity
- 2loop linearly polarized gluon
- 2loop singlet polarized

Space-Time bookkeeping

The origin of the GL reciprocity violation is essentially kinematical :

 inherited from previous loops !Hypothesis of the new RR evolution kernel \mathcal{P}
D-r, Marchesini \& Salam (2005)
was verified at 3 loops for the nonsinglet channel, $\left(\gamma^{(T)}-\gamma^{(S)}\right)=$ OK Mitov, Moch \& Vogt (2006)
In the moment space, the GL symmetry, $x \rightarrow 1 / x \Leftrightarrow N \rightarrow-(N+1)$, translates into dependence on the conformal Casimir $J^{2}=N(N+1)$.
By means of the large N expansion, $\quad \mathcal{P}=\alpha_{\text {phys }} \cdot \ln J^{2}+\Sigma_{n}\left(J^{2}\right)^{-n}$
Extra QCD checks: Basso \& Korchemsky, in coll. with S.Moch (2006)

- 3loop singlet unpolarized
- Also true for SUSYs,
- 2loop quark transversity
- in 4 loops in $\lambda \phi^{4}$,
- 2loop linearly polarized gluon
- in QCD $\beta_{0} \rightarrow \infty$, all loops,
- 2loop singlet polarized
- $\operatorname{AdS} / \operatorname{CFT}(\mathcal{N}=4 \mathrm{SYM} \alpha \gg 1)$

Space-Time bookkeeping

The origin of the GL reciprocity violation is essentially kinematical :

 inherited from previous loops !Hypothesis of the new RR evolution kernel \mathcal{P}
D-r, Marchesini \& Salam (2005)
was verified at 3 loops for the nonsinglet channel, $\left(\gamma^{(T)}-\gamma^{(S)}\right)=$ OK Mitov, Moch \& Vogt (2006)
In the moment space, the GL symmetry, $x \rightarrow 1 / x \Leftrightarrow N \rightarrow-(N+1)$, translates into dependence on the conformal Casimir $J^{2}=N(N+1)$.
By means of the large N expansion, $\quad \mathcal{P}=\alpha_{\text {phys }} \cdot \ln J^{2}+\Sigma_{n}\left(J^{2}\right)^{-n}$
Extra QCD checks: Basso \& Korchemsky, in coll. with S.Moch (2006)

- 3loop singlet unpolarized
- Also true for SUSYs,
- 2loop quark transversity
- in 4 loops in $\lambda \phi^{4}$,
- 2loop linearly polarized gluon
- in QCD $\beta_{0} \rightarrow \infty$, all loops,
- 2loop singlet polarized
- $\operatorname{AdS} / \operatorname{CFT}(\mathcal{N}=4 \mathrm{SYM} \alpha \gg 1)$

Space-Time bookkeeping

Maximally super-symmetric $\mathcal{N}=4 \mathrm{YM}$ allows for a compact analytic solution of the GLR problem in 3 loops ($\forall N$)

D-r \& Marchesini (2006)

Space-Time bookkeeping

Maximally super-symmetric $\mathcal{N}=4 \mathrm{YM}$ allows for a compact analytic solution of the GLR problem in 3 loops ($\forall N$)

D-r \& Marchesini (2006)
Moreover, in $\mathcal{N}=4 \mathrm{YM}$
X GLR holds for twist 3, in $3+4$ loops
Matteo Beccaria et. al (2007)

Space-Time bookkeeping

Maximally super-symmetric $\mathcal{N}=4 \mathrm{YM}$ allows for a compact analytic solution of the GLR problem in 3 loops ($\forall N$)

D-r \& Marchesini (2006)
Moreover, in $\mathcal{N}=4 \mathrm{YM}$
x GLR holds for twist 3, in 3+4 loops Matteo Beccaria et al. (2007)

What is so special about $\mathcal{N}=4$ SYM ?

Space-Time bookkeeping

Maximally super-symmetric $\mathcal{N}=4 \mathrm{YM}$ allows for a compact analytic solution of the GLR problem in 3 loops ($\forall N$)

D-r \& Marchesini (2006)
Moreover, in $\mathcal{N}=4 \mathrm{YM}$
x GLR holds for twist 3, in 3+4 loops Matteo Beccaria et al. (2007)

What is so special about $\mathcal{N}=4$ SYM ?

This QFT has a good chance to be solvable - "integrable".
Dynamics can be fully integrated if the system possesses a sufficient (infinite!) number of conservation laws, - integrals of motion.

Space-Time bookkeeping

Maximally super-symmetric $\mathcal{N}=4 \mathrm{YM}$ allows for a compact analytic solution of the GLR problem in 3 loops ($\forall N$)

D-r \& Marchesini (2006)
Moreover, in $\mathcal{N}=4 \mathrm{YM}$
x GLR holds for twist 3, in 3+4 loops Matteo Beccaria et al. (2007)

What is so special about $\mathcal{N}=4$ SYM ?

This QFT has a good chance to be solvable - "integrable".
Dynamics can be fully integrated if the system possesses a sufficient (infinite!) number of conservation laws, - integrals of motion.

The integrability feature manifests itself already in certain sectors of QCD, in specific problems where one can identify QCD with SUSY-QCD :
\checkmark the Regge behaviour (large N_{c})
\checkmark baryon wave function

Lipatov
Faddeev \& Korchemsky (1994)
Braun, Derkachov, Korchemsky,
Manashov; Belitsky
(1999)

Lipatov
Minahan \& Zarembo
Beisert \& Staudacher
(2003)

The integrability feature manifests itself already in certain sectors of QCD, in specific problems where one can identify QCD with SUSY-QCD :
\checkmark the Regge behaviour (large N_{c})
\checkmark baryon wave function

Lipatov
Faddeev \& Korchemsky (1994)
Braun, Derkachov, Korchemsky,
Manashov; Belitsky
Lipatov
Minahan \& Zarembo
Beisert \& Staudacher

The higher the symmetry, the deeper integrability.

The integrability feature manifests itself already in certain sectors of QCD, in specific problems where one can identify QCD with SUSY-QCD :
\checkmark the Regge behaviour (large N_{c})
\checkmark baryon wave function

Lipatov
Faddeev \& Korchemsky (1994)
Braun, Derkachov, Korchemsky,
Manashov; Belitsky
Lipatov
Minahan \& Zarembo
Beisert \& Staudacher

The higher the symmetry, the deeper integrability. $\mathcal{N}=4$ - the extreme:
\boldsymbol{x} Conformal theory $\beta(\alpha) \equiv 0$
x All order expansion for $\alpha_{\text {phys }}$
Beisert, Eden, Staudacher
(2006)
x Full integrability via AdS/CFT
Maldacena; Witten,
Gubser, Klebanov, Polyakov

The integrability feature manifests itself already in certain sectors of QCD, in specific problems where one can identify QCD with SUSY-QCD :
\checkmark the Regge behaviour (large N_{c})
\checkmark baryon wave function

Lipatov
Faddeev \& Korchemsky (1994)
Braun, Derkachov, Korchemsky,
Manashov; Belitsky
Lipatov
Minahan \& Zarembo
Beisert \& Staudacher
\checkmark maximal helicity multi-gluon operators

The higher the symmetry, the deeper integrability. $\mathcal{N}=4$ - the extreme:
\boldsymbol{x} Conformal theory $\beta(\alpha) \equiv 0$
x All order expansion for $\alpha_{\text {phys }}$
Beisert, Eden, Staudacher
(2006)
x Full integrability via AdS/CFT
Maldacena; Witten,
Gubser, Klebanov, Polyakov

The integrability feature manifests itself already in certain sectors of QCD, in specific problems where one can identify QCD with SUSY-QCD :
\checkmark the Regge behaviour (large N_{c})
\checkmark baryon wave function

Lipatov
Faddeev \& Korchemsky (1994)
Braun, Derkachov, Korchemsky,
Manashov; Belitsky
Lipatov
Minahan \& Zarembo
Beisert \& Staudacher

The higher the symmetry, the deeper integrability. $\mathcal{N}=4$ - the extreme:
\boldsymbol{x} Conformal theory $\beta(\alpha) \equiv 0$
x All order expansion for $\alpha_{\text {phys }}$
Beisert, Eden, Staudacher
x Full integrability via AdS/CFT
Maldacena; Witten,
Gubser, Klebanov, Polyakov

The integrability feature manifests itself already in certain sectors of QCD, in specific problems where one can identify QCD with SUSY-QCD :
\checkmark the Regge behaviour (large N_{c})
\checkmark baryon wave function

Lipatov
Faddeev \& Korchemsky (1994)
Braun, Derkachov, Korchemsky,
Manashov; Belitsky
Lipatov
Minahan \& Zarembo
Beisert \& Staudacher

The higher the symmetry, the deeper integrability. $\mathcal{N}=4$ - the extreme:
\boldsymbol{x} Conformal theory $\beta(\alpha) \equiv 0$
x All order expansion for $\alpha_{\text {phys }}$
Beisert, Eden, Staudacher
x Full integrability via AdS/CFT
Maldacena; Witten,
Gubser, Klebanov, Polyakov

Recall the diagonal first loop anomalous dimensions:

$$
\begin{aligned}
\tilde{\gamma}_{q \rightarrow q(x)+g} & =\frac{C_{F} \alpha_{\mathrm{s}}}{\pi}\left[\frac{x}{1-x}+(1-x) \cdot \frac{1}{2}\right] \\
\tilde{\gamma}_{g \rightarrow g(x)+g} & =\frac{C_{A} \alpha_{\mathrm{s}}}{\pi}\left[\frac{x}{1-x}+(1-x) \cdot\left(x+x^{-1}\right)\right] .
\end{aligned}
$$

Recall the diagonal first loop anomalous dimensions:

$$
\begin{aligned}
\tilde{\gamma}_{q \rightarrow q(x)+g} & =\frac{C_{F} \alpha_{\mathrm{s}}}{\pi}\left[\frac{x}{1-x}+(1-x) \cdot \frac{1}{2}\right] \\
\tilde{\gamma}_{g \rightarrow g(x)+g} & =\frac{C_{A} \alpha_{\mathrm{s}}}{\pi}\left[\frac{x}{1-x}+(1-x) \cdot\left(x+x^{-1}\right)\right] .
\end{aligned}
$$

The first component is independent of the nature of the radiating particle — the Low-Burnett-Kroll classical radiation \Longrightarrow "claglons".

Recall the diagonal first loop anomalous dimensions:

$$
\begin{aligned}
\tilde{\gamma}_{q \rightarrow q(x)+g} & =\frac{C_{F} \alpha_{\mathrm{s}}}{\pi}\left[\frac{x}{1-x}+(1-x) \cdot \frac{1}{2}\right] \\
\tilde{\gamma}_{g \rightarrow g(x)+g} & =\frac{C_{A} \alpha_{\mathrm{s}}}{\pi}\left[\frac{x}{1-x}+(1-x) \cdot\left(x+x^{-1}\right)\right] .
\end{aligned}
$$

The first component is independent of the nature of the radiating particle - the Low-Burnett-Kroll classical radiation \Longrightarrow "claglons". The second - "quaglons" - is relatively suppressed as $\mathcal{O}\left((1-x)^{2}\right)$.

Recall the diagonal first loop anomalous dimensions:

$$
\begin{aligned}
\tilde{\gamma}_{q \rightarrow q(x)+g} & =\frac{C_{F} \alpha_{\mathrm{s}}}{\pi}\left[\frac{x}{1-x}+(1-x) \cdot \frac{1}{2}\right] \\
\tilde{\gamma}_{g \rightarrow g(x)+g} & =\frac{C_{A} \alpha_{\mathrm{s}}}{\pi}\left[\frac{x}{1-x}+(1-x) \cdot\left(x+x^{-1}\right)\right] .
\end{aligned}
$$

The first component is independent of the nature of the radiating particle - the Low-Burnett-Kroll classical radiation \Longrightarrow "claglons". The second - "quaglons" - is relatively suppressed as $\mathcal{O}\left((1-x)^{2}\right)$.

Classical and quantum contributions respect the GL relation, individually:

$$
-x f(1 / x)=f(x)
$$

Recall the diagonal first loop anomalous dimensions:

$$
\begin{aligned}
\tilde{\gamma}_{q \rightarrow q(x)+g} & =\frac{C_{F} \alpha_{\mathrm{s}}}{\pi}\left[\frac{x}{1-x}+(1-x) \cdot \frac{1}{2}\right] \\
\tilde{\gamma}_{g \rightarrow g(x)+g} & =\frac{C_{A} \alpha_{\mathrm{s}}}{\pi}\left[\frac{x}{1-x}+(1-x) \cdot\left(x+x^{-1}\right)\right] .
\end{aligned}
$$

The first component is independent of the nature of the radiating particle - the Low-Burnett-Kroll classical radiation \Longrightarrow "claglons". The second - "quaglons" - is relatively suppressed as $\mathcal{O}\left((1-x)^{2}\right)$.

Classical and quantum contributions respect the GL relation, individually:

$$
-x f(1 / x)=f(x)
$$

Let us look at the rôles these animals play on the QCD stage

Gluenatomy

Clagons:

x Classical Field
\checkmark infrared singular, $d \omega / \omega$
\checkmark define the physical coupling
\checkmark responsible for
\Leftrightarrow DL radiative effects,
\Rightarrow reggeization,
\Leftrightarrow QCD/Lund string
\checkmark play the major rôle in evolution

Quagons :

x Quantum d.o.f.s (constituents)
\checkmark infrared irrelevant, $d \omega \cdot \omega$
\checkmark make the coupling run
\checkmark responsible for conservation of
$\Leftrightarrow P$-parity, $\quad \Leftrightarrow \quad$-parity $\}$ in decays,
\Leftrightarrow C-parity, $\}$ in production
\Rightarrow colour
\checkmark minor rôle

Gluenatomy

Clagons:

x Classical Field
\checkmark infrared singular, $d \omega / \omega$
\checkmark define the physical coupling
\checkmark responsible for
\Leftrightarrow DL radiative effects,
\Rightarrow reggeization,
\Leftrightarrow QCD/Lund string (gluers)
\checkmark play the major rôle in evolution

Quagons :

x Quantum d.o.f.s (constituents)
\checkmark infrared irrelevant, $d \omega \cdot \omega$
\checkmark make the coupling run
\checkmark responsible for conservation of
$\left.\begin{array}{l}\Leftrightarrow P \text {-parity, } \\ \Leftrightarrow C \text {-parity, }\end{array}\right\}$ in decays, production \Rightarrow colour
\checkmark minor rôle In addition,
\boldsymbol{X} It is clagons which dominate in all the integrability cases
\boldsymbol{x} Tree multi-clagon (Parke-Taylor) amplitudes are known exactly

Gluenatomy

Clagons:

x Classical Field
\checkmark infrared singular, $d \omega / \omega$
\checkmark define the physical coupling
\checkmark responsible for
\Leftrightarrow DL radiative effects,
\Rightarrow reggeization,
\Rightarrow QCD/Lund string (gluers)
\checkmark play the major rôle in evolution

Quagons :

x Quantum d.o.f.s (constituents)
\checkmark infrared irrelevant, $d \omega \cdot \omega$
\checkmark make the coupling run
\checkmark responsible for conservation of
$\Rightarrow P$-parity, $\quad \Leftrightarrow$-parity, $\}$ in $\begin{aligned} & \text { decays, } \\ & \text { production }\end{aligned}$
\Rightarrow colour
\checkmark minor rôle

In addition,
\boldsymbol{X} It is clagons which dominate in all the integrability cases
x Tree multi-clagon (Parke-Taylor) amplitudes are known exactly

$$
\text { Parke-Taylor (1986) }=\text { Bassetto-Ciafaloni-Marchesini (1983) }
$$

Maximally super-symmetric YM field model:

Matter content $=4$ Majorana fermions, 6 scalars; everyone in the ajoint representation.

Maximally super-symmetric YM field model:
Matter content $=4$ Majorana fermions, 6 scalars; everyone in the ajoint representation.

$$
\frac{d}{d \ln \mu^{2}}\left(\frac{\alpha\left(\mu^{2}\right)}{4 \pi}\right)_{Q C D}^{-1}=-\frac{11}{3} \cdot C_{A}+n_{f} \cdot T_{R} \cdot \int_{0}^{1} d x 2\left[x^{2}+(1-x)^{2}\right]
$$

Maximally super-symmetric YM field model:
Matter content $=4$ Majorana fermions, 6 scalars; everyone in the ajoint representation.

$$
\frac{d}{d \ln \mu^{2}}\left(\frac{\alpha\left(\mu^{2}\right)}{4 \pi}\right)_{Q C D}^{-1}=-\frac{11}{3} \cdot C_{A}+n_{f} \cdot T_{R} \cdot \int_{0}^{1} d x 2\left[x^{2}+(1-x)^{2}\right]
$$

Now, $\mathcal{N}=4$ SUSY :

$$
\frac{C_{A}^{-1} d}{d \ln \mu^{2}}\left(\frac{\alpha\left(\mu^{2}\right)}{4 \pi}\right)^{-1}
$$

Maximally super-symmetric YM field model:
Matter content $=4$ Majorana fermions, 6 scalars; everyone in the ajoint representation.

$$
\frac{d}{d \ln \mu^{2}}\left(\frac{\alpha\left(\mu^{2}\right)}{4 \pi}\right)_{Q C D}^{-1}=-\frac{11}{3} \cdot C_{A}+n_{f} \cdot T_{R} \cdot \int_{0}^{1} d x 2\left[x^{2}+(1-x)^{2}\right]
$$

Now, $\mathcal{N}=4$ SUSY :

$$
\frac{C_{A}{ }^{-1} d}{d \ln \mu^{2}}\left(\frac{\alpha\left(\mu^{2}\right)}{4 \pi}\right)^{-1}=-\frac{11}{3}+\frac{4}{2} \cdot \int_{0}^{1} d x 2\left[x^{2}+(1-x)^{2}\right]+\frac{6}{2!} \cdot \int_{0}^{1} d x 2 x(1-x)
$$

Maximally super-symmetric YM field model:
Matter content $=4$ Majorana fermions, 6 scalars; everyone in the ajoint representation.

$$
\frac{d}{d \ln \mu^{2}}\left(\frac{\alpha\left(\mu^{2}\right)}{4 \pi}\right)_{Q C D}^{-1}=-\frac{11}{3} \cdot C_{A}+n_{f} \cdot T_{R} \cdot \int_{0}^{1} d x 2\left[x^{2}+(1-x)^{2}\right]
$$

Now, $\mathcal{N}=4$ SUSY :
$\frac{C_{A}{ }^{-1} d}{d \ln \mu^{2}}\left(\frac{\alpha\left(\mu^{2}\right)}{4 \pi}\right)^{-1}=-\frac{11}{3}+\frac{4}{2} \cdot \int_{0}^{1} d x 2\left[x^{2}+(1-x)^{2}\right]+\frac{6}{2!} \cdot \int_{0}^{1} d x 2 x(1-x)$

- $\beta(\alpha) \equiv 0$ in all orders !

Maximally super-symmetric YM field model:
Matter content $=4$ Majorana fermions, 6 scalars; everyone in the ajoint representation.

$$
\frac{d}{d \ln \mu^{2}}\left(\frac{\alpha\left(\mu^{2}\right)}{4 \pi}\right)_{Q C D}^{-1}=-\frac{11}{3} \cdot C_{A}+n_{f} \cdot T_{R} \cdot \int_{0}^{1} d x 2\left[x^{2}+(1-x)^{2}\right]
$$

Now, $\mathcal{N}=4$ SUSY :
$\frac{C_{A}{ }^{-1} d}{d \ln \mu^{2}}\left(\frac{\alpha\left(\mu^{2}\right)}{4 \pi}\right)^{-1}=-\frac{11}{3}+\frac{4}{2} \cdot \int_{0}^{1} d x 2\left[x^{2}+(1-x)^{2}\right]+\frac{6}{2!} \cdot \int_{0}^{1} d x 2 x(1-x)$

- $\beta(\alpha) \equiv 0$ in all orders !
... makes one think of a classical nature (?) of the SYM-4 dynamics

Maximally super-symmetric YM field model:
Matter content $=4$ Majorana fermions, 6 scalars; everyone in the ajoint representation.

$$
\frac{d}{d \ln \mu^{2}}\left(\frac{\alpha\left(\mu^{2}\right)}{4 \pi}\right)_{Q C D}^{-1}=-\frac{11}{3} \cdot C_{A}+n_{f} \cdot T_{R} \cdot \int_{0}^{1} d x 2\left[x^{2}+(1-x)^{2}\right]
$$

Now, $\mathcal{N}=4$ SUSY :
$\frac{C_{A}{ }^{-1} d}{d \ln \mu^{2}}\left(\frac{\alpha\left(\mu^{2}\right)}{4 \pi}\right)^{-1}=-\frac{11}{3}+\frac{4}{2} \cdot \int_{0}^{1} d x 2\left[x^{2}+(1-x)^{2}\right]+\frac{6}{2!} \cdot \int_{0}^{1} d x 2 x(1-x)$

- $\beta(\alpha) \equiv 0$ in all orders! AND $\quad \gamma \Rightarrow \frac{x}{1-x}+$ no quagons!
... makes one think of a classical nature (?) of the SYM-4 dynamics

QCD and SUSY-QCD share the gluon sector!

QCD and SUSY-QCD share the gluon sector!

Importantly, the maximal transcedentality (clagon) structures constitute the bulk of the QCD anomalous dimensions.

QCD and SUSY-QCD share the gluon sector!

Importantly, the maximal transcedentality (clagon) structures constitute the bulk of the QCD anomalous dimensions.

$$
\frac{\text { genuine 2nd loop }}{\text { clever 1st loop }}<2 \% \quad\binom{\text { Heavy quark fragmentation }}{\text { D-r, Khoze \& Troyan, PRD } 1996}
$$

QCD and SUSY-QCD share the gluon sector!

Importantly, the maximal transcedentality (clagon) structures constitute the bulk of the QCD anomalous dimensions.

$$
\frac{\text { genuine 2nd loop }}{\text { clever 1st loop }}<2 \% \quad\binom{\text { Heavy quark fragmentation }}{\text { D-r, Khoze \& Troyan, PRD } 1996}
$$

Employ $\mathcal{N}=4$ SYM to simplify the essential part of the QCD dynamics
$\mathcal{N}=4$ SYM dynamics is classical, in certain sense.
$\mathcal{N}=4$ SYM dynamics is classical, in uncertain sense
$\mathcal{N}=4$ SYM dynamics is classical, in a not yet completely certain sense
$\mathcal{N}=4$ SYM dynamics is classical, in certain sense.

No truly quantum effects are being seen
(look at the β-function and/or the anomalous dimension)
$\mathcal{N}=4$ SYM dynamics is classical, in certain sense.

No truly quantum effects are being seen
(look at the β-function and/or the anomalous dimension)

If this is true
$\mathcal{N}=4$ SYM dynamics is classical, in certain sense.

No truly quantum effects are being seen (look at the β-function and/or the anomalous dimension)

If this is true, the goal would be
to derive a one-line-all-orders expression for γ from $\gamma^{(1)}$ in $\mathcal{N}=4$ SYM and then to export it into QCD,
to cover " 90% " of the small-distance parton dynamics

- Your expertise: How $\mathcal{N}=4$ SYM is helping/may help QCD?
- Your expertise: How $\mathcal{N}=4$ SYM is helping/may help QCD?
- Your opinion on: integrability $=$ classicality $($ LBK $) \quad\left[\psi(N) \leftrightarrow \frac{x}{1-x}\right]$
- Your expertise: How $\mathcal{N}=4$ SYM is helping/may help QCD?
- Your opinion on: integrability $=$ classicality (LBK) $\left[\psi(N) \leftrightarrow \frac{x}{1-x}\right]$
- counterexamples?
(genuine quantum effects in $\mathcal{N}=4$ SYM)
- Your expertise: How $\mathcal{N}=4$ SYM is helping/may help QCD?
- Your opinion on: integrability $=$ classicality $($ LBK $) \quad\left[\psi(N) \leftrightarrow \frac{x}{1-x}\right]$
- counterexamples? (genuine quantum effects in $\mathcal{N}=4$ SYM)
- make your bet:
- Your expertise: How $\mathcal{N}=4$ SYM is helping/may help QCD?
- Your opinion on: integrability $=$ classicality (LBK) $\left[\psi(N) \leftrightarrow \frac{x}{1-x}\right]$
- counterexamples? (genuine quantum effects in $\mathcal{N}=4$ SYM)
- make your bet:
$\checkmark 3$ years to convince experimenters that photons from the Z peak will be produced with $\alpha_{e . m .} \simeq 1 / 137$, not with $\alpha_{e . m .} \simeq 1 / 128$
- Your expertise: How $\mathcal{N}=4$ SYM is helping/may help QCD?
- Your opinion on: integrability $=$ classicality (LBK) $\left[\psi(N) \leftrightarrow \frac{x}{1-x}\right]$
- counterexamples? (genuine quantum effects in $\mathcal{N}=4$ SYM)
- make your bet:
$\checkmark 3$ years to convince experimenters that photons from the Z peak will be produced with $\alpha_{\text {e.m. }} \simeq 1 / 137$, not with $\alpha_{\text {e.m. }} \simeq 1 / 128$
$\checkmark 20$ years to disqualify the "Snowmass accord" on the art of jet hunting
- Your expertise: How $\mathcal{N}=4$ SYM is helping/may help QCD?
- Your opinion on: integrability $=$ classicality (LBK) $\left[\psi(N) \leftrightarrow \frac{x}{1-x}\right]$
- counterexamples? (genuine quantum effects in $\mathcal{N}=4$ SYM)
- make your bet:
$\checkmark 3$ years to convince experimenters that photons from the Z peak will be produced with $\alpha_{\text {e.m. }} \simeq 1 / 137$, not with $\alpha_{\text {e.m. }} \simeq 1 / 128$
$\checkmark 20$ years to disqualify the "Snowmass accord" on the art of jet hunting
\checkmark how many more decades one has to wait before a trivial but necessary step

$$
\alpha_{\overline{\mathrm{MS}}} \quad \Longrightarrow \alpha_{\text {cusp }}
$$

becomes standard for arranging perturbative series?

- Your expertise: How $\mathcal{N}=4$ SYM is helping/may help QCD?
- Your opinion on: integrability $=$ classicality (LBK) $\left[\psi(N) \leftrightarrow \frac{x}{1-x}\right]$
- counterexamples?
(genuine quantum effects in $\mathcal{N}=4$ SYM)
- make your bet:
$\checkmark 3$ years to convince experimenters that photons from the Z peak will be produced with $\alpha_{\text {e.m. }} \simeq 1 / 137$, not with $\alpha_{\text {e.m. }} \simeq 1 / 128$
$\checkmark 20$ years to disqualify the "Snowmass accord" on the art of jet hunting
\checkmark how many more decades one has to wait before a trivial but necessary step

$$
\alpha_{\overline{\mathrm{MS}}} \quad \Longrightarrow \alpha_{\text {cusp }}
$$

becomes standard for arranging perturbative series?

Extras

Another hidden message: QCD Radiophysics
2- and 3-prong colour antennae are sort of "trivial": coherence being taken care of, the answers turned out to be essentially additive

Another hidden message: QCD Radiophysics
2- and 3-prong colour antennae are sort of "trivial" coherence being taken care of, the answers turned out to be essentially additive The case of $2 \rightarrow 2$ hard parton scattering is more involved (4 emitters)

Another hidden message: QCD Radiophysics
2- and 3-prong colour antennae are sort of "trivial" : coherence being taken care of, the answers turned out to be essentially additive

The case of $2 \rightarrow 2$ hard parton scattering is more involved (4 emitters) especially so for gluon-gluon scattering

Another hidden message: QCD Radiophysics
2- and 3-prong colour antennae are sort of "trivial" : coherence being taken care of, the answers turned out to be essentially additive

The case of $2 \rightarrow 2$ hard parton scattering is more involved (4 emitters) especially so for gluon-gluon scattering.
other under soft gluon radiation

Another hidden message: QCD Radiophysics
2- and 3-prong colour antennae are sort of "trivial" : coherence being taken care of, the answers turned out to be essentially additive

The case of $2 \rightarrow 2$ hard parton scattering is more involved (4 emitters), especially so for gluon-gluon scattering.

Another hidden message: QCD Radiophysics
2- and 3-prong colour antennae are sort of "trivial" : coherence being taken care of, the answers turned out to be essentially additive

The case of $2 \rightarrow 2$ hard parton scattering is more involved (4 emitters), especially so for gluon-gluon scattering.
Here one encounters 6 (5 for $S U(3)$) colour channels that mix with each other under soft gluon radiation

Another hidden message: QCD Radiophysics
2- and 3-prong colour antennae are sort of "trivial" : coherence being taken care of, the answers turned out to be essentially additive

The case of $2 \rightarrow 2$ hard parton scattering is more involved (4 emitters), especially so for gluon-gluon scattering.
Here one encounters 6 (5 for $S U(3)$) colour channels that mix with each other under soft gluon radiation

The difficult quest of sorting out large angle gluon radiation in all orders in $\left(\alpha_{s} \log Q\right)^{n}$ was set up and solved by George Sterman and collaborators.

Another hidden message: QCD Radiophysics
2- and 3-prong colour antennae are sort of "trivial" : coherence being taken care of, the answers turned out to be essentially additive

The case of $2 \rightarrow 2$ hard parton scattering is more involved (4 emitters), especially so for gluon-gluon scattering.
Here one encounters 6 (5 for $S U(3)$) colour channels that mix with each other under soft gluon radiation

The difficult quest of sorting out large angle gluon radiation in all orders in $\left(\alpha_{s} \log Q\right)^{n}$ was set up and solved by George Sterman and collaborators.

Recent addition to the problem

Soft anomalous dimension ,

$$
\frac{\partial}{\partial \ln Q} M \propto\left\{-N_{c} \ln \left(\frac{t u}{s^{2}}\right) \cdot \hat{\Gamma}\right\} \cdot M, \quad \hat{\Gamma} V_{i}=E_{i} V_{i}
$$

$6=3+3$. Three eigenvalues are "simple"

Soft anomalous dimension ,

$$
\frac{\partial}{\partial \ln Q} M \propto\left\{-N_{c} \ln \left(\frac{t u}{s^{2}}\right) \cdot \hat{\Gamma}\right\} \cdot M, \quad \hat{\Gamma} V_{i}=E_{i} V_{i}
$$

$6=3+3$. Three eigenvalues are "simple".

Puzzle of large angle Soft Gluon radiation

Soft anomalous dimension ,

$$
\frac{\partial}{\partial \ln Q} M \propto\left\{-N_{c} \ln \left(\frac{t u}{s^{2}}\right) \cdot \hat{\Gamma}\right\} \cdot M, \quad \hat{\Gamma} V_{i}=E_{i} V_{i}
$$

$6=3+3$. Three eigenvalues are "simple".
Three "ain't-so-simple" ones were found to satisfy the cubic equation:

$$
\left[E_{i}-\frac{4}{3}\right]^{3}-\frac{\left(1+3 b^{2}\right)\left(1+3 x^{2}\right)}{3}\left[E_{i}-\frac{4}{3}\right]-\frac{2\left(1-9 b^{2}\right)\left(1-9 x^{2}\right)}{27}=0
$$

where

$$
x=\frac{1}{N}, \quad b \equiv \frac{\ln (t / s)-\ln (u / s)}{\ln (t / s)+\ln (u / s)}
$$

Soft anomalous dimension ,

$$
\frac{\partial}{\partial \ln Q} M \propto\left\{-N_{c} \ln \left(\frac{t u}{s^{2}}\right) \cdot \hat{\Gamma}\right\} \cdot M, \quad \hat{\Gamma} V_{i}=E_{i} V_{i}
$$

$6=3+3$. Three eigenvalues are "simple".
Three "ain't-so-simple" ones were found to satisfy the cubic equation:

$$
\left[E_{i}-\frac{4}{3}\right]^{3}-\frac{\left(1+3 b^{2}\right)\left(1+3 x^{2}\right)}{3}\left[E_{i}-\frac{4}{3}\right]-\frac{2\left(1-9 b^{2}\right)\left(1-9 x^{2}\right)}{27}=0
$$

where

$$
x=\frac{1}{N}, \quad b \equiv \frac{\ln (t / s)-\ln (u / s)}{\ln (t / s)+\ln (u / s)}
$$

Mark the mysterious symmetry w.r.t. to $x \rightarrow b$: interchanging internal (group rank) and external (scattering angle) variables of the problem ...

$$
\begin{aligned}
& A=\sum_{1}^{\infty}\left(\frac{\alpha_{s}}{4 \pi}\right)^{n} A_{n}, \quad \frac{A^{(g)}}{C_{A}}=\frac{A^{(q)}}{C_{F}} \quad P_{a \rightarrow a[x]+g}(x)=\frac{A\left(\alpha_{s}\right)}{1-x} \\
& \frac{A_{1}}{C}= 4 \\
& \frac{A_{2}}{C}= 8\left[\left(\frac{67}{18}-\zeta_{2}\right) C_{A}-\frac{5}{9} n_{f}\right] \\
& \frac{A_{3}}{C}= 16 C_{A}^{2}\left(\frac{245}{24}-\frac{67}{9} \zeta_{2}+\frac{11}{6} \zeta_{3}+\frac{11}{5} \zeta_{2}^{2}\right) \\
&+16 C_{F} n_{f}\left(-\frac{55}{24}+2 \zeta_{3}\right) \\
&+16 C_{A} n_{f}\left(-\frac{209}{108}+\frac{10}{9} \zeta_{2}-\frac{7}{3} \zeta_{3}\right)+16 n_{f}^{2}\left(-\frac{1}{27}\right) .
\end{aligned}
$$

$$
\begin{aligned}
& A=\sum_{1}^{\infty}\left(\frac{\alpha_{s}}{4 \pi}\right)^{n} A_{n}, \quad \frac{A^{(g)}}{C_{A}}=\frac{A^{(q)}}{C_{F}} \quad P_{a \rightarrow a[x]+g}(x)=\frac{A\left(\alpha_{s}\right)}{1-x} \\
& \frac{A_{1}}{C}= 4 \\
& \frac{A_{2}}{C}= 8\left[\left(\frac{67}{18}-\zeta_{2}\right) C_{A}-\frac{5}{9} n_{f}\right] \\
& \frac{A_{3}}{C}= 16 C_{A}^{2}\left(\frac{245}{24}-\frac{67}{9} \zeta_{2}+\frac{11}{6} \zeta_{3}+\frac{11}{5} \zeta_{2}^{2}\right) \\
&+16 C_{F} n_{f}\left(-\frac{55}{24}+2 \zeta_{3}\right) \\
&+16 C_{A} n_{f}\left(-\frac{209}{108}+\frac{10}{9} \zeta_{2}-\frac{7}{3} \zeta_{3}\right)+16 n_{f}^{2}\left(-\frac{1}{27}\right) .
\end{aligned}
$$

$$
\begin{aligned}
& A=\sum_{1}^{\infty}\left(\frac{\alpha_{s}}{4 \pi}\right)^{n} A_{n}, \quad \frac{A^{(g)}}{C_{A}}=\frac{A^{(q)}}{C_{F}} \quad P_{a \rightarrow a[x]+g}(x)=\frac{A\left(\alpha_{s}\right)}{1-x} x+\mathcal{O}(1-x) \\
& \frac{A_{1}}{C}= 4 \\
& \frac{A_{2}}{C}= 8\left[\left(\frac{67}{18}-\zeta_{2}\right) C_{A}-\frac{5}{9} n_{f}\right] \\
& \frac{A_{3}}{C}= 16 C_{A}^{2}\left(\frac{245}{24}-\frac{67}{9} \zeta_{2}+\frac{11}{6} \zeta_{3}+\frac{11}{5} \zeta_{2}^{2}\right) \\
&+16 C_{F} n_{f}\left(-\frac{55}{24}+2 \zeta_{3}\right) \\
&+16 C_{A} n_{f}\left(-\frac{209}{108}+\frac{10}{9} \zeta_{2}-\frac{7}{3} \zeta_{3}\right)+16 n_{f}^{2}\left(-\frac{1}{27}\right) .
\end{aligned}
$$

$=$ universal magnitude of double-log enhanced contributions.

Enters in

large- N asymptotics of anomalous dimensions and coefficient functions, Sudakov quark and gluon form factors,
quark and gluon Regge trajectories,
threshold resummation,
singular $(x \rightarrow 1)$ part of the Drell-Yan K-factor,
distributions of jet event shapes in the near-to-two-jet kinematics,
heavy quark fragmentation functions,
non-perturbative power suppressed effects in jet shapes and elsewhere,
$=$ universal magnitude of double-log enhanced contributions.
Enters in :
large- N asymptotics of anomalous dimensions and coefficient functions, Sudakov quark and gluon form factors, quark and gluon Regge trajectories,
threshold resummation, singular $(x \rightarrow 1)$ part of the Drell-Yan K-factor, distributions of jet event shapes in the near-to-two-jet kinematics, heavy quark fragmentation functions, non-perturbative power suppressed effects in jet shapes and elsewhere,
$=$ universal magnitude of double-log enhanced contributions.
Enters in :
large- N asymptotics of anomalous dimensions and coefficient functions, Sudakov quark and gluon form factors, quark and gluon Regge trajectories,
threshold resummation, singular $(x \rightarrow 1)$ part of the Drell-Yan K-factor, distributions of jet event shapes in the near-to-two-jet kinematics, heavy quark fragmentation functions, non-perturbative power suppressed effects in jet shapes and elsewhere,
$=$ universal magnitude of double-log enhanced contributions.
Enters in :
large- N asymptotics of anomalous dimensions and coefficient functions, Sudakov quark and gluon form factors, quark and gluon Regge trajectories, threshold resummation, singular $(x \rightarrow 1)$ part of the Drell-Yan K-factor, distributions of jet event shapes in the near-to-two-jet kinematics, heavy quark fragmentation functions, non-perturbative power suppressed effects in jet shapes and elsewhere,
$=$ universal magnitude of double-log enhanced contributions.
Enters in :
large- N asymptotics of anomalous dimensions and coefficient functions, Sudakov quark and gluon form factors, quark and gluon Regge trajectories,
threshold resummation, singular $(x \rightarrow 1)$ part of the Drell-Yan K-factor, distributions of jet event shapes in the near-to-two-jet kinematics, heavy quark fragmentation functions, non-perturbative power suppressed effects in jet shapes and elsewhere,
$=$ universal magnitude of double-log enhanced contributions.
Enters in :
large- N asymptotics of anomalous dimensions and coefficient functions, Sudakov quark and gluon form factors, quark and gluon Regge trajectories, threshold resummation, singular $(x \rightarrow 1)$ part of the Drell-Yan K-factor, distributions of jet event shapes in the near-to-two-jet kinematics, heavy quark fragmentation functions, non-perturbative power suppressed effects in jet shapes and elsewhere,

In the standard approach,

Splitting functions

Evolution Hamiltonian

Anomalous Dimensions

- parton splitting functions are equated with anomalous dimensions;
- they are different for DIS and $e^{+} e^{-}$evolution;
- "clever evolution variables" are different too

In the new approach,

- splitting functions are disconnected from the anomalous dimensions;
- the evolution kernel is identical for space- and time-like cascades (Gribov-Lipatov reciprocity relation true in all orders);
- unique evolution variable - parton fluctuation time

In the new approach,

- splitting functions are disconnected from the anomalous dimensions;
- the evolution kernel is identical for space- and time-like cascades (Gribov-Lipatov reciprocity relation true in all orders);
- unique evolution variable - parton fluctuation time

In the new approach,

- splitting functions are disconnected from the anomalous dimensions;
- the evolution kernel is identical for space- and time-like cascades (Gribov-Lipatov reciprocity relation true in all orders);
- unique evolution variable - parton fluctuation time

Kinematics of the parton splitting $A \rightarrow B+C$

Kinematics of the parton splitting $A \rightarrow B+C$

$$
k_{B} \simeq x \cdot P, \quad k_{A} \simeq \frac{x}{z} \cdot P
$$

Kinematics of the parton splitting $A \rightarrow B+C$

$$
k_{B} \simeq x \cdot P, \quad k_{A} \simeq \frac{x}{z} \cdot P
$$

Kinematics of the parton splitting $A \rightarrow B+C$

$$
k_{B} \simeq z k_{A}, \quad k_{C} \simeq(1-z) k_{A}
$$

Gauging WONDERS $(28 / 52)$
Extras
-Reciprocity Respecting Evolution

Long-living partons fluctuations

Kinematics of the parton splitting $A \rightarrow B+C$

$$
\begin{aligned}
k_{B} & \simeq z k_{A}, \quad k_{C} \simeq(1-z) k_{A} \\
\frac{\left|k_{B}^{2}\right|}{z} & =\frac{\left|k_{A}^{2}\right|}{1}+\frac{k_{C}^{2}}{1-z}+\frac{k_{\perp}^{2}}{z(1-z)}
\end{aligned}
$$

Gauging WONDERS $(28 / 52)$
-Reciprocity Respecting Evolution
Kinematics of the parton splitting $A \rightarrow B+C$

$$
\begin{gathered}
k_{B} \simeq z k_{A}, \quad k_{C} \simeq(1-z) k_{A} \\
\frac{\left|k_{B}^{2}\right|}{z}=\frac{\left|k_{A}^{2}\right|}{1}+\frac{k_{C}^{2}}{1-z}+\frac{k_{\perp}^{2}}{z(1-z)}
\end{gathered}
$$

Probability of the splitting process:

$$
d w \propto \frac{\alpha_{s}}{\pi} \frac{d k_{\perp}^{2} k_{\perp}^{2}}{\left(k_{B}^{2}\right)^{2}}
$$

Gauging WONDERS $(28 / 52)$
Extras
-Reciprocity Respecting Evolution
Kinematics of the parton splitting $A \rightarrow B+C$

$$
\begin{aligned}
& k_{B} \simeq z k_{A}, \quad k_{C} \simeq(1-z) k_{A} \\
& \frac{\left|k_{B}^{2}\right|}{z}=\frac{\left|k_{A}^{2}\right|}{1}+\frac{k_{C}^{2}}{1-z}+\frac{k_{\perp}^{2}}{z(1-z)}
\end{aligned}
$$

Probability of the splitting process:

$$
d w \propto \frac{\alpha_{s}}{\pi} \frac{d k_{\perp}^{2} k_{\perp}^{2}}{\left(k_{B}^{2}\right)^{2}} \propto \frac{\alpha_{s}}{\pi} \frac{d k_{\perp}^{2}}{k_{\perp}^{2}},
$$

Kinematics of the parton splitting $A \rightarrow B+C$

$$
\begin{aligned}
& k_{B} \simeq z k_{A}, \quad k_{C} \simeq(1-z) k_{A} \\
& \frac{\left|k_{B}^{2}\right|}{z}=\frac{\left|k_{A}^{2}\right|}{1}+\frac{k_{C}^{2}}{1-z}+\frac{k_{\perp}^{2}}{z(1-z)}
\end{aligned}
$$

Probability of the splitting process:

$$
d w \propto \frac{\alpha_{s}}{\pi} \frac{d k_{\perp}^{2} k_{\perp}^{2}}{\left(k_{B}^{2}\right)^{2}} \propto \frac{\alpha_{s}}{\pi} \frac{d k_{\perp}^{2}}{k_{\perp}^{2}},
$$

$$
\frac{\left|k_{B}^{2}\right|}{z} \simeq \frac{k_{\perp}^{2}}{z(1-z)} \gg \frac{\left|k_{A}^{2}\right|}{1}\left(\text { as well as } \frac{k_{C}^{2}}{1-z}\right)
$$

Kinematics of the parton splitting $A \rightarrow B+C$

$$
\begin{gathered}
k_{B} \simeq z k_{A}, \quad k_{C} \simeq(1-z) k_{A} \\
\frac{\left|k_{B}^{2}\right|}{z}=\frac{\left|k_{A}^{2}\right|}{1}+\frac{k_{C}^{2}}{1-z}+\frac{k_{\perp}^{2}}{z(1-z)}
\end{gathered}
$$

Probability of the splitting process:

$$
d w \propto \frac{\alpha_{s}}{\pi} \frac{d k_{\perp}^{2} k_{\perp}^{2}}{\left(k_{B}^{2}\right)^{2}} \propto \frac{\alpha_{s}}{\pi} \frac{d k_{\perp}^{2}}{k_{\perp}^{2}},
$$

$$
\frac{\left|k_{B}^{2}\right|}{z} \simeq \frac{k_{\perp}^{2}}{z(1-z)} \gg \frac{\left|k_{A}^{2}\right|}{1}\left(\text { as well as } \frac{k_{C}^{2}}{1-z}\right)
$$

This inequality has a transparent physical meaning:

$$
\frac{z \cdot E_{A}}{\left|k_{B}^{2}\right|} \ll \frac{E_{A}}{\left|k_{A}^{2}\right|}
$$

Kinematics of the parton splitting $A \rightarrow B+C$

$$
\begin{aligned}
& k_{B} \simeq z k_{A}, \quad k_{C} \simeq(1-z) k_{A} \\
& \frac{\left|k_{B}^{2}\right|}{z}=\frac{\left|k_{A}^{2}\right|}{1}+\frac{k_{C}^{2}}{1-z}+\frac{k_{\perp}^{2}}{z(1-z)}
\end{aligned}
$$

Probability of the splitting process:

$$
d w \propto \frac{\alpha_{s}}{\pi} \frac{d k_{\perp}^{2} k_{\perp}^{2}}{\left(k_{B}^{2}\right)^{2}} \propto \frac{\alpha_{s}}{\pi} \frac{d k_{\perp}^{2}}{k_{\perp}^{2}},
$$

$$
\frac{\left|k_{B}^{2}\right|}{z} \simeq \frac{k_{\perp}^{2}}{z(1-z)} \gg \frac{\left|k_{A}^{2}\right|}{1}\left(\text { as well as } \frac{k_{C}^{2}}{1-z}\right)
$$

This inequality has a transparent physical meaning:

$$
\frac{E_{B}}{\left|k_{B}^{2}\right|}=\frac{z \cdot E_{A}}{\left|k_{B}^{2}\right|} \ll \frac{E_{A}}{\left|k_{A}^{2}\right|}
$$

Kinematics of the parton splitting $A \rightarrow B+C$

$$
\begin{gathered}
k_{B} \simeq z k_{A}, \quad k_{C} \simeq(1-z) k_{A} \\
\frac{\left|k_{B}^{2}\right|}{z}=\frac{\left|k_{A}^{2}\right|}{1}+\frac{k_{C}^{2}}{1-z}+\frac{k_{\perp}^{2}}{z(1-z)}
\end{gathered}
$$

Probability of the splitting process:

$$
d w \propto \frac{\alpha_{s}}{\pi} \frac{d k_{\perp}^{2} k_{\perp}^{2}}{\left(k_{B}^{2}\right)^{2}} \propto \frac{\alpha_{s}}{\pi} \frac{d k_{\perp}^{2}}{k_{\perp}^{2}},
$$

$$
\frac{\left|k_{B}^{2}\right|}{z} \simeq \frac{k_{\perp}^{2}}{z(1-z)} \gg \frac{\left|k_{A}^{2}\right|}{1}\left(\text { as well as } \frac{k_{C}^{2}}{1-z}\right)
$$

This inequality has a transparent physical meaning:

$$
t_{B} \equiv \frac{E_{B}}{\left|k_{B}^{2}\right|}=\frac{z \cdot E_{A}}{\left|k_{B}^{2}\right|} \ll \frac{E_{A}}{\left|k_{A}^{2}\right|} \equiv t_{A}
$$

Kinematics of the parton splitting $A \rightarrow B+C$

$$
\begin{gathered}
k_{B} \simeq z k_{A}, \quad k_{C} \simeq(1-z) k_{A} \\
\frac{\left|k_{B}^{2}\right|}{z}=\frac{\left|k_{A}^{2}\right|}{1}+\frac{k_{C}^{2}}{1-z}+\frac{k_{\perp}^{2}}{z(1-z)}
\end{gathered}
$$

Probability of the splitting process:

$$
d w \propto \frac{\alpha_{s}}{\pi} \frac{d k_{\perp}^{2} k_{\perp}^{2}}{\left(k_{B}^{2}\right)^{2}} \propto \frac{\alpha_{s}}{\pi} \frac{d k_{\perp}^{2}}{k_{\perp}^{2}},
$$

$$
\frac{\left|k_{B}^{2}\right|}{z} \simeq \frac{k_{\perp}^{2}}{z(1-z)} \gg \frac{\left|k_{A}^{2}\right|}{1}\left(\text { as well as } \frac{k_{C}^{2}}{1-z}\right)
$$

This inequality has a transparent physical meaning:

$$
t_{B} \equiv \frac{E_{B}}{\left|k_{B}^{2}\right|}=\frac{z \cdot E_{A}}{\left|k_{B}^{2}\right|} \ll \frac{E_{A}}{\left|k_{A}^{2}\right|} \equiv t_{A}
$$

strongly ordered lifetimes of successive parton fluctuations !

Beyond the 1st loop, it starts to matter how does one order successive parton splittings that is, what one chooses for "parton evolution time".
The "clever choices" had been established quite some time ago:

Beyond the 1st loop, it starts to matter how does one order successive parton splittings that is, what one chooses for "parton evolution time". The "clever choices" had been established quite some time ago:

$$
d \xi=d \ln \frac{k_{\perp}^{2}}{1} \quad(\text { space-like }), \quad d \xi=d \ln \frac{k_{\perp}^{2}}{z^{2}} \quad(\text { time-like }) .
$$

Transverse momentum ordering vs. angular ordering.

Beyond the 1st loop, it starts to matter how does one order successive parton splittings that is, what one chooses for "parton evolution time". The "clever choices" had been established quite some time ago:

$$
d \xi=d \ln \frac{k_{\perp}^{2}}{1} \quad(\text { space-like }), \quad d \xi=d \ln \frac{k_{\perp}^{2}}{z^{2}} \quad(\text { time-like }) .
$$

Transverse momentum ordering

Beyond the 1st loop, it starts to matter how does one order successive parton splittings that is, what one chooses for "parton evolution time". The "clever choices" had been established quite some time ago:

$$
d \xi=d \ln \frac{k_{\perp}^{2}}{1} \quad(\text { space-like }), \quad d \xi=d \ln \frac{k_{\perp}^{2}}{z^{2}} \quad(\text { time-like }) .
$$

Transverse momentum ordering vs. angular ordering.

Beyond the 1st loop, it starts to matter how does one order successive parton splittings that is, what one chooses for "parton evolution time". The "clever choices" had been established quite some time ago:

$$
d \xi=d \ln \frac{k_{\perp}^{2}}{1} \quad(\text { space-like }), \quad d \xi=d \ln \frac{k_{\perp}^{2}}{z^{2}} \quad(\text { time-like }) .
$$

Transverse momentum ordering vs. angular ordering.
Each of these two clever choices - consequence of taking into full consideration soft gluon coherence in order to prevent explosively large terms $\left(\alpha_{s} \ln ^{2} x\right)^{n}$ from appearing in higher loop anomalous dimensions.

Beyond the 1st loop, it starts to matter how does one order successive parton splittings that is, what one chooses for "parton evolution time". The "clever choices" had been established quite some time ago:

$$
d \xi=d \ln \frac{k_{\perp}^{2}}{1} \quad(\text { space-like }), \quad d \xi=d \ln \frac{k_{\perp}^{2}}{z^{2}} \quad(\text { time-like }) .
$$

Transverse momentum ordering vs. angular ordering. Each of these two clever choices - consequence of taking into full consideration soft gluon coherence in order to prevent explosively large terms $\left(\alpha_{s} \ln ^{2} x\right)^{n}$ from appearing in higher loop anomalous dimensions. A good dynamical move.

Beyond the 1st loop, it starts to matter how does one order successive parton splittings that is, what one chooses for "parton evolution time". The "clever choices" had been established quite some time ago:

$$
d \xi=d \ln \frac{k_{\perp}^{2}}{1} \quad(\text { space-like }), \quad d \xi=d \ln \frac{k_{\perp}^{2}}{z^{2}} \quad(\text { time-like })
$$

Transverse momentum ordering vs. angular ordering.
Each of these two clever choices - consequence of taking into full consideration soft gluon coherence in order to prevent explosively large terms $\left(\alpha_{s} \ln ^{2} x\right)^{n}$ from appearing in higher loop anomalous dimensions.
A good dynamical move. But a lousy one kinematically:
Having abandoned fluctuation time ordering,

$$
d \xi=d \ln \frac{k_{\perp}^{2}}{z}
$$

we've lost quite a bit of wisdom along with it

Beyond the 1st loop, it starts to matter how does one order successive parton splittings that is, what one chooses for "parton evolution time". The "clever choices" had been established quite some time ago:

$$
d \xi=d \ln \frac{k_{\perp}^{2}}{1} \quad(\text { space-like }), \quad d \xi=d \ln \frac{k_{\perp}^{2}}{z^{2}} \quad(\text { time-like }) .
$$

Transverse momentum ordering vs. angular ordering.
Each of these two clever choices - consequence of taking into full consideration soft gluon coherence in order to prevent explosively large terms $\left(\alpha_{s} \ln ^{2} x\right)^{n}$ from appearing in higher loop anomalous dimensions.
A good dynamical move. But a lousy one kinematically: Having abandoned fluctuation time ordering,

$$
d \xi=d \ln \frac{k_{\perp}^{2}}{z}
$$

we've lost quite a bit of wisdom along with it

Space-like parton evolution (S) vs. time-like fragmentation (T)
$\underline{\text { Drell-Levy-Yan relation }}$

$$
P_{B A}^{(T)}(x)=\mp x \cdot P_{A B}^{(S)}\left(x^{-1}\right)
$$

Space-like parton evolution (S) vs. time-like fragmentation (T)
Drell-Levy-Yan relation

$$
P_{B A}^{(T)}(x)=\mp x \cdot P_{A B}^{(S)}\left(x^{-1}\right)
$$

True in any QFT, it reflects the crossing and allows to link the two channels by analytic continuation, from $x<1$ to $x>1$:

Bukhvostov, Lipatov, Popov (1974)
Drell-Levy-Yan relation beyond leading log
Blümlein, Ravindran, W.L. van Neerven (2000)

Space-like parton evolution (S) vs. time-like fragmentation (T)
$\underline{\text { Drell-Levy-Yan relation }}$

$$
P_{B A}^{(T)}(x)=\mp x \cdot P_{A B}^{(S)}\left(x^{-1}\right)
$$

True in any QFT, it reflects the crossing and allows to link the two channels by analytic continuation, from $x<1$ to $x>1$:

Bukhvostov, Lipatov, Popov (1974)

Drell-Levy-Yan relation beyond leading log

Blümlein, Ravindran, W.L. van Neerven (2000)
In the Leading Log Approximation (1 loop),
Gribov-Lipatov relation

Space-like parton evolution (S) vs. time-like fragmentation (T)
$\underline{\text { Drell-Levy-Yan relation }}$

$$
P_{B A}^{(T)}(x)=\mp x \cdot P_{A B}^{(S)}\left(x^{-1}\right)
$$

True in any QFT, it reflects the crossing and allows to link the two channels by analytic continuation, from $x<1$ to $x>1$:

Bukhvostov, Lipatov, Popov (1974)

Drell-Levy-Yan relation beyond leading log

Blümlein, Ravindran, W.L. van Neerven (2000)
In the Leading Log Approximation (1 loop),
Gribov-Lipatov relation

$$
P_{B A}^{(T)}\left(x_{\text {Feynman }}\right)=P_{B A}^{(S)}\left(x_{\text {Bjorken }}\right) ; \quad x_{B}=\frac{-q^{2}}{2 p q}, \quad x_{F}=\frac{2 p q}{q^{2}}
$$

Mark the different meaning of x in the two channels!

Space-like parton evolution (S) vs. time-like fragmentation (T)
$\underline{\text { Drell-Levy-Yan relation }}$

$$
P_{B A}^{(T)}(x)=\mp x \cdot P_{A B}^{(S)}\left(x^{-1}\right)
$$

True in any QFT, it reflects the crossing and allows to link the two channels by analytic continuation, from $x<1$ to $x>1$:

Bukhvostov, Lipatov, Popov (1974)

Drell-Levy-Yan relation beyond leading log

Blümlein, Ravindran, W.L. van Neerven (2000)
In the Leading Log Approximation (1 loop),
Gribov-Lipatov reciprocity

$$
P_{B A}(x)=\mp x \cdot P_{A B}\left(x^{-1}\right)
$$

Space-like parton evolution (S) vs. time-like fragmentation (T)
$\underline{\text { Drell-Levy-Yan relation }}$

$$
P_{B A}^{(T)}(x)=\mp x \cdot P_{A B}^{(S)}\left(x^{-1}\right)
$$

True in any QFT, it reflects the crossing and allows to link the two channels by analytic continuation, from $x<1$ to $x>1$:

Bukhvostov, Lipatov, Popov (1974)

Drell-Levy-Yan relation beyond leading log

Blümlein, Ravindran, W.L. van Neerven (2000)
In the Leading Log Approximation (1 loop),
Gribov-Lipatov reciprocity

$$
P_{B A}(x)=\mp x \cdot P_{A B}\left(x^{-1}\right)
$$

GLR was found to be broken beyond the 1st loop.

Space-like parton evolution (S) vs. time-like fragmentation (T)
$\underline{\text { Drell-Levy-Yan relation }}$

$$
P_{B A}^{(T)}(x)=\mp x \cdot P_{A B}^{(S)}\left(x^{-1}\right)
$$

True in any QFT, it reflects the crossing and allows to link the two channels by analytic continuation, from $x<1$ to $x>1$:

Bukhvostov, Lipatov, Popov (1974)

Drell-Levy-Yan relation beyond leading log

Blümlein, Ravindran, W.L. van Neerven (2000)
In the Leading Log Approximation (1 loop),
Gribov-Lipatov reciprocity

$$
P_{B A}(x)=\mp x \cdot P_{A B}\left(x^{-1}\right)
$$

GLR was found to be broken beyond the 1st loop.

Fluctuation time ordering :
D-r (HERA, 1993)

$$
\frac{d D^{A}\left(x, Q^{2}\right)}{d \ln Q^{2}}=\int_{0}^{1} \frac{d z}{z} \mathcal{P}_{B}^{A}\left(z ; \alpha_{s}\right) D^{B}\left(\frac{x}{z}, z^{\sigma} Q^{2}\right)
$$

Fluctuation time ordering :

$$
\frac{d D^{A}\left(x, Q^{2}\right)}{d \ln Q^{2}}=\int_{0}^{1} \frac{d z}{z} \mathcal{P}_{B}^{A}\left(z ; \alpha_{s}\right) D^{B}\left(\frac{x}{z}, z^{\sigma} Q^{2}\right)
$$

$$
\sigma= \begin{cases}+1, & (\mathrm{~T}) \\ -1, & \text { (S) }\end{cases}
$$

Fluctuation time ordering :
$\frac{d D^{A}\left(x, Q^{2}\right)}{d \ln Q^{2}}=\int_{0}^{1} \frac{d z}{z} \mathcal{P}_{B}^{A}\left(z ; \alpha_{s}\right) D^{B}\left(\frac{x}{z}, z^{\sigma} Q^{2}\right), \quad \sigma= \begin{cases}+1, & (\mathrm{~T}) \\ -1, & \text { (S) }\end{cases}$
which is non-local due to the mixing of z and Q^{2} in the hardness scale.

Reciprocity Respecting Evolution

Fluctuation time ordering :

$$
\frac{d D^{A}\left(x, Q^{2}\right)}{d \ln Q^{2}}=\int_{0}^{1} \frac{d z}{z} \mathcal{P}_{B}^{A}\left(z ; \alpha_{s}\right) D^{B}\left(\frac{x}{z}, z^{\sigma} Q^{2}\right), \quad \sigma=\left\{\begin{array}{l}
+1, \tag{T}\\
-1,
\end{array}\right.
$$

which is non-local due to the mixing of z and Q^{2} in the hardness scale.
This non-locality can be handled using the Taylor series trick:

$$
\int_{0}^{1} \frac{d z}{z} \mathcal{P}\left(z, \alpha_{s}\right) D\left(z^{\sigma} Q^{2}\right)=\int_{0}^{1} \frac{d z}{z} \mathcal{P}(z) z^{\sigma \frac{d}{d \ln Q^{2}}} D\left(Q^{2}\right), \quad d \equiv \frac{d}{d \ln Q^{2}}
$$

Reciprocity Respecting Evolution

Fluctuation time ordering :

$$
\frac{d D^{A}\left(x, Q^{2}\right)}{d \ln Q^{2}}=\int_{0}^{1} \frac{d z}{z} \mathcal{P}_{B}^{A}\left(z ; \alpha_{s}\right) D^{B}\left(\frac{x}{z}, z^{\sigma} Q^{2}\right), \quad \sigma=\left\{\begin{array}{l}
+1, \\
-1,
\end{array}\right.
$$

D-r (HERA, 1993)
which is non-local due to the mixing of z and Q^{2} in the hardness scale.
This non-locality can be handled using the Taylor series trick:

$$
\int_{0}^{1} \frac{d z}{z} \mathcal{P}\left(z, \alpha_{s}\right) D\left(z^{\sigma} Q^{2}\right)=\int_{0}^{1} \frac{d z}{z} \mathcal{P}(z) z^{\sigma \frac{d}{d \ln Q^{2}}} D\left(Q^{2}\right), \quad d \equiv \frac{d}{d \ln Q^{2}}
$$

In the Mellin moment space,

$$
P_{N} \equiv \int_{0}^{1} \frac{d z}{z} P(z) z^{N} \quad \Longrightarrow \quad \gamma_{N} \cdot D_{N}\left(Q^{2}\right)=\mathcal{P}_{N+\sigma d} \cdot D_{N}\left(Q^{2}\right)
$$

the evolution kernel \mathcal{P} emerges with the differential operator for argument.

Reciprocity Respecting Evolution

Fluctuation time ordering :
D-r (HERA, 1993)

$$
\frac{d D^{A}\left(x, Q^{2}\right)}{d \ln Q^{2}}=\int_{0}^{1} \frac{d z}{z} \mathcal{P}_{B}^{A}\left(z ; \alpha_{s}\right) D^{B}\left(\frac{x}{z}, z^{\sigma} Q^{2}\right), \quad \sigma=\left\{\begin{array}{l}
+1, \tag{T}\\
-1,
\end{array}\right.
$$

which is non-local due to the mixing of z and Q^{2} in the hardness scale.
This non-locality can be handled using the Taylor series trick:

$$
\int_{0}^{1} \frac{d z}{z} \mathcal{P}\left(z, \alpha_{s}\right) D\left(z^{\sigma} Q^{2}\right)=\int_{0}^{1} \frac{d z}{z} \mathcal{P}(z) z^{\sigma \frac{d}{d \ln Q^{2}}} D\left(Q^{2}\right), \quad d \equiv \frac{d}{d \ln Q^{2}}
$$

In the Mellin moment space,

$$
P_{N} \equiv \int_{0}^{1} \frac{d z}{z} P(z) z^{N} \quad \Longrightarrow \quad \gamma_{N} \cdot D_{N}\left(Q^{2}\right)=\mathcal{P}_{N+\sigma d} \cdot D_{N}\left(Q^{2}\right)
$$

the evolution kernel \mathcal{P} emerges with the differential operator for argument.

Expanding, get an equation for the an.dim. γ
$\gamma[\alpha]=\mathcal{P}+\dot{\mathcal{P}} \cdot(\sigma \gamma+\beta / \alpha)+\frac{1}{2} \ddot{\mathcal{P}} \cdot\left[\gamma^{2}+\sigma\left(2 \beta / \alpha \gamma+\beta \partial_{\alpha} \gamma\right)+\beta / \alpha \partial_{\alpha} \beta\right]+\mathcal{O}\left(\alpha^{4}\right)$.

Reciprocity Respecting Evolution

Fluctuation time ordering :

$$
\frac{d D^{A}\left(x, Q^{2}\right)}{d \ln Q^{2}}=\int_{0}^{1} \frac{d z}{z} \mathcal{P}_{B}^{A}\left(z ; \alpha_{s}\right) D^{B}\left(\frac{x}{z}, z^{\sigma} Q^{2}\right), \quad \sigma=\left\{\begin{array}{l}
+1, \\
-1,
\end{array}\right.
$$

D-r (HERA, 1993)
which is non-local due to the mixing of z and Q^{2} in the hardness scale.
This non-locality can be handled using the Taylor series trick:

$$
\int_{0}^{1} \frac{d z}{z} \mathcal{P}\left(z, \alpha_{s}\right) D\left(z^{\sigma} Q^{2}\right)=\int_{0}^{1} \frac{d z}{z} \mathcal{P}(z) z^{\sigma \frac{d}{d \ln Q^{2}}} D\left(Q^{2}\right), \quad d \equiv \frac{d}{d \ln Q^{2}}
$$

In the Mellin moment space,

$$
P_{N} \equiv \int_{0}^{1} \frac{d z}{z} P(z) z^{N} \quad \Longrightarrow \quad \gamma_{N} \cdot D_{N}\left(Q^{2}\right)=\mathcal{P}_{N+\sigma d} \cdot D_{N}\left(Q^{2}\right)
$$

the evolution kernel \mathcal{P} emerges with the differential operator for argument.

Expanding, get an equation for the an.dim. γ, one for both channels
$\gamma[\alpha]=\mathcal{P}+\dot{\mathcal{P}} \cdot(\sigma \gamma+\beta / \alpha)+\frac{1}{2} \ddot{\mathcal{P}} \cdot\left[\gamma^{2}+\sigma\left(2 \beta / \alpha \gamma+\beta \partial_{\alpha} \gamma\right)+\beta / \alpha \partial_{\alpha} \beta\right]+\mathcal{O}\left(\alpha^{4}\right)$.

GLR beyond the 1st loop

Examine the "reciprocity respecting equation" (RRE) by feeding in the one-loop parton "Hamiltonian", $\mathcal{P}(\alpha) \simeq \alpha P_{1}$:

$$
\begin{aligned}
\gamma[\alpha] & =\mathcal{P}+\dot{\mathcal{P}} \cdot(\sigma \gamma+\beta / \alpha)+\frac{1}{2} \ddot{\mathcal{P}} \cdot\left[\gamma^{2}+\sigma\left(2 \beta / \alpha \gamma+\beta \partial_{\alpha} \gamma\right)+\beta / \alpha \partial_{\alpha} \beta\right]+\ldots \\
& =\alpha P_{1}+\alpha^{2} \cdot\left(\sigma P_{1} \dot{P}_{1}+\beta_{0}\right) \quad+\mathcal{O}\left(\alpha^{3}\right)
\end{aligned}
$$

Examine the "reciprocity respecting equation" (RRE) by feeding in the one-loop parton "Hamiltonian", $\quad \mathcal{P}(\alpha) \simeq \alpha P_{1}$:

$$
\begin{aligned}
\gamma[\alpha] & =\mathcal{P}+\dot{\mathcal{P}} \cdot(\sigma \gamma+\beta / \alpha)+\frac{1}{2} \ddot{\mathcal{P}} \cdot\left[\gamma^{2}+\sigma\left(2 \beta / \alpha \gamma+\beta \partial_{\alpha} \gamma\right)+\beta / \alpha \partial_{\alpha} \beta\right]+\ldots \\
& =\alpha P_{1}+\alpha^{2} \cdot\left(\sigma P_{1} \dot{P}_{1}+\beta_{0}\right) \quad+\mathcal{O}\left(\alpha^{3}\right)
\end{aligned}
$$

The difference between time- and space-like anomalous dimensions,

$$
\frac{1}{2}\left[P^{(T)}-P^{(S)}\right]=\alpha^{2} \cdot P_{1} \dot{P}_{1}+\mathcal{O}\left(\alpha^{3}\right),
$$

in the x-space corresponds to the convolution

$$
\frac{1}{2}\left[P_{q q}^{(2), T}-P_{q q}^{(2), S}\right]=\int_{0}^{1} \frac{d z}{z}\left\{P_{q q}^{(1)}\left(\frac{x}{z}\right)\right\}_{+} \cdot P_{q q}^{(1)}(z) \ln z,
$$

responsible for GLR violation in the 2nd loop non-singlet quark anomalous dimension, as found by Curci, Furmanski \& Petronzio
(1980)

Examine the "reciprocity respecting equation" (RRE) by feeding in the one-loop parton "Hamiltonian", $\mathcal{P}(\alpha) \simeq \alpha P_{1}$:

$$
\begin{aligned}
\gamma[\alpha] & =\mathcal{P}+\dot{\mathcal{P}} \cdot(\sigma \gamma+\beta / \alpha)+\frac{1}{2} \ddot{\mathcal{P}} \cdot\left[\gamma^{2}+\sigma\left(2 \beta / \alpha \gamma+\beta \partial_{\alpha} \gamma\right)+\beta / \alpha \partial_{\alpha} \beta\right]+\ldots \\
& =\alpha P_{1}+\alpha^{2} \cdot\left(\sigma P_{1} \dot{P}_{1}+\beta_{0}+\mathcal{P}_{2}\right)+\mathcal{O}\left(\alpha^{3}\right)
\end{aligned}
$$

The difference between time- and space-like anomalous dimensions,

$$
\frac{1}{2}\left[P^{(T)}-P^{(S)}\right]=\alpha^{2} \cdot P_{1} \dot{P}_{1}+\mathcal{O}\left(\alpha^{3}\right),
$$

in the x-space corresponds to the convolution

$$
\frac{1}{2}\left[P_{q q}^{(2), T}-P_{q q}^{(2), S}\right]=\int_{0}^{1} \frac{d z}{z}\left\{P_{q q}^{(1)}\left(\frac{x}{z}\right)\right\}_{+} \cdot P_{q q}^{(1)}(z) \ln z,
$$

responsible for GLR violation in the 2nd loop non-singlet quark anomalous dimension, as found by Curci, Furmanski \& Petronzio
(1980)
$\Longrightarrow \quad$ the genuine \mathcal{P}_{2} does not contain σ, is GLR respecting

Examine the "reciprocity respecting equation" (RRE) by feeding in the one-loop parton "Hamiltonian", $\quad \mathcal{P}(\alpha) \simeq \alpha P_{1}$:

$$
\begin{aligned}
\gamma[\alpha] & =\mathcal{P}+\dot{\mathcal{P}} \cdot(\sigma \gamma+\beta / \alpha)+\frac{1}{2} \ddot{\mathcal{P}} \cdot\left[\gamma^{2}+\sigma\left(2 \beta / \alpha \gamma+\beta \partial_{\alpha} \gamma\right)+\beta / \alpha \partial_{\alpha} \beta\right]+\ldots \\
& =\alpha P_{1}+\alpha^{2} \cdot\left(\sigma P_{1} \dot{P}_{1}+\beta_{0}+\mathcal{P}_{2}\right)+\mathcal{O}\left(\alpha^{3}\right)
\end{aligned}
$$

The difference between time- and space-like anomalous dimensions,

$$
\frac{1}{2}\left[P^{(T)}-P^{(S)}\right]=\alpha^{2} \cdot P_{1} \dot{P}_{1}+\mathcal{O}\left(\alpha^{3}\right)
$$

in the x-space corresponds to the convolution

$$
\frac{1}{2}\left[P_{q q}^{(2), T}-P_{q q}^{(2), S}\right]=\int_{0}^{1} \frac{d z}{z}\left\{P_{q q}^{(1)}\left(\frac{x}{z}\right)\right\}_{+} \cdot P_{q q}^{(1)}(z) \ln z,
$$

responsible for GLR violation in the 2nd loop non-singlet quark anomalous dimension, as found by Curci, Furmanski \& Petronzio
(1980)

More generally, a renormalization scheme transformation as a cure for/against GLR violation was proposed by Stratmann \& Vogelsang (1996)

Second loop $G \rightarrow G \quad$ [quark box]

$$
P_{G}^{(S)}=8 x-16+\frac{20}{3} x^{2}+\frac{4}{3} x^{-1}-(6+10 x) \ln x-2(1+x) \ln ^{2} x
$$

$P_{G}^{(T)}=12 x-4-\frac{164}{9} x^{2}+\frac{92}{9} x^{-1}+\left(10+14 x+\frac{16}{3}\left[x^{2}+x^{-1}\right]\right) \ln x+2(1+x) \ln ^{2} x ;$
Non-singlet $F \rightarrow F \quad$ [via 2 gluons]
$P_{F}^{(S)}=12 x-4-\frac{112}{9} x^{2}+\frac{40}{9} x^{-1}+\left(2+10 x+\frac{16}{3} x^{2}\right) \ln x-2(1+x) \ln ^{2} x$,
$P_{F}^{(T)}=8 x-16+\frac{112}{9} x^{2}-\frac{40}{9} x^{-1}-\left(10+18 x+\frac{16}{3} x^{2}\right) \ln x+2(1+x) \ln ^{2} x$

Second loop $G \rightarrow G$ [quark box]
$P_{G}^{(S)}=8 x-16+\frac{20}{3} x^{2}+\frac{4}{3} x^{-1}-(6+10 x) \ln x-2(1+x) \ln ^{2} x$,
$P_{G}^{(T)}=12 x-4-\frac{164}{9} x^{2}+\frac{92}{9} x^{-1}+\left(10+14 x+\frac{16}{3}\left[x^{2}+x^{-1}\right]\right) \ln x+2(1+x) \ln ^{2} x ;$
Non-singlet $F \rightarrow F \quad$ [via 2 gluons]
$P_{F}^{(S)}=12 x-4-\frac{112}{9} x^{2}+\frac{40}{9} x^{-1}+\left(2+10 x+\frac{16}{3} x^{2}\right) \ln x-2(1+x) \ln ^{2} x$,
$P_{F}^{(T)}=8 x-16+\frac{112}{9} x^{2}-\frac{40}{9} x^{-1}-\left(10+18 x+\frac{16}{3} x^{2}\right) \ln x+2(1+x) \ln ^{2} x$ Cross-differences :

$$
\frac{1}{2}\left[P_{F}^{(T)}-P_{G}^{(S)}\right]=P_{F}^{G} \dot{P}_{G}^{F}, \quad \frac{1}{2}\left[P_{G}^{(T)}-P_{F}^{(S)}\right]=P_{G}^{F} \dot{P}_{F}^{G}
$$

Second loop $G \rightarrow G \quad$ [quark box]
$P_{G}^{(S)}=8 x-16+\frac{20}{3} x^{2}+\frac{4}{3} x^{-1}-(6+10 x) \ln x-2(1+x) \ln ^{2} x$,
$P_{G}^{(T)}=12 x-4-\frac{164}{9} x^{2}+\frac{92}{9} x^{-1}+\left(10+14 x+\frac{16}{3}\left[x^{2}+x^{-1}\right]\right) \ln x+2(1+x) \ln ^{2} x ;$
Non-singlet $F \rightarrow F \quad$ [via 2 gluons]
$P_{F}^{(S)}=12 x-4-\frac{112}{9} x^{2}+\frac{40}{9} x^{-1}+\left(2+10 x+\frac{16}{3} x^{2}\right) \ln x-2(1+x) \ln ^{2} x$,
$P_{F}^{(T)}=8 x-16+\frac{112}{9} x^{2}-\frac{40}{9} x^{-1}-\left(10+18 x+\frac{16}{3} x^{2}\right) \ln x+2(1+x) \ln ^{2} x$
Cross-differences :

$$
\frac{1}{2}\left[P_{F}^{(T)}-P_{G}^{(S)}\right]=P_{F}^{G} \dot{P}_{G}^{F}, \quad \frac{1}{2}\left[P_{G}^{(T)}-P_{F}^{(S)}\right]=P_{G}^{F} \dot{P}_{F}^{G}
$$

Another important aspect of the RREE is the "double nature" of the perturbative expansion - in $\alpha_{\text {phys }}$ and, at the same time, in $(1-x)$:

$$
\begin{aligned}
\gamma[\alpha] & =\mathcal{P}+\dot{\mathcal{P}} \cdot(\sigma \gamma+\beta / \alpha)+\frac{1}{2} \ddot{\mathcal{P}} \cdot\left(\gamma^{2}+\sigma\left(2 \beta / \alpha \gamma+\beta \partial_{\alpha} \gamma\right)+\beta / \alpha \partial_{\alpha} \beta\right)+\ldots \\
& =\alpha \ln N+\alpha^{2} \cdot(1 / N)+\alpha^{3} \cdot\left(1 / N^{2}\right)+\alpha^{4} \cdot\left(1 / N^{3}\right)+\ldots
\end{aligned}
$$

Another important aspect of the RREE is the "double nature" of the perturbative expansion - in $\alpha_{\text {phys }}$ and, at the same time, in $(1-x)$:

$$
\begin{aligned}
\gamma[\alpha] & =\mathcal{P}+\dot{\mathcal{P}} \cdot(\sigma \gamma+\beta / \alpha)+\frac{1}{2} \ddot{\mathcal{P}} \cdot\left(\gamma^{2}+\sigma\left(2 \beta / \alpha \gamma+\beta \partial_{\alpha} \gamma\right)+\beta / \alpha \partial_{\alpha} \beta\right)+\ldots \\
& =\alpha \ln N+\alpha^{2} \cdot(1 / N)+\alpha^{3} \cdot\left(1 / N^{2}\right)+\alpha^{4} \cdot\left(1 / N^{3}\right)+\ldots
\end{aligned}
$$

Another important aspect of the RREE is the "double nature" of the perturbative expansion - in $\alpha_{\text {phys }}$ and, at the same time, in $(1-x)$:

$$
\begin{aligned}
\gamma[\alpha] & =\mathcal{P}+\dot{\mathcal{P}} \cdot(\sigma \gamma+\beta / \alpha)+\frac{1}{2} \ddot{\mathcal{P}} \cdot\left(\gamma^{2}+\sigma\left(2 \beta / \alpha \gamma+\beta \partial_{\alpha} \gamma\right)+\beta / \alpha \partial_{\alpha} \beta\right)+\ldots \\
& =\alpha \ln N+\alpha^{2} \cdot(1 / N)+\alpha^{3} \cdot\left(1 / N^{2}\right)+\alpha^{4} \cdot\left(1 / N^{3}\right)+\ldots
\end{aligned}
$$

Another important aspect of the RREE is the "double nature" of the perturbative expansion - in $\alpha_{\text {phys }}$ and, at the same time, in $(1-x)$:

$$
\begin{aligned}
\gamma[\alpha] & =\mathcal{P}+\dot{\mathcal{P}} \cdot(\sigma \gamma+\beta / \alpha)+\frac{1}{2} \ddot{\mathcal{P}} \cdot\left(\gamma^{2}+\sigma\left(2 \beta / \alpha \gamma+\beta \partial_{\alpha} \gamma\right)+\beta / \alpha \partial_{\alpha} \beta\right)+\ldots \\
& =\alpha \ln N+\alpha^{2} \cdot(1 / N)+\alpha^{3} \cdot\left(1 / N^{2}\right)+\alpha^{4} \cdot\left(1 / N^{3}\right)+\ldots
\end{aligned}
$$

Another important aspect of the RREE is the "double nature" of the perturbative expansion - in $\alpha_{\text {phys }}$ and, at the same time, in $(1-x)$:

$$
\begin{aligned}
\gamma[\alpha] & =\mathcal{P}+\dot{\mathcal{P}} \cdot(\sigma \gamma+\beta / \alpha)+\frac{1}{2} \ddot{\mathcal{P}} \cdot\left(\gamma^{2}+\sigma\left(2 \beta / \alpha \gamma+\beta \partial_{\alpha} \gamma\right)+\beta / \alpha \partial_{\alpha} \beta\right)+\ldots \\
& =\alpha \ln N+\alpha^{2} \cdot(1 / N)+\alpha^{3} \cdot\left(1 / N^{2}\right)+\alpha^{4} \cdot\left(1 / N^{3}\right)+\ldots
\end{aligned}
$$

In the $x \rightarrow 1$ limit (large moments N) inherited structures determine first subleading corrections in all orders !

Another important aspect of the RREE is the "double nature" of the perturbative expansion - in $\alpha_{\text {phys }}$ and, at the same time, in $(1-x)$:

$$
\begin{aligned}
\gamma[\alpha] & =\mathcal{P}+\dot{\mathcal{P}} \cdot(\sigma \gamma+\beta / \alpha)+\frac{1}{2} \ddot{\mathcal{P}} \cdot\left(\gamma^{2}+\sigma\left(2 \beta / \alpha \gamma+\beta \partial_{\alpha} \gamma\right)+\beta / \alpha \partial_{\alpha} \beta\right)+\ldots \\
& =\alpha \ln N+\alpha^{2} \cdot(1 / N)+\alpha^{3} \cdot\left(1 / N^{2}\right)+\alpha^{4} \cdot\left(1 / N^{3}\right)+\ldots
\end{aligned}
$$

In the $x \rightarrow 1$ limit (large moments N) inherited structures determine first subleading corrections in all orders !

$$
\gamma(x)=\frac{A x}{(1-x)_{+}}+B \delta(1-x)+C \ln (1-x)+D+\mathcal{O}\left((1-x) \log ^{p}(1-x)\right)
$$

Another important aspect of the RREE is the "double nature" of the perturbative expansion - in $\alpha_{\text {phys }}$ and, at the same time, in $(1-x)$:

$$
\begin{aligned}
\gamma[\alpha] & =\mathcal{P}+\dot{\mathcal{P}} \cdot(\sigma \gamma+\beta / \alpha)+\frac{1}{2} \ddot{\mathcal{P}} \cdot\left(\gamma^{2}+\sigma\left(2 \beta / \alpha \gamma+\beta \partial_{\alpha} \gamma\right)+\beta / \alpha \partial_{\alpha} \beta\right)+\ldots \\
& =\alpha \ln N+\alpha^{2} \cdot(1 / N)+\alpha^{3} \cdot\left(1 / N^{2}\right)+\alpha^{4} \cdot\left(1 / N^{3}\right)+\ldots
\end{aligned}
$$

In the $x \rightarrow 1$ limit (large moments N) inherited structures determine first subleading corrections in all orders !

$$
\gamma(x)=\frac{A x}{(1-x)_{+}}+B \delta(1-x)+C \ln (1-x)+D+\mathcal{O}\left((1-x) \log ^{p}(1-x)\right)
$$

A gap between classical radiation (Low-Burnett-Kroll wisdom)

Another important aspect of the RREE is the "double nature" of the perturbative expansion - in $\alpha_{\text {phys }}$ and, at the same time, in $(1-x)$:

$$
\begin{aligned}
\gamma[\alpha] & =\mathcal{P}+\dot{\mathcal{P}} \cdot(\sigma \gamma+\beta / \alpha)+\frac{1}{2} \ddot{\mathcal{P}} \cdot\left(\gamma^{2}+\sigma\left(2 \beta / \alpha \gamma+\beta \partial_{\alpha} \gamma\right)+\beta / \alpha \partial_{\alpha} \beta\right)+\ldots \\
& =\alpha \ln N+\alpha^{2} \cdot(1 / N)+\alpha^{3} \cdot\left(1 / N^{2}\right)+\alpha^{4} \cdot\left(1 / N^{3}\right)+\ldots
\end{aligned}
$$

In the $x \rightarrow 1$ limit (large moments N) inherited structures determine first subleading corrections in all orders!

$$
\gamma(x)=\frac{A x}{(1-x)_{+}}+B \delta(1-x)+C \ln (1-x)+D+\mathcal{O}\left((1-x) \log ^{p}(1-x)\right)
$$

Another important aspect of the RREE is the "double nature" of the perturbative expansion - in $\alpha_{\text {phys }}$ and, at the same time, in $(1-x)$:

$$
\begin{aligned}
\gamma[\alpha] & =\mathcal{P}+\dot{\mathcal{P}} \cdot(\sigma \gamma+\beta / \alpha)+\frac{1}{2} \ddot{\mathcal{P}} \cdot\left(\gamma^{2}+\sigma\left(2 \beta / \alpha \gamma+\beta \partial_{\alpha} \gamma\right)+\beta / \alpha \partial_{\alpha} \beta\right)+\ldots \\
& =\alpha \ln N+\alpha^{2} \cdot(1 / N)+\alpha^{3} \cdot\left(1 / N^{2}\right)+\alpha^{4} \cdot\left(1 / N^{3}\right)+\ldots
\end{aligned}
$$

In the $x \rightarrow 1$ limit (large moments N) inherited structures determine first subleading corrections in all orders!

$$
\gamma(x)=\frac{A x}{(1-x)_{+}}+B \delta(1-x)+C \ln (1-x)+D+\mathcal{O}\left((1-x) \log ^{p}(1-x)\right)
$$

Generated:

$$
C=-\sigma A^{2}
$$

- relation observed by MVV in 3 loops

Another important aspect of the RREE is the "double nature" of the perturbative expansion - in $\alpha_{\text {phys }}$ and, at the same time, in $(1-x)$:

$$
\begin{aligned}
\gamma[\alpha] & =\mathcal{P}+\dot{\mathcal{P}} \cdot(\sigma \gamma+\beta / \alpha)+\frac{1}{2} \ddot{\mathcal{P}} \cdot\left(\gamma^{2}+\sigma\left(2 \beta / \alpha \gamma+\beta \partial_{\alpha} \gamma\right)+\beta / \alpha \partial_{\alpha} \beta\right)+\ldots \\
& =\alpha \ln N+\alpha^{2} \cdot(1 / N)+\alpha^{3} \cdot\left(1 / N^{2}\right)+\alpha^{4} \cdot\left(1 / N^{3}\right)+\ldots
\end{aligned}
$$

In the $x \rightarrow 1$ limit (large moments N) inherited structures determine first subleading corrections in all orders !

$$
\gamma(x)=\frac{A x}{(1-x)_{+}}+B \delta(1-x)+C \ln (1-x)+D+\mathcal{O}\left((1-x) \log ^{p}(1-x)\right)
$$

Generated:

$$
\begin{aligned}
& C=-\sigma A^{2} \\
& D=-\sigma A B+\mathcal{O}(\beta)
\end{aligned}
$$

- relation observed by MVV in 3 loops
- another all-order relation

In spite of having many states $\left(s=0, \frac{1}{2}, 1\right)$, the SYM-4 parton dynamics is built of a single "universal" anomalous dimension:
$\gamma_{+}(N+2)=\tilde{\gamma}_{+}(N+1)=\gamma_{0}(N)=\tilde{\gamma}_{-}(N-1)=\gamma_{-}(N-2) \equiv \gamma_{\text {uni }}(N)$
with the 1st loop given by
$\gamma_{\mathrm{uni}}^{(1)}(N)=-S_{1}(N)=-\int_{0}^{1} \frac{d x}{x}\left(x^{N}-1\right) \cdot \frac{x}{x-1}$

In spite of having many states $\left(s=0, \frac{1}{2}, 1\right)$, the SYM-4 parton dynamics is built of a single "universal" anomalous dimension:
$\gamma_{+}(N+2)=\tilde{\gamma}_{+}(N+1)=\gamma_{0}(N)=\tilde{\gamma}_{-}(N-1)=\gamma_{-}(N-2) \equiv \gamma_{\text {uni }}(N)$
with the 1st loop given by
$\gamma_{\mathrm{uni}}^{(1)}(N)=-S_{1}(N)=-\int_{0}^{1} \frac{d x}{x}\left(x^{N}-1\right) \cdot \frac{x}{x-1} \equiv \mathbf{M}\left[\frac{x}{(1-x)_{+}}\right]$.

In spite of having many states $\left(s=0, \frac{1}{2}, 1\right)$, the SYM-4 parton dynamics is built of a single "universal" anomalous dimension:
$\gamma_{+}(N+2)=\tilde{\gamma}_{+}(N+1)=\gamma_{0}(N)=\tilde{\gamma}_{-}(N-1)=\gamma_{-}(N-2) \equiv \gamma_{\text {uni }}(N)$
with the 1st loop given by

$$
\gamma_{\mathrm{uni}}^{(1)}(N)=-S_{1}(N)=-\int_{0}^{1} \frac{d x}{x}\left(x^{N}-1\right) \cdot \frac{x}{x-1} \equiv \mathbf{M}\left[\frac{x}{(1-x)_{+}}\right] .
$$

Look upon S_{1} as a "harmonic sum",

$$
S_{1}(N)=\sum_{k=1}^{N} \frac{1}{k}=\psi(N+1)-\psi(1)
$$

In spite of having many states $\left(s=0, \frac{1}{2}, 1\right)$, the SYM-4 parton dynamics is built of a single "universal" anomalous dimension:
$\gamma_{+}(N+2)=\tilde{\gamma}_{+}(N+1)=\gamma_{0}(N)=\tilde{\gamma}_{-}(N-1)=\gamma_{-}(N-2) \equiv \gamma_{\text {uni }}(N)$
with the 1st loop given by

$$
\gamma_{\mathrm{uni}}^{(1)}(N)=-S_{1}(N)=-\int_{0}^{1} \frac{d x}{x}\left(x^{N}-1\right) \cdot \frac{x}{x-1} \equiv \mathbf{M}\left[\frac{x}{(1-x)_{+}}\right]
$$

Look upon S_{1} as a "harmonic sum",

$$
S_{1}(N)=\sum_{k=1}^{N} \frac{1}{k}=\psi(N+1)-\psi(1)
$$

In higher orders enter $m>1$,

$$
S_{m}(N)=\sum_{k=1}^{N} \frac{1}{k^{m}}=\frac{(-1)^{m}}{\Gamma(m)} \int_{0}^{1} d x x^{N} \frac{\ln ^{m-1} x}{1-x}+\zeta(m)
$$

In spite of having many states $\left(s=0, \frac{1}{2}, 1\right)$, the SYM-4 parton dynamics is built of a single "universal" anomalous dimension:
$\gamma_{+}(N+2)=\tilde{\gamma}_{+}(N+1)=\gamma_{0}(N)=\tilde{\gamma}_{-}(N-1)=\gamma_{-}(N-2) \equiv \gamma_{\text {uni }}(N)$
with the 1st loop given by

$$
\gamma_{\mathrm{uni}}^{(1)}(N)=-S_{1}(N)=-\int_{0}^{1} \frac{d x}{x}\left(x^{N}-1\right) \cdot \frac{x}{x-1} \equiv \mathbf{M}\left[\frac{x}{(1-x)_{+}}\right] .
$$

Look upon S_{1} as a "harmonic sum",

$$
S_{1}(N)=\sum_{k=1}^{N} \frac{1}{k}=\psi(N+1)-\psi(1)
$$

In higher orders enter $m>1$,

$$
S_{m}(N)=\sum_{k=1}^{N} \frac{1}{k^{m}}=\frac{(-1)^{m}}{\Gamma(m)} \int_{0}^{1} d x x^{N} \frac{\ln ^{m-1} x}{1-x}+\zeta(m)
$$

as we as multiple indices - nested sums

$$
S_{m, \vec{\rho}}(N)=\sum_{k=1}^{N} \frac{S_{\vec{\rho}}(k)}{k^{m}} \quad\left(\vec{\rho}=\left(m_{1}, m_{2}, \ldots, m_{i}\right)\right)
$$

Starting from the 2nd loop, one encounters also negative indices,

$$
S_{-m}(N)=\sum_{k=1}^{N} \frac{(-1)^{k}}{k^{m}}
$$

Starting from the 2nd loop, one encounters also negative indices,

$$
S_{-m}(N)=\sum_{k=1}^{N} \frac{(-1)^{k}}{k^{m}}
$$

The origin of these oscillating sums - the $s \rightarrow u$ crossing:

$$
\begin{aligned}
& (a) \leftrightarrow(b) \\
& P \rightarrow-P \\
& x \rightarrow-x
\end{aligned}
$$

Starting from the 2nd loop, one encounters also negative indices,

$$
S_{-m}(N)=\sum_{k=1}^{N} \frac{(-1)^{k}}{k^{m}}
$$

The origin of these oscillating sums - the $s \rightarrow u$ crossing:

$$
\begin{aligned}
& (a) \leftrightarrow(b) \\
& P \rightarrow-P \\
& x \rightarrow-x
\end{aligned}
$$

$$
p_{q \bar{q}}(x)=\alpha_{s}^{2}\left(\frac{1}{2} C_{A}-C_{F}\right) p_{q q}(-x) \cdot \phi_{2}(x), \quad p_{q q}(x)=\frac{1+x^{2}}{2(1-x)}
$$

Starting from the 2nd loop, one encounters also negative indices,

$$
S_{-m}(N)=\sum_{k=1}^{N} \frac{(-1)^{k}}{k^{m}}
$$

The origin of these oscillating sums - the $s \rightarrow u$ crossing:

$$
\begin{aligned}
& \frac{x}{1-x} \cdot \ln ^{2} x \rightarrow S_{3}(N) \quad \frac{x}{1+x} \cdot \phi_{2}(x) \rightarrow Y_{-3}(N) \\
& p_{q \bar{q}}(x)=\alpha_{s}^{2}\left(\frac{1}{2} C_{A}-C_{F}\right) p_{q q}(-x) \cdot \phi_{2}(x), \quad p_{q q}(x)=\frac{1+x^{2}}{2(1-x)} \\
& x \rightarrow-x
\end{aligned}
$$

Loop \# 1: $\quad \gamma_{1}=-S_{1}$.

Loop \# 1: $\quad \gamma_{1}=-S_{1}$.
Loop \# 2 :

$$
\gamma_{2}=\frac{1}{2} S_{3}+S_{1} S_{2}+\left(\frac{1}{2} S_{-3}+S_{1} S_{-2}-S_{-2,1}\right) .
$$

(direct calculation by Kotikov \& Lipatov, 2000)

Loop \# 1: $\quad \gamma_{1}=-S_{1}$.
Loop \# 2: $\quad \gamma_{2}=\frac{1}{2} S_{3}+S_{1} S_{2}+\left(\frac{1}{2} S_{-3}+S_{1} S_{-2}-S_{-2,1}\right)$.
(direct calculation by Kotikov \& Lipatov, 2000)
AK observation: γ_{2} contains but the "most transcendental" structures !

Loop \# 1: $\quad \gamma_{1}=-S_{1}$.
Loop \# 2: $\quad \gamma_{2}=\frac{1}{2} S_{3}+S_{1} S_{2}+\left(\frac{1}{2} S_{-3}+S_{1} S_{-2}-S_{-2,1}\right)$.
(direct calculation by Kotikov \& Lipatov, 2000)
AK observation: γ_{2} contains but the "most transcendental" structures !
Loop \# 3 : since neither fermions nor scalars give rise to $S_{2 L-1}$, pick out the maximal transcedentality pieces from the QCD an. dim.

Loop \# 1: $\quad \gamma_{1}=-S_{1}$.
Loop \# 2: $\quad \gamma_{2}=\frac{1}{2} S_{3}+S_{1} S_{2}+\left(\frac{1}{2} S_{-3}+S_{1} S_{-2}-S_{-2,1}\right)$.
(direct calculation by Kotikov \& Lipatov, 2000)
AK observation: γ_{2} contains but the "most transcendental" structures !
Loop \# 3 : since neither fermions nor scalars give rise to $S_{2 L-1}$,
pick out the maximal transcedentality pieces from the QCD an. dim.

$$
\begin{aligned}
\gamma_{3}= & -\frac{1}{2} S_{5}-\left[S_{1}^{2} S_{3}+\frac{1}{2} S_{2} S_{3}+S_{1} S_{2}^{2}+\frac{3}{2} S_{1} S_{4}\right] \\
& -S_{1}\left[4 S_{-4}+\frac{1}{2} S_{-2}^{2}+2 S_{2} S_{-2}-6 S_{-3,1}-5 S_{-2,2}+8 S_{-2,1,1}\right] \\
& -\left(\frac{1}{2} S_{2}+3 S_{1}^{2}\right) S_{-3}-S_{3} S_{-2}+\left(S_{2}+2 S_{1}^{2}\right) S_{-2,1}+12 S_{-2,1,1,1} \\
& -6\left(S_{-3,1,1}+S_{-2,1,2}+S_{-2,2,1}\right)+3\left(S_{-4,1}+S_{-3,2}+S_{-2,3}\right)-\frac{3}{2} S_{-5} .
\end{aligned}
$$

Loop \# 1: $\quad \gamma_{1}=-S_{1}$.
Loop \# 2: $\quad \gamma_{2}=\frac{1}{2} S_{3}+S_{1} S_{2}+\left(\frac{1}{2} S_{-3}+S_{1} S_{-2}-S_{-2,1}\right)$.
(direct calculation by Kotikov \& Lipatov, 2000)
AK observation: γ_{2} contains but the "most transcendental" structures !
Loop \# 3 : since neither fermions nor scalars give rise to $S_{2 L-1}$,
pick out the maximal transcedentality pieces from the QCD an. dim.

$$
\begin{aligned}
\gamma_{3}= & -\frac{1}{2} S_{5}-\left[S_{1}^{2} S_{3}+\frac{1}{2} S_{2} S_{3}+S_{1} S_{2}^{2}+\frac{3}{2} S_{1} S_{4}\right] \\
& -S_{1}\left[4 S_{-4}+\frac{1}{2} S_{-2}^{2}+2 S_{2} S_{-2}-6 S_{-3,1}-5 S_{-2,2}+8 S_{-2,1,1}\right] \\
& -\left(\frac{1}{2} S_{2}+3 S_{1}^{2}\right) S_{-3}-S_{3} S_{-2}+\left(S_{2}+2 S_{1}^{2}\right) S_{-2,1}+12 S_{-2,1,1,1} \\
& -6\left(S_{-3,1,1}+S_{-2,1,2}+S_{-2,2,1}\right)+3\left(S_{-4,1}+S_{-3,2}+S_{-2,3}\right)-\frac{3}{2} S_{-5} .
\end{aligned}
$$

The RREE,

$$
\gamma_{\sigma}(N)=\mathcal{P}\left(N+\sigma \gamma_{\sigma}(N)\right)
$$

Loop \# 1: $\quad \gamma_{1}=-S_{1}$.
Loop \# 2: $\quad \gamma_{2}=\frac{1}{2} S_{3}+S_{1} S_{2}+\left(\frac{1}{2} S_{-3}+S_{1} S_{-2}-S_{-2,1}\right)$.
(direct calculation by Kotikov \& Lipatov, 2000)
AK observation: γ_{2} contains but the "most transcendental" structures !
Loop \# 3 : since neither fermions nor scalars give rise to $S_{2 L-1}$,
pick out the maximal transcedentality pieces from the QCD an. dim.

$$
\begin{aligned}
\gamma_{3}= & -\frac{1}{2} S_{5}-\left[S_{1}^{2} S_{3}+\frac{1}{2} S_{2} S_{3}+S_{1} S_{2}^{2}+\frac{3}{2} S_{1} S_{4}\right] \\
& -S_{1}\left[4 S_{-4}+\frac{1}{2} S_{-2}^{2}+2 S_{2} S_{-2}-6 S_{-3,1}-5 S_{-2,2}+8 S_{-2,1,1}\right] \\
& -\left(\frac{1}{2} S_{2}+3 S_{1}^{2}\right) S_{-3}-S_{3} S_{-2}+\left(S_{2}+2 S_{1}^{2}\right) S_{-2,1}+12 S_{-2,1,1,1} \\
& -6\left(S_{-3,1,1}+S_{-2,1,2}+S_{-2,2,1}\right)+3\left(S_{-4,1}+S_{-3,2}+S_{-2,3}\right)-\frac{3}{2} S_{-5} .
\end{aligned}
$$

The RREE,

$$
\gamma_{\sigma}(N)=\mathcal{P}\left(N+\sigma \gamma_{\sigma}(N)\right)
$$

generates positives

Loop \# 1: $\quad \gamma_{1}=-S_{1}$.
Loop \# 2: $\quad \gamma_{2}=\frac{1}{2} S_{3}+S_{1} S_{2}+\left(\frac{1}{2} S_{-3}+S_{1} S_{-2}-S_{-2,1}\right)$.
(direct calculation by Kotikov \& Lipatov, 2000)
AK observation: γ_{2} contains but the "most transcendental" structures !
Loop \# 3 : since neither fermions nor scalars give rise to $S_{2 L-1}$,
pick out the maximal transcedentality pieces from the QCD an. dim.

$$
\begin{aligned}
\gamma_{3}= & -\frac{1}{2} S_{5}-\left[S_{1}^{2} S_{3}+\frac{1}{2} S_{2} S_{3}+S_{1} S_{2}^{2}+\frac{3}{2} S_{1} S_{4}\right] \\
& -S_{1}\left[4 S_{-4}+\frac{1}{2} S_{-2}^{2}+2 S_{2} S_{-2}-6 S_{-3,1}-5 S_{-2,2}+8 S_{-2,1,1}\right] \\
& -\left(\frac{1}{2} S_{2}+3 S_{1}^{2}\right) S_{-3}-S_{3} S_{-2}+\left(S_{2}+2 S_{1}^{2}\right) S_{-2,1}+12 S_{-2,1,1,1} \\
& -6\left(S_{-3,1,1}+S_{-2,1,2}+S_{-2,2,1}\right)+3\left(S_{-4,1}+S_{-3,2}+S_{-2,3}\right)-\frac{3}{2} S_{-5} .
\end{aligned}
$$

The RREE,

$$
\gamma_{\sigma}(N)=\mathcal{P}\left(N+\sigma \gamma_{\sigma}(N)\right)
$$

generates positives and simplifies negatives.

In terms of the perturbative expansion in the physical coupling,

$$
\begin{aligned}
& \quad a_{\mathrm{ph}}=a\left(1-\frac{1}{2} \zeta_{2} a+\frac{11}{20} \zeta_{2}^{2} a^{2}+\ldots\right) \\
& \mathcal{P}_{1}= \\
& \mathcal{P}_{2}= \\
& \mathcal{P}_{3}= \\
& \\
& \\
& \\
& \\
&
\end{aligned}
$$

In terms of the perturbative expansion in the physical coupling,

$$
\begin{gathered}
a_{\mathrm{ph}}=a\left(1-\frac{1}{2} \zeta_{2} a+\frac{11}{20} \zeta_{2}^{2} a^{2}+\ldots\right), \\
\mathcal{P}_{1}=- \\
\mathcal{P}_{2}= \\
\mathcal{P}_{3}= \\
\\
\\
\\
\\
\end{gathered}
$$

In terms of the perturbative expansion in the physical coupling,

$$
\begin{aligned}
& \quad a_{\mathrm{ph}}=a\left(1-\frac{1}{2} \zeta_{2} a+\frac{11}{20} \zeta_{2}^{2} a^{2}+\ldots\right) \\
& \mathcal{P}_{1}= \\
& \mathcal{P}_{2}= \\
& \mathcal{P}_{3}= \\
& \\
& \\
& \\
& \\
&
\end{aligned}
$$

In terms of the perturbative expansion in the physical coupling,

$$
\begin{aligned}
& \quad a_{\mathrm{ph}}=a\left(1-\frac{1}{2} \zeta_{2} a+\frac{11}{20} \zeta_{2}^{2} a^{2}+\ldots\right) \\
& \mathcal{P}_{1}= \\
& \mathcal{P}_{2}= \\
& \mathcal{P}_{3}= \\
& \\
& \\
& \\
&
\end{aligned}
$$

In terms of the perturbative expansion in the physical coupling,

$$
\begin{aligned}
& \quad a_{\mathrm{ph}}=a\left(1-\frac{1}{2} \zeta_{2} a+\frac{11}{20} \zeta_{2}^{2} a^{2}+\ldots\right) \\
& \mathcal{P}_{1}= \\
& \mathcal{P}_{2}= \\
& \mathcal{P}_{3}= \\
& \\
& \\
& \\
& \\
&
\end{aligned}
$$

Notation:

$$
\begin{gathered}
\hat{Y}_{-m}(N)=(-1)^{N} \mathbf{M}\left[\frac{x}{1+x} \phi_{m-1}(x)\right], \\
\phi_{m}(x)=\frac{1}{\Gamma(m)} \int_{x}^{1} \frac{d z}{z} \ln ^{m-1}\left(\frac{(1+x)^{2} z}{x(1+z)^{2}}\right) .
\end{gathered}
$$

In terms of the perturbative expansion in the physical coupling,

$$
\begin{aligned}
& a_{\mathrm{ph}}=a\left(1-\frac{1}{2} \zeta_{2} a+\frac{11}{20} \zeta_{2}^{2} a^{2}+\ldots\right), \\
& \mathcal{P}_{1}= \\
& \mathcal{P}_{2}= \\
& \mathcal{P}_{3}= \\
& \\
& \\
& \\
&
\end{aligned}
$$

Notation:

$$
\begin{gathered}
\hat{Y}_{-m}(N)=(-1)^{N} \mathbf{M}\left[\frac{x}{1+x} \phi_{m-1}(x)\right] \\
\phi_{m}(x)=\frac{1}{\Gamma(m)} \int_{x}^{1} \frac{d z}{z} \ln ^{m-1}\left(\frac{(1+x)^{2} z}{x(1+z)^{2}}\right) \cdot \quad \phi_{m}\left(x^{-1}\right)=-\phi_{m}(x) .
\end{gathered}
$$

In terms of the perturbative expansion in the physical coupling,

$$
\begin{aligned}
& a_{\mathrm{ph}}=a\left(1-\frac{1}{2} \zeta_{2} a+\frac{11}{20} \zeta_{2}^{2} a^{2}+\ldots\right), \\
& \mathcal{P}_{1}= \\
& \mathcal{P}_{2}= \\
& \mathcal{P}_{3}= \\
& \\
& \\
& \\
&
\end{aligned}
$$

Notation:

$$
\begin{gathered}
\hat{Y}_{-m}(N)=(-1)^{N} \mathbf{M}\left[\frac{x}{1+x} \phi_{m-1}(x)\right] \\
\phi_{m}(x)=\frac{1}{\Gamma(m)} \int_{x}^{1} \frac{d z}{z} \ln ^{m-1}\left(\frac{(1+x)^{2} z}{x(1+z)^{2}}\right) \cdot \quad \phi_{m}\left(x^{-1}\right)=-\phi_{m}(x) .
\end{gathered}
$$

In terms of the perturbative expansion in the physical coupling,

$$
\begin{aligned}
& a_{\mathrm{ph}}=a\left(1-\frac{1}{2} \zeta_{2} a+\frac{11}{20} \zeta_{2}^{2} a^{2}+\ldots\right), \\
& \mathcal{P}_{1}= \\
& \mathcal{P}_{2}= \\
& \mathcal{P}_{3}= \\
& \\
& \\
& \\
& \\
&
\end{aligned}
$$

Notation:

$$
\begin{gathered}
\hat{Y}_{-m}(N)=(-1)^{N} \mathbf{M}\left[\frac{x}{1+x} \phi_{m-1}(x)\right] \\
\phi_{m}(x)=\frac{1}{\Gamma(m)} \int_{x}^{1} \frac{d z}{z} \ln ^{m-1}\left(\frac{(1+x)^{2} z}{x(1+z)^{2}}\right) \cdot \quad \phi_{m}\left(x^{-1}\right)=-\phi_{m}(x) .
\end{gathered}
$$

The $\mathfrak{s l}(2)$ sector of planar $\mathcal{N}=4$ SYM contains single trace states which are linear combinations of the basic operators

$$
\operatorname{Tr}\left\{\left(\mathcal{D}^{s_{1}} Z\right) \cdots\left(\mathcal{D}^{s_{L}} Z\right)\right\}, \quad s_{1}+\cdots+s_{L}=N
$$

where Z is one of the three complex scalar fields and \mathcal{D} is a light-cone covariant derivative. The numbers $\left\{s_{i}\right\}$ are non-negative integers and N is the total spin. The number L of Z fields is the twist of the operator, i.e. the classical dimension minus spin.

The $\mathfrak{s l}(2)$ sector of planar $\mathcal{N}=4$ SYM contains single trace states which are linear combinations of the basic operators

$$
\operatorname{Tr}\left\{\left(\mathcal{D}^{s_{1}} Z\right) \cdots\left(\mathcal{D}^{s_{L}} Z\right)\right\}, \quad s_{1}+\cdots+s_{L}=N
$$

where Z is one of the three complex scalar fields and \mathcal{D} is a light-cone covariant derivative. The numbers $\left\{s_{i}\right\}$ are non-negative integers and N is the total spin. The number L of Z fields is the twist of the operator, i.e. the classical dimension minus spin.
The anomalous dimensions of these states are the eigenvalues $\gamma_{L}(N ; g)$ of the dilatation operator - integrable Hamiltonian.
These values were obtained by solving numerically the Bethe Ansatz equations (BAE), order by order in g^{2}, and guessing the answer in terms of harmonic sums of transcedentality $\tau=2 n-1$, at n loops.

The $\mathfrak{s l}(2)$ sector of planar $\mathcal{N}=4$ SYM contains single trace states which are linear combinations of the basic operators

$$
\operatorname{Tr}\left\{\left(\mathcal{D}^{s_{1}} Z\right) \cdots\left(\mathcal{D}^{s_{L}} Z\right)\right\}, \quad s_{1}+\cdots+s_{L}=N
$$

where Z is one of the three complex scalar fields and \mathcal{D} is a light-cone covariant derivative. The numbers $\left\{s_{i}\right\}$ are non-negative integers and N is the total spin. The number L of Z fields is the twist of the operator, i.e. the classical dimension minus spin.
The anomalous dimensions of these states are the eigenvalues $\gamma_{L}(N ; g)$ of the dilatation operator - integrable Hamiltonian.
These values were obtained by solving numerically the Bethe Ansatz equations (BAE), order by order in g^{2}, and guessing the answer in terms of harmonic sums of transcedentality $\tau=2 n-1$, at n loops.

The $\mathfrak{s l}(2)$ sector of planar $\mathcal{N}=4$ SYM contains single trace states which are linear combinations of the basic operators

$$
\operatorname{Tr}\left\{\left(\mathcal{D}^{s_{1}} Z\right) \cdots\left(\mathcal{D}^{s_{L}} Z\right)\right\}, \quad s_{1}+\cdots+s_{L}=N
$$

where Z is one of the three complex scalar fields and \mathcal{D} is a light-cone covariant derivative. The numbers $\left\{s_{i}\right\}$ are non-negative integers and N is the total spin. The number L of Z fields is the twist of the operator, i.e. the classical dimension minus spin.
The anomalous dimensions of these states are the eigenvalues $\gamma_{L}(N ; g)$ of the dilatation operator - integrable Hamiltonian.
These values were obtained by solving numerically the Bethe Ansatz equations (BAE), order by order in g^{2}, and guessing the answer in terms of harmonic sums of transcedentality $\tau=2 n-1$, at n loops.

The $\mathfrak{s l}(2)$ sector of planar $\mathcal{N}=4$ SYM contains single trace states which are linear combinations of the basic operators

$$
\operatorname{Tr}\left\{\left(\mathcal{D}^{s_{1}} Z\right) \cdots\left(\mathcal{D}^{s_{L}} Z\right)\right\}, \quad s_{1}+\cdots+s_{L}=N
$$

where Z is one of the three complex scalar fields and \mathcal{D} is a light-cone covariant derivative. The numbers $\left\{s_{i}\right\}$ are non-negative integers and N is the total spin. The number L of Z fields is the twist of the operator, i.e. the classical dimension minus spin.
The anomalous dimensions of these states are the eigenvalues $\gamma_{L}(N ; g)$ of the dilatation operator - integrable Hamiltonian.
These values were obtained by solving numerically the Bethe Ansatz equations (BAE), order by order in g^{2}, and guessing the answer in terms of harmonic sums of transcedentality $\tau=2 n-1$, at n loops.
Since wrapping problems, delayed by supersymmetry, appear at $L+2$ loop order for twist- L operators, the BAE for twist-3 are reliable up to four loops (including, at the fourth loop, the dressing factor).
$\gamma_{3}^{(1)}=4 S_{1}$,
$\gamma_{3}^{(2)}=-2\left(S_{3}+2 S_{1} S_{2}\right)$
$\gamma_{3}^{(3)}=5 S_{5}+6 S_{2} S_{3}-8 S_{3,1,1}+4 S_{4,1}-4 S_{2,3}+S_{1}\left(4 S_{2}^{2}+2 S_{4}+8 S_{3,1}\right)$,
$\gamma_{3}^{(4)}=\frac{1}{2} S_{7}+7 S_{1,6}+15 S_{2,5}-5 S_{3,4}-29 S_{4,3}-21 S_{5,2}-5 S_{6,1}$

$$
-40 S_{1,1,5}-32 S_{1,2,4}+24 S_{1,3,3}+32 S_{1,4,2}-32 S_{2,1,4}+20 S_{2,2,3}
$$

$$
+40 S_{2,3,2}+4 S_{2,4,1}+24 S_{3,1,3}+44 S_{3,2,2}+24 S_{3,3,1}+36 S_{4,1,2}
$$

$$
+36 S_{4,2,1}+24 S_{5,1,1}+80 S_{1,1,1,4}-16 S_{1,1,3,2}+32 S_{1,1,4,1}
$$

$$
-24 S_{1,2,2,2}+16 S_{1,2,3,1}-24 S_{1,3,1,2}-24 S_{1,3,2,1}-24 S_{1,4,1,1}
$$

$$
-24 S_{2,1,2,2}+16 S_{2,1,3,1}-24 S_{2,2,1,2}-24 S_{2,2,2,1}-24 S_{2,3,1,1}
$$

$$
-24 S_{3,1,1,2}-24 S_{3,1,2,1}-24 S_{3,2,1,1}-24 S_{4,1,1,1}-64 S_{1,1,1,3,1}
$$

$$
-8 \beta S_{1} S_{3}
$$

The last term, with $\beta=\zeta_{3}$, is the contribution from the dressing factor that appears in the BAE at the fourth loop.

The twist-3 anomalous dimension has two characteristic features:

1. All harmonic functions $S_{\vec{a}}$ are evaluated at half the spin, $S_{a} \equiv S_{a}(N / 2)$. On the integrability side, this does not look unwarranted, since only even N belong to the non-degenerate ground state of the magnet.

No negative indices appear at twist-3, while in the case of twist-2 negative index sums were present starting from the second loop.

The twist-3 anomalous dimension has two characteristic features:

1. All harmonic functions $S_{\vec{a}}$ are evaluated at half the spin, $S_{a} \equiv S_{a}(N / 2)$. On the integrability side, this does not look unwarranted, since only even N belong to the non-degenerate ground state of the magnet.
2. No negative indices appear at twist-3, while in the case of twist-2 negative index sums were present starting from the second loop.

At the $N \rightarrow \infty$ limit, the minimal anomalous dimension γ (corresponding to the ground state) must exhibit the universal (LBK-classical) $\ln N$ behaviour which depends neither on the twist, nor on the nature of fields under consideration. Computing analytically the large N asymptotics yields

The twist-3 anomalous dimension has two characteristic features:

1. All harmonic functions $S_{\vec{a}}$ are evaluated at half the spin, $S_{a} \equiv S_{a}(N / 2)$. On the integrability side, this does not look unwarranted, since only even N belong to the non-degenerate ground state of the magnet.
2. No negative indices appear at twist-3, while in the case of twist-2 negative index sums were present starting from the second loop.

At the $N \rightarrow \infty$ limit, the minimal anomalous dimension γ (corresponding to the ground state) must exhibit the universal (LBK-classical) In N behaviour which depends neither on the twist, nor on the nature of fields under consideration. Computing analytically the large N asymptotics yields

$$
\frac{\gamma_{3}(N)}{\ln N}=4 g^{2}-\frac{2 \pi^{2}}{3} g^{4}+\frac{11 \pi^{4}}{45} g^{6}-\left(4 \zeta_{3}^{2}+\frac{73 \pi^{6}}{630}\right) g^{8}+\mathcal{O}\left(g^{10}\right)
$$

which matches the four-loop cusp anomalous dimension - the physical coupling. This is a non-trivial check, since the derivation was based on experimenting with finite values of the spin N.

After processing thru $\gamma=\mathcal{P}\left(N+\frac{1}{2} \gamma\right)$, in series in $g^{2}=\frac{N_{c} \alpha}{2 \pi}$,

$$
\begin{aligned}
P^{(1)}= & 4 S_{1}, \\
P^{(2)}= & -2 S_{3}-4 \zeta_{2} S_{1}, \\
P^{(3)}= & S_{5}+2 \zeta_{2} S_{3}+4\left(S_{3,2}+S_{4,1}-2 S_{3,1,1}\right) \\
& +4 S_{1}\left(2 S_{3,1}-S_{4}+4 \zeta_{4}\right)-4 S_{1}^{2}\left(S_{3}-\zeta_{3}\right) .
\end{aligned}
$$

The fourth loop kernel we split into two terms: $P^{(4)}=P_{S}^{(4)}+P_{\zeta}^{(4)}$.

$$
\begin{aligned}
P_{S}^{(4)}= & -8\left[S_{3,3}+S_{1,5}+2 S_{2,4}-4\left(S_{2,1,3}+S_{1,2,3}+S_{1,1,4}\right)+8 S_{1,1,1,3}\right] S_{1} \\
+ & \frac{3}{2} S_{7}-16\left(S_{1,6}+S_{4,3}\right)-24\left(S_{2,5}+S_{3,4}\right) \\
& +48\left(S_{1,1,5}+S_{1,3,3}+S_{3,1,3}\right)+64\left(S_{2,2,3}+S_{2,1,4}+S_{1,2,4}\right) \\
& -128\left(S_{1,1,1,4}+S_{2,1,1,3}+S_{1,2,1,3}+S_{1,1,2,3}\right)+256 S_{1,1,1,1,3}, \\
P_{\zeta}^{(4)}= & 8 \zeta_{4} \mathcal{S}_{1}^{3}-4\left[\zeta_{2} \zeta_{3}+8 \zeta_{5}\right] \mathcal{S}_{1}^{2}-\left[4\left(\zeta_{3}+2 \beta\right) \mathcal{S}_{3}+49 \zeta_{6}\right] \mathcal{S}_{1} \\
& +\left(8 S_{1,1,3}-4 \mathcal{S}_{1,4}-4 \mathcal{S}_{2,3}-\mathcal{S}_{5}\right) \zeta_{2}-8 \mathcal{S}_{3} \zeta_{4} .
\end{aligned}
$$

Let $\vec{m}=\left\{m_{1}, m_{2}, \ldots, m_{\ell}\right\}$, and examine the recurrence relation

$$
\tilde{\Phi}_{b, \vec{m}}(x)=-[\Gamma(b)]^{-1} \frac{x}{x-1} \int_{x}^{1} \frac{d z(z+1)}{z^{2}} \ln ^{b-1} \frac{z}{x} \cdot \tilde{\Phi}_{\vec{m}}(z),
$$

where the single index function coincides with the image of the standard harmonic sum,

$$
\tilde{\Phi}_{a}(x)=[\Gamma(a)]^{-1} \frac{x}{x-1} \ln ^{a-1} \frac{1}{x}=\tilde{\mathcal{S}}_{a}(x) .
$$

Let $\vec{m}=\left\{m_{1}, m_{2}, \ldots, m_{\ell}\right\}$, and examine the recurrence relation

$$
\tilde{\Phi}_{b, \vec{m}}(x)=-[\Gamma(b)]^{-1} \frac{x}{x-1} \int_{x}^{1} \frac{d z(z+1)}{z^{2}} \ln ^{b-1} \frac{z}{x} \cdot \tilde{\Phi}_{\vec{m}}(z),
$$

where the single index function coincides with the image of the standard harmonic sum,

$$
\tilde{\Phi}_{a}(x)=[\Gamma(a)]^{-1} \frac{x}{x-1} \ln ^{a-1} \frac{1}{x}=\tilde{\mathcal{S}}_{a}(x) .
$$

At the base of the recursion, we have (the weight $w \equiv \tau-\ell$)

$$
\tilde{\Phi}_{a}(x)=\left(-x \tilde{\Phi}_{a}\left(x^{-1}\right)\right) \cdot(-1)^{a-1} \equiv\left(-x \tilde{\Phi}_{a}\left(x^{-1}\right)\right) \cdot(-1)^{w[a]}
$$

Let $\vec{m}=\left\{m_{1}, m_{2}, \ldots, m_{\ell}\right\}$, and examine the recurrence relation

$$
\tilde{\Phi}_{b, \vec{m}}(x)=-[\Gamma(b)]^{-1} \frac{x}{x-1} \int_{x}^{1} \frac{d z(z+1)}{z^{2}} \ln ^{b-1} \frac{z}{x} \cdot \tilde{\Phi}_{\vec{m}}(z),
$$

where the single index function coincides with the image of the standard harmonic sum,

$$
\tilde{\Phi}_{a}(x)=[\Gamma(a)]^{-1} \frac{x}{x-1} \ln ^{a-1} \frac{1}{x}=\tilde{\mathcal{S}}_{a}(x)
$$

At the base of the recursion, we have (the weight $w \equiv \tau-\ell$)

$$
\tilde{\Phi}_{a}(x)=\left(-x \tilde{\Phi}_{a}\left(x^{-1}\right)\right) \cdot(-1)^{a-1} \equiv\left(-x \tilde{\Phi}_{a}\left(x^{-1}\right)\right) \cdot(-1)^{w[a]}
$$

An iteration increases transcedentality $\tau=\sum_{i=1}^{\ell}\left|m_{i}\right|$ of the function by b, and the length ℓ of the index vector by one, so that

$$
w[\vec{m}]+b-1=w[b, \vec{m}] .
$$

Let $\vec{m}=\left\{m_{1}, m_{2}, \ldots, m_{\ell}\right\}$, and examine the recurrence relation

$$
\tilde{\Phi}_{b, \vec{m}}(x)=-[\Gamma(b)]^{-1} \frac{x}{x-1} \int_{x}^{1} \frac{d z(z+1)}{z^{2}} \ln ^{b-1} \frac{z}{x} \cdot \tilde{\Phi}_{\vec{m}}(z)
$$

where the single index function coincides with the image of the standard harmonic sum,

$$
\tilde{\Phi}_{a}(x)=[\Gamma(a)]^{-1} \frac{x}{x-1} \ln ^{a-1} \frac{1}{x}=\tilde{\mathcal{S}}_{a}(x)
$$

For an arbitrary index vector (the weight $w \equiv \tau-\ell$)

$$
\tilde{\Phi}_{\vec{m}}(x)=\left(-x \tilde{\Phi}_{\vec{m}}\left(x^{-1}\right)\right) \cdot(-1)^{w[\vec{m}]}
$$

An iteration increases transcedentality $\tau=\sum_{i=1}^{\ell}\left|m_{i}\right|$ of the function by b, and the length ℓ of the index vector by one, so that

$$
w[\vec{m}]+b-1=w[b, \vec{m}] .
$$

Then, in terms of the physical coupling,
$\mathbf{g}_{\mathrm{ph}}^{2} \equiv \frac{N_{c} \alpha_{\mathrm{ph}}}{2 \pi}=g^{2}-\zeta_{2} g^{4}+\frac{11}{5} \zeta_{2}^{2} g^{6}-\left(\frac{73}{10} \zeta_{2}^{3}+\zeta_{3}^{2}\right) g^{8}+\ldots$, the perturbative series for the kernel, $\mathcal{P}=\sum_{n=1} \mathbf{g}_{\mathrm{ph}}^{2 n} \mathcal{P}_{\mathrm{ph}}^{(n)}$, becomes

$$
\begin{aligned}
& \mathcal{P}_{\mathrm{ph}}^{(1)}=4 \mathcal{S}_{1}, \\
& \mathcal{P}_{\mathrm{ph}}^{(2)}=-2 \mathcal{S}_{3}, \\
& \mathcal{P}_{\mathrm{ph}}^{(3)}=3 \mathcal{S}_{5}-2 \Phi_{1,1,3}+\zeta_{2} \cdot\left(-2 \mathcal{S}_{3}\right), \\
& \mathcal{P}_{\mathrm{ph}}^{(4)}=4 S_{1} \cdot \widehat{\mathcal{A}}_{4}+\mathcal{B}_{4}+2 \zeta_{2} \cdot\left(3 \mathcal{S}_{5}-2 \Phi_{1,1,3}\right),
\end{aligned}
$$

where

$$
\begin{aligned}
\widehat{\mathcal{A}}_{4} & =2 \widehat{\Phi}_{1,1,1,3}-\left(\widehat{\Phi}_{1,5}+\widehat{\Phi}_{3,3}\right)-\zeta_{3} \widehat{\mathcal{S}}_{3} \\
\mathcal{B}_{4} & =16 \Phi_{1,1,1,1,3}-4\left(\Phi_{3,1,3}+\Phi_{1,3,3}+\Phi_{1,1,5}\right)-\frac{5}{2} \mathcal{S}_{7}
\end{aligned}
$$

Then, in terms of the physical coupling,
$\mathbf{g}_{\mathrm{ph}}^{2} \equiv \frac{N_{c} \alpha_{\mathrm{ph}}}{2 \pi}=g^{2}-\zeta_{2} g^{4}+\frac{11}{5} \zeta_{2}^{2} g^{6}-\left(\frac{73}{10} \zeta_{2}^{3}+\zeta_{3}^{2}\right) g^{8}+\ldots$, the perturbative series for the kernel, $\mathcal{P}=\sum_{n=1} \mathbf{g}_{\mathrm{ph}}^{2 n} \mathcal{P}_{\mathrm{ph}}^{(n)}$, becomes

$$
\begin{aligned}
& \mathcal{P}_{\mathrm{ph}}^{(1)}=4 \mathcal{S}_{1}, \\
& \mathcal{P}_{\mathrm{ph}}^{(2)}=-2 \mathcal{S}_{3}, \\
& \mathcal{P}_{\mathrm{ph}}^{(3)}=3 \mathcal{S}_{5}-2 \Phi_{1,1,3}+\zeta_{2} \cdot\left(-2 \mathcal{S}_{3}\right), \\
& \mathcal{P}_{\mathrm{ph}}^{(4)}=4 S_{1} \cdot \widehat{\mathcal{A}}_{4}+\mathcal{B}_{4}+2 \zeta_{2} \cdot\left(3 \mathcal{S}_{5}-2 \Phi_{1,1,3}\right),
\end{aligned}
$$

where

$$
\begin{aligned}
\widehat{\mathcal{A}}_{4} & =2 \widehat{\Phi}_{1,1,1,3}-\left(\widehat{\Phi}_{1,5}+\widehat{\Phi}_{3,3}\right)-\zeta_{3} \widehat{\mathcal{S}}_{3} \\
\mathcal{B}_{4} & =16 \Phi_{1,1,1,1,3}-4\left(\Phi_{3,1,3}+\Phi_{1,3,3}+\Phi_{1,1,5}\right)-\frac{5}{2} \mathcal{S}_{7}
\end{aligned}
$$

Then, in terms of the physical coupling,
$\mathbf{g}_{\mathrm{ph}}^{2} \equiv \frac{N_{c} \alpha_{\mathrm{ph}}}{2 \pi}=g^{2}-\zeta_{2} g^{4}+\frac{11}{5} \zeta_{2}^{2} g^{6}-\left(\frac{73}{10} \zeta_{2}^{3}+\zeta_{3}^{2}\right) g^{8}+\ldots$,
the perturbative series for the kernel, $\mathcal{P}=\sum_{n=1} \mathbf{g}_{\mathrm{ph}}^{2 n} \mathcal{P}_{\mathrm{ph}}^{(n)}$, becomes

$$
\begin{aligned}
& \mathcal{P}_{\mathrm{ph}}^{(1)}=4 \mathcal{S}_{1}, \\
& \mathcal{P}_{\mathrm{ph}}^{(2)}=-2 \mathcal{S}_{3}, \\
& \mathcal{P}_{\mathrm{ph}}^{(3)}=3 \mathcal{S}_{5}-2 \Phi_{1,1,3}+\zeta_{2} \cdot\left(-2 \mathcal{S}_{3}\right), \\
& \mathcal{P}_{\mathrm{ph}}^{(4)}=4 S_{1} \cdot \widehat{\mathcal{A}}_{4}+\mathcal{B}_{4}+2 \zeta_{2} \cdot\left(3 \mathcal{S}_{5}-2 \Phi_{1,1,3}\right),
\end{aligned}
$$

where

$$
\begin{aligned}
\widehat{\mathcal{A}}_{4} & =2 \widehat{\Phi}_{1,1,1,3}-\left(\widehat{\Phi}_{1,5}+\widehat{\Phi}_{3,3}\right)-\zeta_{3} \widehat{\mathcal{S}}_{3} \\
\mathcal{B}_{4} & =16 \Phi_{1,1,1,1,3}-4\left(\Phi_{3,1,3}+\Phi_{1,3,3}+\Phi_{1,1,5}\right)-\frac{5}{2} \mathcal{S}_{7}
\end{aligned}
$$

Since all harmonic functions involved have even weights w, the evolution kernel is Reciprocity Respecting.

This result can be compared with the evolution kernel that generates the twist-2 universal anomalous dimension :

$$
\begin{aligned}
\mathcal{P}_{\mathrm{ph}}^{(1)}= & 4 \mathcal{S}_{1} ; \\
\mathcal{P}_{\mathrm{ph}}^{(2)}= & -4 \mathcal{S}_{3}+4 \Phi_{1,-2} ; \\
\mathcal{P}_{\mathrm{ph}}^{(3)}= & 8 \mathcal{S}_{5}-24 \Phi_{1,1,1,-2}-8 \zeta_{2} \mathcal{S}_{3} \\
& -8 \mathcal{S}_{1} \cdot\left[2 \widehat{\Phi}_{1,1,-2}+\widehat{\Phi}_{-2,-2}-\widehat{\mathcal{S}}_{-4}+\zeta_{2} \widehat{\mathcal{S}}_{-2}\right]
\end{aligned}
$$

This result can be compared with the evolution kernel that generates the twist-2 universal anomalous dimension :

$$
\begin{aligned}
\mathcal{P}_{\mathrm{ph}}^{(1)}= & 4 \mathcal{S}_{1} ; \\
\mathcal{P}_{\mathrm{ph}}^{(2)}= & -4 \mathcal{S}_{3}+4 \Phi_{1,-2} ; \\
\mathcal{P}_{\mathrm{ph}}^{(3)}= & 8 \mathcal{S}_{5}-24 \Phi_{1,1,1,-2}-8 \zeta_{2} \mathcal{S}_{3} \\
& -8 \mathcal{S}_{1} \cdot\left[2 \widehat{\Phi}_{1,1,-2}+\widehat{\Phi}_{-2,-2}-\widehat{\mathcal{S}}_{-4}+\zeta_{2} \widehat{\mathcal{S}}_{-2}\right]
\end{aligned}
$$

similar pattern of the single $\log N$ enhancement.

This result can be compared with the evolution kernel that generates the twist-2 universal anomalous dimension :

$$
\begin{aligned}
\mathcal{P}_{\mathrm{ph}}^{(1)}= & 4 \mathcal{S}_{1} ; \\
\mathcal{P}_{\mathrm{ph}}^{(2)}= & -4 \mathcal{S}_{3}+4 \Phi_{1,-2} ; \\
\mathcal{P}_{\mathrm{ph}}^{(3)}= & 8 \mathcal{S}_{5}-24 \Phi_{1,1,1,-2}-8 \zeta_{2} \mathcal{S}_{3} \\
& -8 \mathcal{S}_{1} \cdot\left[2 \widehat{\Phi}_{1,1,-2}+\widehat{\Phi}_{-2,-2}-\widehat{\mathcal{S}}_{-4}+\zeta_{2} \widehat{\mathcal{S}}_{-2}\right]
\end{aligned}
$$

similar pattern of the single $\log N$ enhancement. Remark : in general, the GL parity is

$$
\tilde{\Phi}_{\vec{m}}(x)=\left(-x \tilde{\Phi}_{\vec{m}}\left(x^{-1}\right)\right) \cdot(-1)^{w[\vec{m}]} \cdot(-1)^{\# \text { of negative indices }}
$$

since

$$
\frac{x}{x-1} \Longrightarrow \frac{x}{x+1}
$$

General structure of the RR Evolution Kernel

$$
\mathcal{P}(N)=\mathcal{S}_{1} \cdot\left(\alpha_{\mathrm{ph}}+\widehat{\mathcal{A}}\right)+\mathcal{B}, \quad \widehat{\mathcal{A}}=\mathcal{O}\left(1 / N^{2}\right) .
$$

This feature is in a marked contrast with the anomalous dimension per se, whose large N expansion includes growing powers of $\log N$:

General structure of the RR Evolution Kernel
(\mathcal{A}, \mathcal{B} are log free !)

$$
\mathcal{P}(N)=\mathcal{S}_{1} \cdot\left(\alpha_{\mathrm{ph}}+\widehat{\mathcal{A}}\right)+\mathcal{B}, \quad \widehat{\mathcal{A}}=\mathcal{O}\left(1 / N^{2}\right) .
$$

This feature is in a marked contrast with the anomalous dimension per se, whose large N expansion includes growing powers of $\log N$:

$$
\gamma(N)=a \ln N+\sum_{k=0}^{\infty} \frac{1}{N^{k}} \sum_{m=0}^{k} a_{k, m} \ln ^{m} N
$$

Easy to see from

General structure of the RR Evolution Kernel
(\mathcal{A}, \mathcal{B} are log free !)

$$
\mathcal{P}(N)=\mathcal{S}_{1} \cdot\left(\alpha_{\mathrm{ph}}+\widehat{\mathcal{A}}\right)+\mathcal{B}, \quad \widehat{\mathcal{A}}=\mathcal{O}\left(1 / N^{2}\right)
$$

This feature is in a marked contrast with the anomalous dimension per se, whose large N expansion includes growing powers of $\log N$:

$$
\gamma(N)=a \ln N+\sum_{k=0}^{\infty} \frac{1}{N^{k}} \sum_{m=0}^{k} a_{k, m} \ln ^{m} N
$$

Easy to see from

$$
\gamma_{\sigma}=\mathcal{P}(N+\sigma \gamma) \quad \Longrightarrow \quad \gamma_{\sigma}(N)=\sum_{k=1}^{\infty} \frac{1}{k!}\left(\sigma \frac{d}{d N}\right)^{k-1}[\mathcal{P}(N)]^{k}
$$

General structure of the RR Evolution Kernel
(\mathcal{A}, \mathcal{B} are log free !)

$$
\mathcal{P}(N)=\mathcal{S}_{1} \cdot\left(\alpha_{\mathrm{ph}}+\widehat{\mathcal{A}}\right)+\mathcal{B}, \quad \widehat{\mathcal{A}}=\mathcal{O}\left(1 / N^{2}\right) .
$$

This feature is in a marked contrast with the anomalous dimension per se, whose large N expansion includes growing powers of $\log N$:

$$
\gamma(N)=a \ln N+\sum_{k=0}^{\infty} \frac{1}{N^{k}} \sum_{m=0}^{k} a_{k, m} \ln ^{m} N
$$

Easy to see from

$$
\gamma_{\sigma}=\mathcal{P}(N+\sigma \gamma) \quad \Longrightarrow \quad \gamma_{\sigma}(N)=\sum_{k=1}^{\infty} \frac{1}{k!}\left(\sigma \frac{d}{d N}\right)^{k-1}[\mathcal{P}(N)]^{k},
$$

Physically, the reduction of singularity of the large N expansion shows that the tower of subleading logarithmic singularities in the anomalous dimension is actually inherited from the first loop - the LBK-classical $\gamma^{(1)}=\mathcal{P}^{(1)} \propto S_{1}$, and the RREE generates them automatically !

- RRE as a natural consequence of the conformal invariance
"Anomalous dimensions of high-spin operators beyond the leading order" Benjamin Basso \& Gregory Korchemsky
hep-th/0612247
- "N=4 SUSY Yang-Mills: three loops made simple(r)"

D-r \& Pino Marchesini
hep-th/0612248

- "Anomalous dimensions at twist-3 in the sl(2) sector of $N=4$ SYM"

Matteo Beccaria
0704.3570 [hep-th]

- Bethe Ansatz fails ("maximally") at 4 loops for twist-2
"Dressing and Wrapping"
Kotikov, Lipatov, Rej, Staudacher \& Velizhanin
0704.3586 [hep-th]
- twist-3 gaugino = twist-2 "universal"
"Universality of three gaugino anomalous dimensions in N=4 SYM" Beccaria
0705.0663 [hep-th]
- "Twist 3 of the sl(2) sector of N=4 SYM and reciprocity respecting evolution" Beccaria, D-r \& Marchesini
$\mathcal{N}=4$ SYM has already demonstrated viability of the "inheritance" idea.
$\mathcal{N}=4$ SYM has already demonstrated viability of the "inheritance" idea.
A deeper understanding of the $s \rightarrow u$ crossing ($x \rightarrow-x$ symmetry) should turn the "viability of" into the "power of" (negative index sums)
$\mathcal{N}=4$ SYM has already demonstrated viability of the "inheritance" idea.
A deeper understanding of the $s \rightarrow u$ crossing ($x \rightarrow-x$ symmetry) should turn the "viability of" into the "power of"
$\mathcal{N}=4$ SYM dynamics is classical, in certain sense.
$\mathcal{N}=4$ SYM has already demonstrated viability of the "inheritance" idea.
A deeper understanding of the $s \rightarrow u$ crossing ($x \rightarrow-x$ symmetry) should turn the "viability of" into the "power of"
$\mathcal{N}=4$ SYM dynamics is classical, in uncertain sense
$\mathcal{N}=4$ SYM has already demonstrated viability of the "inheritance" idea.
A deeper understanding of the $s \rightarrow u$ crossing ($x \rightarrow-x$ symmetry) should turn the "viability of" into the "power of"
$\mathcal{N}=4$ SYM dynamics is classical, in a not yet completely certain sense
$\mathcal{N}=4$ SYM has already demonstrated viability of the "inheritance" idea.
A deeper understanding of the $s \rightarrow u$ crossing ($x \rightarrow-x$ symmetry) should turn the "viability of" into the "power of"
$\mathcal{N}=4$ SYM dynamics is classical, in certain sense.
If so, the final goal - to derive γ from $\gamma^{(1)}$, in all orders!
$\mathcal{N}=4$ SYM has already demonstrated viability of the "inheritance" idea.
A deeper understanding of the $s \rightarrow u$ crossing ($x \rightarrow-x$ symmetry) should turn the "viability of" into the "power of"
$\mathcal{N}=4$ SYM dynamics is classical, in certain sense.
If so, the final goal - to derive γ from $\gamma^{(1)}$, in all orders!

QCD and SUSY-QCD share the gluons.
$\mathcal{N}=4$ SYM has already demonstrated viability of the "inheritance" idea.
A deeper understanding of the $s \rightarrow u$ crossing ($x \rightarrow-x$ symmetry) should turn the "viability of" into the "power of"
$\mathcal{N}=4$ SYM dynamics is classical, in certain sense.
If so, the final goal - to derive γ from $\gamma^{(1)}$, in all orders !

QCD and SUSY-QCD share the gluons.

Importantly, the maximal transcedentality (clagon) structures constitute the bulk of the QCD anomalous dimensions.
$\mathcal{N}=4$ SYM has already demonstrated viability of the "inheritance" idea.
A deeper understanding of the $s \rightarrow u$ crossing ($x \rightarrow-x$ symmetry) should turn the "viability of" into the "power of"
$\mathcal{N}=4$ SYM dynamics is classical, in certain sense.
If so, the final goal - to derive γ from $\gamma^{(1)}$, in all orders !

QCD and SUSY-QCD share the gluons.

$$
\frac{\text { clever 2nd loop }}{\text { clever 1st loop }}<2 \%
$$

$$
\left.\begin{array}{c}
\text { Heavy quark fragmentation } \\
\text { D-r, Khoze \& Troyan, PRD } 1996
\end{array}\right)
$$

$\mathcal{N}=4$ SYM has already demonstrated viability of the "inheritance" idea.
A deeper understanding of the $s \rightarrow u$ crossing ($x \rightarrow-x$ symmetry) should turn the "viability of" into the "power of"
$\mathcal{N}=4$ SYM dynamics is classical, in certain sense.
If so, the final goal - to derive γ from $\gamma^{(1)}$, in all orders!

QCD and SUSY-QCD share the gluons.

Importantly, the maximal transcedentality (clagon) structures constitute the bulk of the QCD anomalous dimensions.

Employ $\mathcal{N}=4$ SYM to simplify the essential part of the QCD dynamics

