Numerical Implementation of Analytic Methods for One-loop QCD Amplitudes

C. Berger, Z. Bern, L.D., F. Febres Cordero, D. Forde, H. Ita, D. Kosower, D. Maître 0803.4180 [hep-ph]

Wonders of Gauge Theory and Supergravity Workshop
Ecole Normale Supérieure and Saclay 26 June, 2008

The Large Hadron Collider

- Proton-proton collisions at 14 TeV center-of-mass energy, 7 times greater than previous (Tevatron)
- Luminosity (collision rate) 10-100 times greater
- New window into physics at the shortest distances - opening this year

Signals vs. Backgrounds

 electron-positron colliders
 - small backgrounds
 vS.

Numerical Implementation of Analytic...

proton colliders

- large backgrounds

Paris
26 June 2008

Example: Search for Supersymmetry

- Supersymmetric cascade: gluinos \rightarrow squarks \rightarrow neutralinos (dark matter, escapes detector) - Signal: missing energy + jets - SM background from Z + jets, when $Z \rightarrow$ neutrinos

Early studies using parton shower Monte Carlo PYTHIA overly optimistic

- ALPGEN based on tree amplitudes, much better than PYTHIA at modeling hard jets
- But even normalization of ALPGEN quite uncertain

Need $p p \rightarrow Z+4$ jets at NLO

beyond state-of-art

Why do we need to do better?

- Leading-order (LO), tree-level predictions only qualitative, due to poor convergence of expansion in strong coupling $\alpha_{s}(\mu) \sim 0.1$
- NLO corrections can be $30 \%-80 \%$ of LO

state of the art:

A better way to compute?

- Backgrounds (and many signals) require detailed understanding of scattering amplitudes for many ultra-relativistic ("massless") particles - especially quarks and gluons of QCD

- Feynman told us how to do this - in principle

- Feynman rules, while very general and wonderful, are not optimized for these processes
- Can find more efficient methods, making use of analyticity + hidden symmetries ($\mathrm{N}=4$ SUSY, twistor structure) of QCD

Strong growth in difficulty at one loop (NLO) with number of final-state objects

3

810

4

10,860

5

168,925

6

Take advantage of tree-level simplicity

Many helicity amplitudes either vanish or are very short

$\substack{\text { right-handed } \\ h=+1}$	left-handed
$\frac{n}{n} \rightarrow-1$	

The right variables

Scattering amplitudes for massless plane waves of definite 4-momentum:
Lorentz vectors $k_{i}^{\mu} \quad k_{i}^{2}=0$
Natural to use Lorentz-invariant products (invariant masses): $s_{i j}=2 k_{i} \cdot k_{j}=\left(k_{i}+k_{j}\right)^{2}$

But for particles with spin there are better variables

$$
\begin{aligned}
& \text { massless } q, g, \gamma \\
& \text { all have } 2 \text { helicities }
\end{aligned}
$$

Take "square root" of 4-vectors k_{i}^{μ} (spin 1) use 2-component Dirac (Weyl) spinors $u_{\alpha}\left(k_{i}\right) \quad$ (spin _)

$$
2 \times 2=4
$$

right-handed:	$\left(\lambda_{i}\right)_{\alpha}=u_{+}\left(k_{i}\right)$
$h=+1 / 2$	$\xrightarrow[V]{l}) \rightarrow$

$$
\begin{array}{|cc}
\hline \text { left-handed: } & \left(\tilde{\lambda}_{i}\right)_{\dot{\alpha}}=u_{-}\left(k_{i}\right) \\
h=-1 / 2 & へ_{\mathrm{V}} \rightarrow \\
&
\end{array}
$$

Paris 26 June 2008

Spinors \& spinor products

Instead of 4-vectors k_{i}^{μ} (spin 1) use Weyl spinors $u_{\alpha}\left(k_{i}\right) \quad$ (spin _)

$$
\begin{array}{cc}
\text { right-handed: } & \left(\lambda_{i}\right)_{\alpha}=u_{+}\left(k_{i}\right) \\
h=+1 / 2 & \xrightarrow{u})
\end{array}
$$

Instead of Lorentz products:

$$
\begin{array}{|cc}
\text { left-handed: } & \left(\tilde{\lambda}_{i}\right)_{\dot{\alpha}}=u_{-}\left(k_{i}\right) \\
h=-1 / 2 &
\end{array}
$$

$$
s_{i j}=2 k_{i} \cdot k_{j}=\left(k_{i}+k_{j}\right)^{2}
$$

Use spinor products:

$$
\begin{aligned}
& \varepsilon^{\alpha \beta}\left(\lambda_{i}\right)_{\alpha}\left(\lambda_{j}\right)_{\beta}=\langle i j\rangle \\
& \varepsilon^{\dot{\alpha} \dot{\beta}}\left(\widetilde{\lambda}_{i}\right)_{\dot{\alpha}}\left(\tilde{\lambda}_{j}\right)_{\dot{\beta}}=[i j]
\end{aligned}
$$

Complex square roots of Lorentz products (if k_{i} real):

$$
\frac{\langle i j\rangle=\sqrt{S_{i j}} e^{i \phi_{i j}} \quad[j i]=\sqrt{S_{i j}} e^{-i \phi_{i j}}}{\qquad \text { Numerical Implementation of Analytic... } \quad \text { Paris } \quad 26 \text { June 2008 }}
$$

Analyticity

> "One of the most remarkable discoveries in elementary particle physics has been the existence of the complex plane"
> -J. Schwinger

- Treat λ_{i} and $\tilde{\lambda}_{i}$ as independent \rightarrow momenta are complex (for real momenta λ_{i} and $\tilde{\lambda}_{i}$ are complex conjugates)

Virtues of complex momenta

- Makes sense of most basic process with all 3 particles massless

For Efficient Computation

Reduce

the number of "diagrams"

Reuse

building blocks over \& over

Recycle

lower-point (1-loop) \& lower-loop (tree) on-shell amplitudes

Factorization

How amplitudes "fall apart" into simpler ones in special limits

Explore limits in complex plane

Britto, Cachazo, Feng, Witten, hep-th/0501052
Inject complex momentum at leg 1, remove it at leg n.

$$
\left.\begin{array}{l}
k_{1}(z)+k_{n}(z)=k_{1}+k_{n} \quad \Rightarrow A(0) \rightarrow A(z), ~ \\
k_{2}(\sim)-k_{2}(\sim)
\end{array}\right)
$$

special limits \Leftrightarrow poles in z
Cauchy: If $A(\infty)=0$ then

\rightarrow BCFW (on-shell) recursion relations

A_{k+1} and A_{n-k+1} are on-shell tree amplitudes with fewer legs, and with momenta shifted by a complex amount

Trees recycled into trees

All gluon tree amplitudes built from:

(In contrast to Feynman vertices, it is on-shell, gauge invariant.)

On-shell recursion at one loop

Bern, LD, Kosower, hep-th/0501240, hep-ph/0505055, hep-ph/0507005;
Berger, et al., hep-ph/0604195, hep-ph/0607014, 0803.4180 [hep-ph]

- Same techniques work for one-loop QCD amplitudes
- New features compared with tree case, especially branch cuts
- Determine cut terms efficiently using (generalized) unitarity

Trees recycled into loops!

One-loop amplitude decomposition

When all external momenta are in $D=4$, loop momenta in $D=4-2 \varepsilon$ (dimensional regularization), one can write:

Generalized unitarity for box coefficients b_{i}

no. of dimensions $=4=$ no. of constraints \rightarrow discrete solutions (2)

Box coefficients b_{i} (cont.)

For improved numerical stability, we use simplified solutions when all internal lines massless, at least one external line $\left(K_{1}\right)$ massless:

$$
\begin{aligned}
& \left(l_{1}^{(\pm)}\right)^{\mu}=\frac{\left\langle 1^{\mp}\right| I K_{2} K_{3} I K_{4} \gamma^{\mu}\left|1^{ \pm}\right\rangle}{2\left\langle 1^{\mp}\right| I K_{2} K_{4}\left|1^{ \pm}\right\rangle}, \\
& \left(l_{3}^{(\pm)}\right)^{\mu}=\frac{\left\langle 1^{\mp}\right| K_{2} \gamma^{\mu} I K_{3} I K_{4}\left|1^{ \pm}\right\rangle}{2\left\langle 1^{\mp}\right| I K_{2} K_{4}\left|1^{ \pm}\right\rangle},
\end{aligned}
$$

$$
\left(l_{2}^{(\pm)}\right)^{\mu}=-\frac{\left\langle 1^{\mp}\right| \gamma^{\mu} K_{2} I K_{3} I K_{4}\left|1^{ \pm}\right\rangle}{2\left\langle 1^{\mp}\right| K_{2} K_{4}\left|1^{ \pm}\right\rangle},
$$

$$
\left(l_{4}^{(\pm)}\right)^{\mu}=-\frac{\left\langle 1^{\mp}\right| K_{2} I K_{3} \gamma^{\mu} K_{4}\left|1^{ \pm}\right\rangle}{2\left\langle 1^{\mp}\right| K_{2} K_{4}\left|1^{ \pm}\right\rangle}
$$

Generalized unitarity (cont.)

With a 4-ple cut we select one coefficient

Triangle and bubble coefficients are more complicated since a double or triple cut does not isolate a single coefficient.

Also, solutions to cut constraints are now continuous, so there are multiple ways to solve and eliminate d_{i}, etc.
Britto et al. (2005,2006); Mastrolia (2006); Ossola, Papadopoulos, Pittau (2007); Ellis, Giele, Kunszt, 0708.2398[ph]; Forde (2007); ...

Triangle coefficients

Triple cut solution depends on one complex parameter, t

$$
l_{1}^{\mu}(t)=\tilde{K}_{1}^{\mu}+\tilde{K}_{3}^{\mu}+\frac{t}{2}\left\langle\tilde{K}_{1}^{-}\right| \gamma^{\mu}\left|\tilde{K}_{3}^{-}\right\rangle+\frac{1}{2 t}\left\langle\tilde{K}_{3}^{-}\right| \gamma^{\mu}\left|\tilde{K}_{1}^{-}\right\rangle
$$

Triple cut

$$
\left.C_{3}(t) \equiv A_{(1)}^{\text {tree }} A_{(2)}^{\text {tree }} A_{(3)}^{\text {tree }}\right|_{l_{i}=l_{i}(t)}
$$

has poles at $t=t_{i}$ with residues given by known box coefficients $d_{i}{ }^{\sigma}$

Subtract them to aet

$$
T_{3}(t) \equiv C_{3}(t)-\sum_{\sigma= \pm} \sum_{i} \frac{d_{i}^{\sigma}}{\xi_{i}^{\sigma}\left(t-t_{i}^{\sigma}\right)}=\sum_{j=-p}^{p} c_{j} t^{j}
$$

Extract desired triangle coefficient by Z_{p} orbifold projection (discrete Fourier transform). Similarly for bubbles (2d transform)

Rational functions in loop amplitudes

Rational functions have no cuts - can't get from [D=4] unitarity Can get using $D=4-2 \varepsilon$ unitarity:

Bern, Morgan (1996); Bern, LD, Kosower (1996);
Brandhuber, McNamara, Spence, Travaglini hep-th/0506068;
Anastasiou et al., hep-th/0609191, hep-th/0612277;
Britto, Feng, hep-ph/0612089, 0711.4284 [ph];
Giele, Kunszt, Melnikov, 0801.2237 [ph];
Britto, Feng, Mastrolia, 0803.1989 [ph];
Britto, Feng, Yang, 0803.3147 [ph];
Ossola, Papadopolous, Pittau, 0802.1876 [ph];
Mastrolia, Ossola, Papadopolous, Pittau, 0803.3964 [ph];
Giele, Kunszt, Melnikov (2008);
Giele, Zanderighi, 0805.2152 [ph];
Ellis, Giele, Kunszt, Melnikov, 0806.3467 [ph]

Rational functions via on-shell recursion

```
Already used to get infinite series of new QCD helicity amplitudes
analytically:
    -n-gluon MHV amplitudes at 1-loop ( }-+\cdots+-+\cdots+
    - n-gluon "split" helicity amplitudes ( }--\cdots-++\cdots+\cdots
    - "Higgs" + n-gluon MHV amplitudes ( }\phi;-+\cdots+-+\cdots+
    Forde, Kosower, hep-ph/0509358; Berger, Bern, LD, Forde, Kosower,
    hep-ph/0604195, hep-ph/0607014; Badger, Glover, Risager, 0704.3194 [ph];
    Glover, Mastrolia, Williams, 0804.4149 [hep-ph]
```

Next step: Apply method(s) to all helicity configurations, and to generic processes [quarks, vector bosons, Higgs, ...]

Example of recursive diagrams

For rational part of $A_{6}^{1-\mathrm{loop}}\left(1^{-}, 2^{-}, 3^{+}, 4^{+}, 5^{+}, 6^{+}\right)$
recursive:

loops recycled into loops

Compared with 10,860 1-loop Feynman diagrams

Loop amplitudes with cuts

Generic analytic properties of shifted 1-loop amplitude, $A_{n}(z)$
Cuts and poles in z-plane:
$\ln \left(s_{23}\right) \Rightarrow \ln [(\langle 23\rangle+z\langle 13\rangle)[32]]$
But if we know the cuts (via unitarity in $\mathrm{D}=4$), we can subtract them: $R_{n} \equiv A_{n}-C_{n}$

Spurious poles

Locations are all known (dictated by Gram determinants associated with the various scalar integrals)

Residues can be determined from cut part (since they cancel in the full amplitude)

$$
R_{n}^{S}(0)=-\sum_{\text {spur. poles } \beta} \operatorname{Res}_{z=z_{\beta}} \frac{R_{n}(z)}{z}=\sum_{\text {spur. poles } \beta} \operatorname{Res}_{z=z_{\beta}} \frac{C_{n}(z)}{z}
$$

Loop integrals appear in C_{n}. We expand them around the spurious poles, keeping only rational parts. E.g. for 3-mass triangle integral:

$$
I_{3}^{3 \mathrm{~m}}\left(s_{1}, s_{2}, s_{3}\right) \rightarrow-\frac{1}{2} \sum_{i=1}^{3} \ln \left(-s_{i}\right) \frac{s_{i}-s_{i+1}-s_{i-1}}{s_{i+1} s_{i-1}}\left[1-\frac{1}{6} \frac{\Delta_{3}}{s_{i+1} s_{i-1}}+\frac{1}{30}\left(\frac{\Delta_{3}}{s_{i+1} s_{i-1}}\right)^{2}\right]
$$

as $\Delta_{3} \rightarrow 0 \quad+\frac{1}{6} \frac{\Delta_{3}}{s_{1} s_{2} s_{3}}-\frac{s_{1}+s_{2}+s_{3}}{120}\left(\frac{\Delta_{3}}{s_{1} s_{2} s_{3}}\right)^{2}+\cdots$,
L. Dixon Numerical Implementation of Analytic...

Automation required

BlackHat: C++ program
Berger, Bern, LD, Febres Cordero, Forde, H. Ita, D. Kosower, D. Maître, 0803.4180[ph]

Inside BlackHat

Practical issues

- Evaluation time (for Monte Carlo integration over phase space)
- Numerical imprecision due to round-off errors (can be large cancellations between different cut terms, and also against rational terms, in special phase space regions)
no. of pts (linear)

Paris

BlackHat results for n gluons

Berger, Bern, LD, Febres Cordero, Forde, Ita, Kosower, Maître, 0803.4180[ph]

Most complex 6-gluon helicity amplitudes

See also Giele, Zanderighi, 0805.2152 [ph]; (they are $\sim 4 x$ slower for 6 gluons, but scale well to more gluons)

Conclusions

- New and efficient computational approaches to gauge theories are based on unitarity and factorization (inspired by twistor string developments).
- At first, practical spinoffs were mostly for trees, and loops in supersymmetric theories.
- But now, new loop amplitudes in full QCD - needed for collider applications - are beginning to fall to these techniques.
- More phenomenologically important processes than n gluons under construction.
- The pressing challenge now is to automate everything at NLO, including also real radiation
Gleisberg, Krauss, 0709.2881 [hep-ph] ; Seymour, Tevlin, 0803.2231 [hep-ph] for wide classes of important LHC background processes.

