From Amplitudes to Wilson Loops

Andreas Brandhuber

Queen Mary, University of London
based on work done in collaboration with:

Heslop \& Travaglini 0707.II53
Heslop, Nasti, Spence \& Travaglini 0805.2763

Wonders of Gauge Theory and Supergravity: Paris, June 26, 2008

Outline

- Motivation
- MHV amplitudes in N=4 SYM \& Wilson loops at weak coupling
- Iterative structures of loop amplitudes in $\mathrm{N}=8$ SUGRA and Wilson loops
- Conclusions

Motivation

- Why are amplitudes so simple and how can we make use of this observation?
- Geometry in twistor space (Witten 2003)
- Iterative structures in S-matrix of gauge theory \& gravity
- Simplicity hidden by standard Feynman rules
- no manifest gauge symmetry
- unphysical poles
- (Generalised) Unitarity \& Twistor inspired methods
- only gauge invariant, on-shell quantities enter at intermediate steps
- apply also in non-supersymmetric theories
- In theories with maximal supersymmetry amplitudes are particularly simple \Rightarrow Ideal laboratory to test new ideas
- $N=4$ SYM: colour ordered \& planar limit (leading in $1 / N$)
- all one-loop amplitudes are linear combination of box functions (Bern-Dixon-Dunbar-Kosower), coefficients from generalised unitarity (Britto-Cachazo-Feng)
- Recursive structures in higher loop splitting amplitudes and MHV amplitudes (Anastasiou-Bern-Dixon-Kosower, Bern-Dixon-Smirnov)
- Splitting amplitudes: universal, govern collinear limits
- MHV: gluon helicities are permutation of $--+++\ldots+$
- Surprising relation to lightlike Wilson loops: strong coupling: (Alday-Maldacena) Alday's talk weak coupling: (Drummond-Korchemsky-Sokatchev+Henn,AB-Heslop-Travaglini)
- Dual conformal symmetry
- integral functions in planar amplitudes
(Drummond-Henn-Smirnov-Sokatchev)
- Wilson loops (Alday-Maldacena, Drummond-Henn-Korchemsky-Sokatchev)
- Maximal transcendentality
- Today, consider MHV amplitudes in N=4 SYM and N=8 SUGRA
- Some common features of $\mathrm{N}=4$ \& $\mathrm{N}=8$
- Tree level recursion relations, good UV behaviour under complex shifts (Bedford, AB, Spence, Travaglini; Cachazo-Svrcek; Benincasa, BoucherVeronneau, Cachazo; Arkani-Hamed, Kaplan; Bianchi-Elvang-Freedman)
- One-loop:"No Triangle Hypothesis" (Bern, Dixon, Perelstein, Rozowsky; Bern, Bjerrum-Bohr, Dunbar; Bjerrum-Bohr, Dunbar, Ita, Perkins, Risager; Bjerrum-Bohr,Vanhove)
- Both are important for possible finiteness of $\mathrm{N}=8$ SUGRA
(Bjerrum-Bohr, Dunbar, Ita, Perkins, Risager; Bern, Dixon, Roiban; Green, Russo, Vanhove; Bern, Carrasco, Dixon, Johansson, Kosower, Roiban)
- Transcendentality

Goals for the rest of the talk

- MHV amplitudes in N=4 SYM
- iterative structures in perturbative expansion (Korchemsky's talk)
- relate one-loop n-gluon amplitudes to Wilson loops (AB-Heslop-Travaglini)
- 4-graviton MHV amplitude in N=8 SUGRA
- look for iterative structures (similar to $\mathrm{N}=4$)
- try to find relation to Wilson loops

$N=4 S Y M$

- Simplest one-loop amplitude is the n-point MHV amplitude in $\mathrm{N}=4$ SYM at one loop (colour-ordered, partial amplitude):

- Calculated using unitarity in 1994 (Bern-Dixon-Dunbar-Kosower)
- Rederived from MHV diagrams in 2004 (AB-Spence-Travaglini)
- From Wilson loop in 2007 (AB-Heslop-Travaglini)

Suprising iterative structure at two loops...

- n-point MHV amplitude in $\mathrm{N}=4: \mathcal{A}_{n}^{(L)}=\mathcal{A}_{n}^{\text {tree }} \mathcal{M}_{n}^{(L)}$
- First observed for 4 gluon scattering in planar N=4 SYM at 2 loops (Anastasiou-Bern-Dixon-Kosower)

$$
\mathcal{M}_{n}^{(2)}(\epsilon)-\frac{1}{2}\left(\mathcal{M}_{n}^{(1)}(\epsilon)\right)^{2}=f_{\text {曷 }}^{(2)}(\epsilon) \mathcal{M}_{n}^{(1)}(2 \epsilon)+C^{(2)}+\mathcal{O}(\epsilon)
$$

contains anomalous dimension of twist two operators at large spin

- Requires knowledge of one-loop amplitude to higher, positive orders in $\epsilon, D=4-2 \epsilon$, in dimensional regularisaition

...and even higher loops

- In 2005 Bern-Dixon-Smirnov (BDS) found a similar iterative structure for $\mathrm{n}=4$ at 3 loops and proposed an all-loop order formula for the MHV amplitudes in planar N=4 SYM.

$$
a \sim g_{\mathrm{YM}}^{2} N /\left(8 \pi^{2}\right)
$$

$$
\mathcal{M}_{n}:=1+\sum_{L=1}^{\infty} a^{L} \mathcal{M}_{n}^{(L)} \stackrel{?}{=} \exp \left[\sum_{L=1}^{\infty} a^{L}\left(f^{(L)}(\epsilon) \mathcal{M}_{n}^{(1)}(L \epsilon)+C^{(L)}+\mathcal{O}(\epsilon)\right)\right]
$$

- $\mathcal{M}_{n}^{(1)}$ is the all orders in ϵ one-loop MHV amplitude
- In order to extract recursive relations order-by-order in a consider the log of this expression, e.g. for $L=2$ \& 3

$$
\begin{aligned}
& \mathcal{M}_{n}^{(2)}=\frac{1}{2}\left(\mathcal{M}_{n}^{(1)}(\epsilon)\right)^{2}+f^{(2)}(\epsilon) \mathcal{M}_{n}^{(1)}(2 \epsilon)+\mathcal{O}(\epsilon) \\
& \mathcal{M}_{n}^{(3)}=-\frac{1}{3}\left(\mathcal{M}_{n}^{(1)}(\epsilon)\right)^{3}+\mathcal{M}_{n}^{(2)}(\epsilon) \mathcal{M}_{n}^{(1)}(\epsilon)+f^{(3)}(\epsilon) \mathcal{M}_{n}^{(1)}(3 \epsilon)+\mathcal{O}(\epsilon)
\end{aligned}
$$

Comments

- The exponential form is strongly motivated by the universal factorisation \& exponentiation/resummation of IR divergences in gauge theories (not only $\mathrm{N}=4$)
- The miracle in $\mathrm{N}=4$ is that exponentiation also applies to the finite parts of the amplitude and the finite remainder becomes a constant independent of kinematics
- Confirmed by a recent strong coupling calculation using AdS/CFT by Alday-Maldacena (at least for $n=4$).

Test of the conjecture

- Two and three loops, $\mathrm{n}=4$ (Anastasiou, Bern, Dixon, Kosower; Bern, Dixon, Smirnov)
- Two loops, $\mathrm{n}=5$ (Bern, Czzkon, Kosower, Roiban, Smirnov, Cachazo, Spradlin,Volovich)
- Problems for more gluons
- $\mathrm{n} \rightarrow \infty$ (Alday, Maldacena)
- $\mathrm{n}=6$ (Bern, Dixon, Kosower, Roiban, Spradlin, Vergu,Volovich; Cachazo, Spradlin, Volovich)
- Exponent requires an additional kinematic dependent finite remainder function

Amplitudes and Wilson Loops

(Drummond, Korchemsky, Sokatchev; AB, Heslop, Spence, Travaglini)

- MHV amplitudes in $\mathrm{N}=4$ super Yang-Mills $\mathcal{A}_{n}^{(L)}=\mathcal{A}_{n}^{\text {tree }} \mathcal{M}_{n}^{(L)}$
- Surprisingly, \mathcal{M}_{n} appears in a very different context!

Wilson loop calculation

- Lightlike Contour in dual momentum space \Rightarrow fixed by onshell momenta of gluons (colour-ordered, helicity-blind)

$$
\begin{aligned}
& p_{i}=k_{i}-k_{i+1} \quad k^{\prime} \text { s are (T-)dual momenta } \\
& \sum_{i=1}^{n} p_{i}=0 \Rightarrow \text { Contour is closed }
\end{aligned}
$$

Amplitudes and Wilson Loops

- Calculate $<W[C]>$ at weak coupling

$$
W[C]:=\operatorname{Tr} P \exp \left[i g \oint_{C} d \tau\left(A_{\mu}(x(\tau)) \dot{x}^{\mu}(\tau)+\phi_{i}(x(\tau)) \dot{y}^{i}(\tau)\right)\right]
$$

- Contour C of previous page is the same as in the strong coupling calculation of Alday-Maldacena using AdS/CFT
- When $\dot{x}^{2}=\dot{y}^{2}$ Wilson loop is locally supersymmetric
- Here we have $\dot{x}^{2}=0$ (lightlike momenta) and $\dot{y}=0$
- Locally Supersymmetric
- Motivation: recent computation of gluon amplitudes at strong coupling (Alday-Maldacena)
- scattering in AdS is at fixed angle, high energy \Rightarrow similar to Gross-Mende calculation
- \Rightarrow exponential of classical string action $\mathcal{A} \sim e^{-S_{\mathrm{cl}}}=e^{-\sqrt{\lambda} /(2 \pi)(\text { Area) } \mathrm{cl}}$
- In T-dual variables the B.C.s of the string is a lightlike polygonal loop C embedded in the boundary of AdS
- Finding the minimal area with these B.C.s is equivalent to the calculation of a lightlike Wilson loop in AdS/CFT (Maldacena; Rey-Yee)
- Alday-Maldacena: confirmation of BDS conjecture at 4points at strong coupling!

$<W[C]>$ and MHV amplitudes at 1-loop

(AB, Heslop, Travaglini)

- Two classes of diagrams (Feynman gauge):

Gluon stretched between two segments meeting at a cusp

Gluon stretched between two non-adjacent segments
A. IR divergent

- Clean separation of IR divergent and Finite terms
- From diagrams in class A : $\left.\mathcal{M}_{n}^{(1)}\right|_{I R}=-\frac{1}{\varepsilon^{2}} \sum_{i=1}^{n}\left(\frac{-s_{i, i+1}}{\mu^{2}}\right)^{-\varepsilon}$
- $s_{i, i+1}=\left(p_{i}+p_{i+1}\right)^{2}$ is the invariant formed from the momenta meeting at the cusp
- Diagrams in class B give rise to the following integral

$$
\mathscr{F}_{\varepsilon}(s, t, P, Q)=\int_{0}^{1} d \tau_{p} d \tau_{q} \frac{P^{2}+Q^{2}-s-t}{\left[-\left(P^{2}+\left(s-P^{2}\right) \tau_{p}+\left(t-P^{2}\right) \tau_{q}+\left(-s-t+P^{2}+Q^{2}\right) \tau_{p} \tau_{q}\right)\right]^{1+\varepsilon}}
$$

- equal to the finite part of 2-mass easy box function!
- Comment: this integral is directly related to the Feynman parameter integral of the 2-mass easy box function

- In the example: $\quad p=p_{2} \quad q=p_{5}$

$$
P=p_{3}+p_{4}, \quad Q=p_{6}+p_{7}+p_{1}
$$

- One-to-one correspondence between Wilson loop diagrams and finite parts of 2-mass easy box functions
- "Explains" why box functions appear with coefficient $=1$ in the one-loop $\mathrm{N}=4 \mathrm{MHV}$ amplitude
- Explicit calculation gives at $\varepsilon \rightarrow 0: \quad a:=\frac{2(p q)}{P^{2} Q^{2}-s t}$

$$
\mathcal{F}_{\varepsilon=0}=-\mathrm{Li}_{2}(1-a s)-\mathrm{Li}_{2}(1-a t)+\mathrm{Li}_{2}\left(1-a P^{2}\right)+\mathrm{Li}_{2}\left(1-a Q^{2}\right)
$$

- finite part of the box function appearing in the one-loop MHV amplitude in N=4 SYM!
- At 4 points, find the correct all-orders in ε result (terms up to $\mathrm{O}(\varepsilon)$ agree with result of Drummond-Korchemsky-Sokatcher):

$$
\mathcal{M}_{4}^{(1)}(\varepsilon)=-\frac{2}{\varepsilon^{2}}\left[\left(\frac{-s}{\mu^{2}}\right)^{-\varepsilon}{ }_{2} F_{1}\left(1,-\varepsilon, 1-\varepsilon, 1+\frac{s}{t}\right)+\left(\frac{-t}{\mu^{2}}\right)^{-\varepsilon}{ }_{2} F_{1}\left(1,-\varepsilon, 1-\varepsilon, 1+\frac{t}{s}\right)\right]
$$

- For $n>4$, missing topologies (vanish as $\varepsilon \rightarrow 0$)
- E.g. for $\mathrm{n}=5$ amplitude contains parity odd term (pentagon integral). Wilson loop does not capture that!

Comment:"conformal gauge"

- Consider gluon propagator $\sim\left(1+\frac{1}{\epsilon}\right) \frac{\left(\eta_{\mu \nu}-2 x_{\mu} x_{\nu} / x^{2}\right)}{\left(-x^{2}+i \varepsilon\right)^{1-\epsilon}}$
- Type A diagrams vanish!
- Type B diagrams are in one-to-one correspondence with complete 2 -mass easy box functions incl. IR-div. terms
- would be interesting to investigate this further for higher loops
- We will come back to a similar gauge later when we consider Wilson loops for amplitudes in $\mathrm{N}=8$ SUGRA

$<W[C]>$ at higher loops

(Drummond, Henn, Korchemsky, Sokatchev)

- Key result: non-abelian exponentiation theorem (Gatheral; Frenkel-Taylor)

$$
\langle W[C]\rangle:=1+\sum_{L=1}^{\infty} a^{L} W^{(L)}=\exp \sum_{L=1}^{\infty} a^{L} w^{(L)}
$$

- w's are calculated by keeping only the subset of diagrams containing maximal non-abelian colour factor
- Also: exponential form of the answer is automatic

Two conjectures

- the Wilson loop and BDS conjecture can be written as

$$
\mathcal{M}_{n}=1+\sum_{L=1}^{\infty} \mathcal{M}_{n}^{(L)}(\epsilon)=\exp \left(\sum_{L=1}^{\infty} m_{n}^{(L)}+O(\epsilon)\right)
$$

- it's more illuminating to write the log of this; expanding to e.g. 3 loop order \Rightarrow

$$
\begin{aligned}
\mathcal{M}_{n}^{(1)} & =m_{n}^{(1)}+O(\epsilon) \\
\mathcal{M}_{n}^{(2)}-\frac{1}{2}\left(\mathcal{M}_{n}^{(1)}\right)^{2} & =m_{n}^{(2)}+O(\epsilon) \\
\mathcal{M}_{n}^{(3)}+\frac{1}{3}\left(\mathcal{M}_{n}^{(1)}\right)^{3}-\mathcal{M}_{n}^{(1)} \mathcal{M}_{n}^{(2)} & =m_{n}^{(3)}+O(\epsilon)
\end{aligned}
$$

Note: RHS is parity even, hence the parity odd terms on LHS must cancel to order $O(\epsilon)$!

Checks of the conjectures

- BDS conjecture: $\quad m_{n}^{(L)}=a^{L}\left[f^{(L)}(\epsilon) \mathcal{M}^{(1)}(L \epsilon)+C^{(L)}\right]+O(\epsilon)$
- Wilson loop conj.: $\quad m_{n}^{(L)}=a^{L} w_{n}^{(L)}+O(\epsilon)$
- Checks of BDS conjecture:
$\mathrm{n}=4$ up to $\mathrm{L}=3$ (BDS)
$\mathrm{n}=5$ up to $\mathrm{L}=2$ (Cachazo-Spradlin-Volovich, Bern-Czakon-Kosower-Roiban-Smirnov)
* Problems starting at $\mathrm{n}=6$ at $\mathrm{L}=2$, finite remainder
(Bern-Dixon-Kosower-Roiban-Spradlin-Vergu-Volovich, Cachazo-Spradlin-Volovich)
- Checks of Wilson loop conjecture:
$\sqrt{ }$ all n at $\mathrm{L}=1$ (Drummond-Korchemsky-Sokatchev, AB -Heslop-Travagini)
$\mathrm{n}=4,5,6$ at $\mathrm{L}=2$ (Drummond-Henn-Korchemsky-Sokatchev)

N=8 Supergravity

- We wish to address 2 questions:
- Do amplitudes in N=8 SUGRA exhibit iterative structures as in $\mathrm{N}=4 \mathrm{SYM}$?
(Naculich-Nastase-Schnitzer, AB-Heslop-Nasti-Spence-Travaglini)
- Is there an analogous Wilson loop/Amplitude duality for MHV amplitudes? (AB-Heslop-Nasti-Spence-Travagini)
- Focus on four graviton amplitudes
- tree-level amplitude factors out

$$
\mathcal{A}_{4}^{(L)}=\mathcal{A}_{4}^{\text {tree }} \mathcal{M}_{4}^{(L)}
$$

Looking for iterative structures

- As in N=4 SYM write:

$$
\begin{aligned}
& \mathcal{M}_{4}=1+\sum_{L=1}^{\infty} \mathcal{M}_{4}^{(L)}=\exp \left[\sum_{L=1}^{\infty} m_{4}^{(L)}\right] \\
& m_{4}^{(1)}=\mathcal{M}_{4}^{(1)}, \quad m_{4}^{(2)}=\mathcal{M}_{4}^{(2)}-\frac{1}{2}\left(\mathcal{M}_{4}^{(1)}\right)^{2}
\end{aligned}
$$

- We want to find $m_{4}^{(2)}$
- Recall: in $\mathrm{N}=4$ SYM this term was proportional to the oneloop amplitude for 4 and 5 gluons and hence IR divergent

Amplitudes in $\mathrm{N}=8$ SUGRA

- Tree-level:
- KLT (Kawai-Lewellen-Tye)
- On-shell Recursions (Bedford-AB-Spence-Travaglini, Cachazo-Svrcek). Suprisingly good UV behaviour under complex shifts
- One-loop: sum of box functions $_$"no-triangle hypothesis"
- MHV amplitudes: 4 point (Green-Schwarz-Brink, Dunbar-Norridge); general case from unitarity (Bern-Dixon-Perelstein-Rozowsky). MHV-Amplitude $=\langle i j\rangle^{8} \times$ (helicity blind function)
- non-MHV amplitudes: many examples from generalised unitarity (Bern, Bjerrum-Bohr, Dunbar, Ita)
- 2-loop, 4 point (Bern-Dunbar-Dixon-Perelstein-Rozowsky) 3-loop, 4 point (Bern-Carrasco-Dixon-Johansson-Kosower-Roiban)

IR divergences

- One-loop IR divergences known to exponentiate, similar to QED. Weinberg's proof used eikonal approximation
- IR behaviour is softer compared to YM.At one loop only $\frac{1}{\epsilon}$
- E.g. for 4 points at one loop (Dunbar, Norridge)

$$
\left.\mathcal{M}^{(1)}\right|_{\mathrm{IR}}=c_{\Gamma}\left(\frac{\kappa}{2}\right)^{2} \frac{2}{\epsilon}(s \log (-s)+t \log (-t)+u \log (-u))
$$

- Absence of colour ordering $\left.\quad \mathcal{M}\right|_{\text {IR }}=\prod_{i<j} \mathcal{M}_{\text {div }}\left(s_{i j}\right)$
- Also, soft and collinear amplitudes tree level exact (Bern, Dunbar, Dixon, Perelstein, Rozowsky)

One- and two-loop 4-point amplitudes

- One-loop (Green-Schwarz-Brink, Dunbar-Norridge)
- no colour ordering \Rightarrow answer involves sum over permutations (I234), (I423), (I342)

$$
\begin{aligned}
& \mathcal{M}_{4}^{(1)}=-i s t u\left(\frac{\kappa}{2}\right)^{2}\left[\mathcal{I}_{4}^{(1)}(s, t)+\mathcal{I}_{4}^{(1)}(s, u)+\mathcal{I}_{4}^{(1)}(u, t)\right] \\
& \mathcal{I}_{4}^{(1)}(s, t):=\int \frac{d^{D} l}{(2 \pi)^{D}} \frac{1}{l^{2}\left(l-p_{1}\right)^{2}\left(l-p_{1}-p_{2}\right)^{2}\left(l+p_{4}\right)^{2}} \\
& \text { zero-mass box function }
\end{aligned}
$$

- Two-loop: (Bern-Dunbar-Dixon-Perelstein-Rozowsky)

$$
\mathcal{M}_{4}^{(2)}=\left(\frac{\kappa}{2}\right)^{4} s t u\left[s^{2} \mathcal{I}_{4}^{(2), \mathrm{P}}(s, t)+s^{2} \mathcal{I}_{4}^{(2), \mathrm{P}}(s, u)+s^{2} \mathcal{I}_{4}^{(2), \mathrm{NP}}(s, t)+s^{2} \mathcal{I}_{4}^{(2), \mathrm{NP}}(s, u)+\text { cyclic }\right]
$$

- Where $\mathcal{I}_{4}^{(2), \mathrm{P}}, \mathcal{I}_{4}^{(2), \mathrm{NP}}$ are the planar and non-planar double boxes

- Calculated analytically in DR by Smirnov and Tausk
- Note: the non-planar integral is not transcendental
- Starting point to study possible iterations

Iterative Structure

- Main result: $\mathcal{M}_{4}^{(2)}-\frac{1}{2}\left(\mathcal{M}_{4}^{(1)}\right)^{2}=$ finite $+\mathcal{O}(\epsilon)$
- Finite remainder has uniform transcendentality
- Specific combination of NP boxes is transcendental
- Does this persist to higher loops?
- Remainder is not related to one-loop amplitude (unlike 4 point $\mathrm{N}=4$ SYM amplitude) and contains logarithms and (Nielsen) polylogs.
- Answer is in agreement with the expected exponentiation of the one loop IR divergences, i.e. the remainder function is finite
- the full answer is

$$
\begin{aligned}
\mathcal{M}_{4}^{(2)}-\frac{1}{2}\left(\mathcal{M}_{4}^{(1)}\right)^{2}=-\left(\frac{\kappa}{8 \pi}\right)^{4}\left[u^{2}[\right. & k(y)+k(1 / y)]+s^{2}[k(1-y)+k(1 /(1-y)] \\
+ & \left.t^{2}[k(y /(y-1))+k(1-1 / y)]\right]+O(\epsilon)
\end{aligned}
$$

where

$$
\begin{aligned}
k(y): & \frac{L^{4}}{6}+\frac{\pi^{2} L^{2}}{2}-4 S_{1,2}(y) L+\frac{1}{6} \log ^{4}(1-y)+4 S_{2,2}(y)-\frac{19 \pi^{4}}{90} \\
& +i\left(-\frac{2}{3} \pi \log ^{3}(1-y)-\frac{4}{3} \pi^{3} \log (1-y)-4 L \pi \operatorname{Li}_{2}(y)+4 \pi \operatorname{Li}_{3}(y)-4 \pi \zeta(3)\right)
\end{aligned}
$$

$$
\text { and } \quad y=-s / t, L:=\log (s / t)
$$

Wilson loops for gravity amplitudes

- Properties of candidate Wilson loop:
- contour fixed by momenta of gravitons
- invariant under diffeos
- same symmetries as scattering amplitude
- As in eikonal approximation we do not expect to capture the helicity dependence

Holonomy

- Natural starting point would be the holonomy of the Christoffel connection 「, $\langle\operatorname{Tr} \mathcal{U}(C)\rangle$ with

$$
\mathcal{U}_{\beta}^{\alpha}(C):=\mathcal{P} \exp \left[i \kappa \oint_{C} d y^{\mu} \Gamma_{\mu \beta}^{\alpha}(y)\right]
$$

- Studied by Modanese in perturbation theory
- Invariant under diffeos ...
- ... but answer has nothing to do with an amplitude.

$$
\kappa^{2} \oint_{C} d x^{\mu} d y^{\nu}\left\langle\Gamma_{\mu \beta}^{\alpha}(x) \Gamma_{\nu \alpha}^{\beta}(y)\right\rangle \sim \kappa^{2} \oint_{C} d x_{\mu} d y^{\mu} \delta^{(D)}(x-y)
$$

Eikonal Wilson loop

- Try an expression that has been used in the past for calculations of amplitudes involving gravitons in the eikonal approximation (Kabat-Ortin, Fabbrichesi-Pettorino-Veneziano-Vilkovisky)
- In linearised approximation $\quad g_{\mu \nu}(x)=\eta_{\mu \nu}+\kappa h_{\mu \nu}(x)$

$$
W[C]:=\left\langle\mathcal{P} \exp \left[i \kappa \oint_{C} d \tau h_{\mu \nu}(x(\tau)) \dot{x}^{\mu}(\tau) \dot{x}^{\nu}(\tau)\right]\right\rangle
$$

- The exponent can be written as $\int d^{D} x \mathcal{T}^{\mu \nu}(x) h_{\mu \nu}(x)$, where the EM-tensor is that of a free point particle
- However, if the contour C has cusps, then the loop is not diffeomorphism invariant!
- Try anyway!
- First, in order to implement the symmetries of the amplitude we propose to consider

$$
W:=W\left[C_{1234}\right] W\left[C_{1423}\right] W\left[C_{1342}\right]
$$

- At one loop this becomes

$$
W^{(1)}:=W^{(1)}\left[C_{1234}\right]+W^{(1)}\left[C_{1423}\right]+W^{(1)}\left[C_{1342}\right]
$$

where the contours $C_{i j k l}$ are constructed by connecting the momenta in the prescribed order

$<W>$ at one loop

- There are two classes of diagrams as in $\mathrm{N}=4 \mathrm{SYM}$. (A sum over cyclic permutations in (234) is understood)

A. IR divergent

B. Finite
- From diagrams in Class A we get:

$$
\kappa^{2} \frac{c(\epsilon)}{\epsilon^{2}}\left[(-s)^{1+\epsilon}+(-t)^{1+\epsilon}+(-u)^{1+\epsilon}\right]
$$

- The leading divergence cancels since $s+t+u=0$.
- Subleading terms as expected
- From diagrams in Class B we get:

$$
c(\epsilon) \frac{u}{2} \frac{1}{4}\left[\log ^{2}\left(\frac{s}{t}\right)+\pi^{2}\right]
$$

- This is the finite part of a zero mass box function. Sum over perms reproduces the finite part of amplitude

Summary of Results

- Tree level factor missing (as in $\mathrm{N}=4 \mathrm{SYM}$)
- Relative normalisation betwee IR divergent and finite terms is incorrect by a factor of (-2)
- a factor of 2 can be accounted for by an effective overcounting of cusp contributions in W ; the minus sign is harder to explain
- The result is gauge dependent (so far we were using de Donder gauge), but close to the correct answer...

Conformal Gauge

- Defined as the gauge where the cusp diagrams vanish
- have illustrated that earlier for Yang-Mills, where Wilson loop is gauge invariant
- Get the correct $\mathrm{N}=8$ SUGRA amplitude !
- This gauge is a special case of de Donder gauge with an unusual value for the gauge fixing parameter $\alpha=-\frac{2 \epsilon}{1+\epsilon}$
$\mathcal{L}^{(\mathrm{gf})}=\frac{\alpha}{2}\left(\partial_{\nu} h_{\mu}^{\nu}-\frac{1}{2} \partial_{\mu} h_{\alpha}^{\alpha}\right)^{2}$
Note: in usual de Donder gauge $\alpha=-2$
- Graviton propagator in x-space, conf. gauge

$$
D_{\mu \nu, \mu^{\prime} \nu^{\prime}}(x) \sim \frac{\epsilon-1}{\epsilon}\left[\frac{1}{\left(-x^{2}\right)^{1-\epsilon}}\left(\eta_{\mu^{\prime}(\mu} \eta_{\nu) \nu^{\prime}}+\frac{\epsilon}{2(\epsilon-1)^{2}} \eta_{\mu \nu} \eta_{\mu^{\prime} \nu^{\prime}}\right)+2 \frac{1}{\left(-x^{2}\right)^{2-\epsilon}} x_{(\mu} \eta_{\nu)\left(\nu^{\prime}\right.} x_{\left.\mu^{\prime}\right)}\right]
$$

- Gluon propagator in x-space, conf. gauge

$$
\Delta_{\mu \nu}^{\mathrm{conf}}(x) \sim \frac{1-\epsilon}{\epsilon} \frac{1}{\left(-x^{2}+i \varepsilon\right)^{1-\epsilon}} \underbrace{\left[\eta_{\mu \nu}-2 \frac{x_{\mu} x_{\nu}}{x^{2}}\right]}_{\text {Inversion Tensor }}
$$

Conclusions

- Mysterious relation between planar MHV amplitudes in $\mathrm{N}=4$ SYM and light-like Wilson loops
- Why does this work? Dual conformal symmetry is insufficient to explain this, are there other symmetries?
- Unitarity for Wilson loop?
- Possible relations to world line formalism?
- What about other theories/non-MHV amplitudes?
- 1-loop:Wilson loops insensitive to matter content of theory
- 2 loops:Wilson loops in any SCFT identical
- in $\mathrm{N}=1$ SYM $\mathcal{M}_{n}^{(1)}$ depends on helicities

Conclusions cont'd

- Iterative structure in $\mathrm{N}=8$ SUGRA amplitudes
- IR divergences iterate completely
- relatively simple finite remainder with uniform transcendentality
- Wilson loop reproduces almost the one-loop amplitude
- IR divergent and finite parts come out correctly
- cusps break the gauge invariance; can this be fixed?
- Conformal gauge gives the complete amplitude

