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Motivation

• Why are amplitudes so simple and how can we make use of 
this observation?

• Geometry in twistor space (Witten 2003)

• Iterative structures in S-matrix of gauge theory & gravity

• Simplicity hidden by standard Feynman rules

• no manifest gauge symmetry

• unphysical poles

• (Generalised) Unitarity & Twistor inspired methods

• only gauge invariant, on-shell quantities enter at 
intermediate steps

• apply also in non-supersymmetric theories



• In theories with maximal supersymmetry amplitudes are 
particularly simple ⇒ Ideal laboratory to test new ideas

• N=4 SYM: colour ordered & planar limit (leading in 1/N)

• all one-loop amplitudes are linear combination of box 
functions (Bern-Dixon-Dunbar-Kosower), coefficients from generalised 
unitarity (Britto-Cachazo-Feng)

• Recursive structures in higher loop splitting amplitudes 
and MHV amplitudes (Anastasiou-Bern-Dixon-Kosower, Bern-Dixon-Smirnov)

• Splitting amplitudes: universal, govern collinear limits

• MHV: gluon helicities are permutation of --+++...+



• Surprising relation to lightlike Wilson loops:                                   
strong coupling: (Alday-Maldacena)         Alday’s talk                                           

weak coupling: (Drummond-Korchemsky-Sokatchev+Henn,AB-Heslop-Travaglini)

• Dual conformal symmetry

• integral functions in planar amplitudes                   
(Drummond-Henn-Smirnov-Sokatchev)

• Wilson loops (Alday-Maldacena, Drummond-Henn-Korchemsky-Sokatchev)

• Maximal transcendentality



• Today, consider MHV amplitudes in N=4 SYM and N=8 SUGRA

• Some common features of N=4 & N=8

• Tree level recursion relations, good UV behaviour under 
complex shifts (Bedford, AB, Spence, Travaglini; Cachazo-Svrcek; Benincasa, Boucher-
Veronneau, Cachazo; Arkani-Hamed, Kaplan; Bianchi-Elvang-Freedman)

• One-loop: “No Triangle Hypothesis” (Bern, Dixon, Perelstein, Rozowsky; Bern, 
Bjerrum-Bohr, Dunbar; Bjerrum-Bohr, Dunbar, Ita, Perkins, Risager; Bjerrum-Bohr, Vanhove)

• Both are important for possible finiteness of N=8 SUGRA 
(Bjerrum-Bohr, Dunbar, Ita, Perkins, Risager; Bern, Dixon, Roiban; Green, Russo, Vanhove; Bern, 
Carrasco, Dixon, Johansson, Kosower, Roiban)

• Transcendentality



• MHV amplitudes in N=4 SYM

• iterative structures in perturbative expansion         
(Korchemsky’s talk)

• relate one-loop n-gluon amplitudes to Wilson loops            
(AB-Heslop-Travaglini)

• 4-graviton MHV amplitude in N=8 SUGRA

• look for iterative structures (similar to N=4)

• try to find relation to Wilson loops

Goals for the rest of the talk



‘reduced’ 
2-mass easy 
box function

N=4 SYM

• Simplest one-loop amplitude is the n-point MHV amplitude 
in N=4 SYM at one loop (colour-ordered, partial amplitude):

A1−loop
MHV = Atree

MHV

∑

p,q

1×

• Calculated using unitarity in 1994 (Bern-Dixon-Dunbar-Kosower)

• Rederived from MHV diagrams in 2004 (AB-Spence-Travaglini)

• From Wilson loop in 2007 (AB-Heslop-Travaglini)



Suprising iterative structure at two loops...

• n-point MHV amplitude in N=4: 

• First observed for 4 gluon scattering in planar N=4 SYM at 
2 loops (Anastasiou-Bern-Dixon-Kosower)

• Requires knowledge of one-loop amplitude to higher, 
positive orders in     ,                    , in dimensional 
regularisaition

A(L)
n = Atree

n M(L)
n

M(2)
n (ε) − 1

2

(
M(1)

n (ε)
)2

= f (2)(ε)M(1)
n (2ε)+ C(2) + O(ε)

☝
contains anomalous dimension of twist two operators at large spin

ε D = 4− 2ε



...and even higher loops

• In 2005 Bern-Dixon-Smirnov (BDS) found a similar iterative 
structure for n=4 at 3 loops and proposed an all-loop order 
formula for the MHV amplitudes in planar N=4 SYM.

a ∼ g2
YMN/(8π2)

•         is the all orders in     one-loop MHV amplitude

• In order to extract recursive relations order-by-order in a 
consider the log of this expression, e.g. for L=2 & 3

εM(1)
n



Comments

• The exponential form is strongly motivated by the universal 
factorisation & exponentiation/resummation of IR 
divergences in gauge theories (not only N=4)

• The miracle in N=4 is that exponentiation also applies to 
the finite parts of the amplitude and the finite remainder 
becomes a constant independent of kinematics

• Confirmed by a recent strong coupling calculation using 
AdS/CFT by Alday-Maldacena (at least for n=4).



Test of the conjecture

• Two and three loops, n=4 (Anastasiou, Bern, Dixon, Kosower; Bern, Dixon, Smirnov)

• Two loops, n=5 (Bern, Czakon, Kosower, Roiban, Smirnov; Cachazo, Spradlin, Volovich)

• Problems for more gluons

• n → ∞  (Alday, Maldacena)

• n=6 (Bern, Dixon, Kosower, Roiban, Spradlin, Vergu, Volovich; Cachazo, Spradlin, Volovich)

• Exponent requires an additional kinematic dependent finite 
remainder function



   Amplitudes and Wilson Loops

• MHV amplitudes in N=4 super Yang-Mills                       

• Surprisingly,          appears in a very different context!

              Wilson loop calculation

• Lightlike Contour in dual momentum space ⇒ fixed by on-

shell momenta of gluons (colour-ordered, helicity-blind) 

(Drummond, Korchemsky, Sokatchev; AB, Heslop, Spence, Travaglini)
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   Amplitudes and Wilson Loops

• Calculate  < W[C] > at weak coupling 

• Contour C of previous page is the same as in the strong 
coupling calculation of Alday-Maldacena using AdS/CFT

• When               Wilson loop is locally supersymmetric

• Here we have              (lightlike momenta) and 

• Locally Supersymmetric

W [C] := TrPexp
[

ig
I

C
dτ

(
Aµ(x(τ))ẋµ(τ)+φi(x(τ))ẏi(τ)

)]

ẋ2 = ẏ2

ẋ2 = 0 ẏ = 0



• Motivation: recent computation of gluon 
amplitudes at strong coupling (Alday-Maldacena)

‣ scattering in AdS is at fixed angle, high energy ➡ similar to 

Gross-Mende calculation 

‣ ➪ exponential of classical string action

‣ In T-dual variables the B.C.s of the string is a lightlike 
polygonal loop C embedded in the boundary of AdS

‣ Finding the minimal area with these B.C.s is equivalent to 
the calculation of a lightlike Wilson loop in AdS/CFT 
(Maldacena; Rey-Yee)

‣ Alday-Maldacena: confirmation of BDS conjecture at 4-
points at strong coupling!

A ∼ e−Scl = e−
√

λ/(2π)(Area)cl



  < W[C] > and MHV amplitudes at 1-loop

• Two classes of diagrams (Feynman gauge):

The four-particle case was recently addressed in [8], where it was found that the
result of a one-loop Wilson loop calculation reproduces the four-point MHV amplitude
in N =4 SYM. Here we extend this result in two directions. First, we derive the four-
point MHV amplitude to all-orders in the dimensional regularisation parameter ε.
Secondly, we show that this striking agreement persists for an MHV amplitude with
an arbitrary number of external particles.
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Figure 2: A one-loop correction to the Wilson loop, where the gluon stretches between
two lightlike momenta meeting at a cusp. Diagrams in this class provide the infrared-
divergent terms in the n-point scattering amplitudes, given in (2.6).

Three different classes of diagrams give one-loop corrections to the Wilson loop.4

In the first one, a gluon stretches between points belonging to the same segment.
It is immediately seen [8] that these diagrams give a vanishing contribution. In the
second class of diagrams, a gluon stretches between two adjacent segments meeting at
a cusp. Such diagrams are ultraviolet divergent and were calculated long ago [32–39],
specifically in [38,39] for the case of gluons attached to lightlike segments.

In order to compute these diagrams, we will use the gluon propagator in the dual
configuration space, which in D = 4− 2εUV dimensions is

∆µν(z) := −π2−D
2

4π2
Γ
(D

2
− 1

) ηµν

(−z2 + iε)
D
2 −1

(3.2)

= −πεUV

4π2
Γ(1− εUV)

ηµν

(−z2 + iε)1−εUV
.

4Notice that, for a Wilson loop bounded by gluons, we can only exchange gluons at one loop.
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Figure 3: Diagrams in this class – where a gluon connects two non-adjacent segments
– are finite, and give a contribution equal to the finite part of a two mass easy box
function F 2me(p, q, P,Q), second line of (2.3). p and q are the massless legs of the
two-mass easy box, and correspond to the segments which are connected by the gluon.
The diagram depends on the other gluon momenta only through the combinations P
and Q.

The integral is finite in four dimensions. We begin by calculating it in four dimensions
setting ε = 0 (and will come back later to the calculation for ε != 0). In this case, the
result is

Fε=0(s, t, P,Q) = Li2(as) + Li2(at)− Li2(aP 2)− Li2(aQ2) (3.8)

+ log s log
(P 2 − s)(Q2 − s)

P 2Q2 − st
+ log t log

(P 2 − t)(Q2 − t)

P 2Q2 − st

− log P 2 log
−(P 2 − s)(P 2 − t)

P 2Q2 − st
− log Q2 log

−(Q2 − s)(Q2 − t)

P 2Q2 − st
,

where a is defined in (2.4). Using Euler’s identity

Li2(z) = −Li2(1− z)− log z log(1− z) +
π2

6
, (3.9)

and noticing that [10] (1− as)(1− at)/[(1− aP 2)(1− aQ2)] = 1, we can rewrite

Li2(as) + Li2(at)− Li2(aP 2)− Li2(aQ2) = (3.10)

− Li2(1− as)− Li2(1− at) + Li2(1− aP 2) + Li2(1− aQ2)

− log s log(1− as)− log t log(1− at) + log P 2 log(1− aP 2) + log Q2 log(1− aQ2) .

9

Gluon stretched between two 
segments meeting at a cusp 

Gluon stretched between 
two non-adjacent segments

A. IR divergent B. Finite

(AB, Heslop, Travaglini)



• Clean separation of IR divergent and Finite terms

• From diagrams in class A :

•                            is the invariant formed from the 
momenta meeting at the cusp 

• Diagrams in class B give rise to the following integral

• equal to the finite part of 2-mass easy box function!

• Comment: this integral is directly related to the Feynman 
parameter integral of the 2-mass easy box function

si,i+1 = (pi + pi+1)2

M (1)
n |IR = − 1

ε2

n

∑
i=1

(
−si,i+1

µ2

)−ε

Fε(s, t,P,Q) =
Z 1

0
dτpdτq

P2 +Q2− s− t
[−

(
P2 +(s−P2)τp +(t−P2)τq +(−s− t +P2 +Q2)τpτq

)
]1+ε



• In the example: 

• One-to-one correspondence between  Wilson loop diagrams 
and finite parts of 2-mass easy box functions

• “Explains” why box functions appear with coefficient = 1 in 
the one-loop N=4 MHV amplitude
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function F 2me(p, q, P,Q), second line of (2.3). p and q are the massless legs of the
two-mass easy box, and correspond to the segments which are connected by the gluon.
The diagram depends on the other gluon momenta only through the combinations P
and Q.

The integral is finite in four dimensions. We begin by calculating it in four dimensions
setting ε = 0 (and will come back later to the calculation for ε != 0). In this case, the
result is

Fε=0(s, t, P,Q) = Li2(as) + Li2(at)− Li2(aP 2)− Li2(aQ2) (3.8)

+ log s log
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− log P 2 log
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where a is defined in (2.4). Using Euler’s identity

Li2(z) = −Li2(1− z)− log z log(1− z) +
π2

6
, (3.9)

and noticing that [10] (1− as)(1− at)/[(1− aP 2)(1− aQ2)] = 1, we can rewrite

Li2(as) + Li2(at)− Li2(aP 2)− Li2(aQ2) = (3.10)

− Li2(1− as)− Li2(1− at) + Li2(1− aP 2) + Li2(1− aQ2)

− log s log(1− as)− log t log(1− at) + log P 2 log(1− aP 2) + log Q2 log(1− aQ2) .

9

A
tree

MHV
×

From Trees to Loops, cont’d

a :=
2(pq)

P2Q2− st

F2me(s, t,P2,Q2) =−c!
"2

[(−s
µ2

)−"
2F1 (1,−",1− ",as) +

(−t
µ2

)−"
2F1 (1,−",1− ",at)

−
(−P2

µ2

)−"
2F1

(
1,−",1− ",aP2

)
−

(−Q2

µ2

)−"
2F1

(
1,−",1− ",aQ2

)]

with

the all order in 
2-mass easy box function:

!

P = p3 + p4 , Q = p6 + p7 + p1

p = p2 q = p5

s := (p+P)2

t := (q+P)2

Q



• Explicit calculation gives at ε→0 : 

• finite part of the box function appearing in the one-loop 
MHV amplitude in N=4 SYM!

• At 4 points, find the correct all-orders in ε result (terms up 
to O(ε) agree with result of Drummond-Korchemsky-Sokatchev):

• For  n > 4, missing topologies (vanish as ε→0)

• E.g. for n=5 amplitude contains parity odd term (pentagon 
integral).       Wilson loop does not capture that!

Fε=0 =−Li2(1−as)−Li2(1−at)+Li2(1−aP2)+Li2(1−aQ2)

a :=
2(pq)

P2Q2− st

M (1)
4 (ε) =− 2

ε2

[(
−s
µ2

)−ε

2F1

(
1,−ε,1− ε,1+

s
t

)
+

(
−t
µ2

)−ε

2F1

(
1,−ε,1− ε,1+

t
s

)]



• Consider gluon propagator

• Type A diagrams vanish!

• Type B diagrams are in one-to-one correspondence with 
complete 2-mass easy box functions incl. IR-div. terms

• would be interesting to investigate this further for higher 
loops

• We will come back to a similar gauge later when we 
consider  Wilson loops for amplitudes in N=8 SUGRA

Comment: “conformal gauge”

∼
(

1 +
1
ε

)
(ηµν − 2xµxν/x2)

(−x2 + iε)1−ε



  < W[C] > at higher loops 

• Key result: non-abelian exponentiation theorem      
(Gatheral; Frenkel-Taylor)

• w’s are calculated by keeping only the subset of diagrams 
containing maximal non-abelian colour factor

• Also: exponential form of the answer is automatic

〈W [C]〉 := 1 +
∞

∑
L=1

aLW (L) = exp
∞

∑
L=1

aLw(L)

(Drummond, Henn, Korchemsky, Sokatchev)



• the Wilson loop and BDS conjecture can be written as

Two conjectures

Mn = 1 +
∞∑

L=1

M(L)
n (ε) = exp

( ∞∑

L=1

m(L)
n + O(ε)

)

• it’s more illuminating to write the log of this; expanding to 
e.g. 3 loop order ⇒

M(1)
n = m(1)

n + O(ε)

M(2)
n − 1

2

(
M(1)

n

)2
= m(2)

n + O(ε)

M(3)
n +

1
3

(
M(1)

n

)3
−M(1)

n M(2)
n = m(3)

n + O(ε)

Note: RHS is parity even, hence the parity odd 
terms on LHS must cancel to order        !O(ε)



Checks of the conjectures

• BDS conjecture:

• Wilson loop conj.:

m(L)
n = aL[f (L)(ε)M(1)(Lε) + C(L)] + O(ε)

m(L)
n = aLw(L)

n + O(ε)

• Checks of BDS conjecture: 

✓n=4 up to L=3 (BDS)

✓n=5 up to L=2 (Cachazo-Spradlin-Volovich, Bern-Czakon-Kosower-Roiban-Smirnov)

Problems starting at n=6 at L=2, finite remainder            
(Bern-Dixon-Kosower-Roiban-Spradlin-Vergu-Volovich, Cachazo-Spradlin-Volovich)

• Checks of Wilson loop conjecture: 

✓ all n at L=1 (Drummond-Korchemsky-Sokatchev, AB-Heslop-Travaglini)

✓n=4, 5, 6 at L=2 (Drummond-Henn-Korchemsky-Sokatchev) 



• We wish to address 2 questions:

• Do amplitudes in N=8 SUGRA exhibit iterative 
structures as in N=4 SYM?                                     
(Naculich-Nastase-Schnitzer, AB-Heslop-Nasti-Spence-Travaglini)

• Is there an analogous Wilson loop/Amplitude duality for 
MHV amplitudes? (AB-Heslop-Nasti-Spence-Travaglini)

• Focus on four graviton amplitudes

• tree-level amplitude factors out

N=8 Supergravity

A(L)
4 = Atree

4 M(L)
4



Looking for iterative structures

• As in N=4 SYM write:

M4 = 1 +
∞∑

L=1

M(L)
4 = exp

[ ∞∑

L=1

m(L)
4

]

m(1)
4 =M(1)

4 , m(2)
4 =M(2)

4 − 1
2
(
M(1)

4

)2

• We want to find m(2)
4

• Recall: in N=4 SYM this term was proportional to the one-
loop amplitude for 4 and 5 gluons and hence IR divergent



Amplitudes in N=8 SUGRA

• Tree-level: 

• KLT (Kawai-Lewellen-Tye)

• On-shell Recursions (Bedford-AB-Spence-Travaglini, Cachazo-Svrcek). 

Suprisingly good UV behaviour under complex shifts

• One-loop: sum of box functions ➭ “no-triangle hypothesis”

• MHV amplitudes: 4 point (Green-Schwarz-Brink, Dunbar-Norridge); 
general case from unitarity (Bern-Dixon-Perelstein-Rozowsky).                     
MHV-Amplitude =          x (helicity blind function)

• non-MHV amplitudes: many examples from generalised 
unitarity (Bern, Bjerrum-Bohr, Dunbar, Ita)

• 2-loop, 4 point (Bern-Dunbar-Dixon-Perelstein-Rozowsky)                   
3-loop, 4 point (Bern-Carrasco-Dixon-Johansson-Kosower-Roiban)

〈ij〉8



IR divergences

• One-loop IR divergences known to exponentiate, similar to 
QED.  Weinberg’s proof used eikonal approximation

• IR behaviour is softer compared to YM. At one loop only

• E.g. for 4 points at one loop (Dunbar, Norridge)

1
ε

M(1)
∣∣∣
IR

= cΓ

(κ

2

)2 2
ε

(
s log(−s) + t log(−t) + u log(−u)

)

• Absence of colour ordering 

• Also, soft and collinear amplitudes tree level exact (Bern, Dunbar, 
Dixon, Perelstein, Rozowsky)

M
∣∣∣
IR

=
∏

i<j

Mdiv(sij)



One- and two-loop 4-point amplitudes

• One-loop (Green-Schwarz-Brink, Dunbar-Norridge)

• no colour ordering ⇒ answer involves sum over 

permutations (1234), (1423), (1342)

M(1)
4 = −i s t u

(κ

2

)2[
I(1)

4 (s, t) + I(1)
4 (s, u) + I(1)

4 (u, t)
]

I(1)
4 (s, t) :=

∫
dDl

(2π)D

1
l2(l − p1)2(l − p1 − p2)2(l + p4)2

zero-mass box function



• Two-loop: (Bern-Dunbar-Dixon-Perelstein-Rozowsky)

M(2)
4 =

(κ

2

)4
stu

[
s2 I(2),P

4 (s, t) + s2 I(2),P
4 (s, u) + s2 I(2),NP

4 (s, t) + s2 I(2),NP
4 (s, u) + cyclic

]

• Where                        are the planar and non-planar double 
boxes

I(2),P
4 , I(2),NP

4

• Calculated analytically in DR by Smirnov and Tausk

• Note: the non-planar integral is not transcendental

• Starting point to study possible iterations



• Main result:

• Finite remainder has uniform transcendentality

• Specific combination of NP boxes is transcendental

• Does this persist to higher loops?

• Remainder is not related to one-loop amplitude (unlike 4 
point N=4 SYM amplitude) and contains logarithms and 
(Nielsen) polylogs.

• Answer is in agreement with the expected exponentiation 
of the one loop IR divergences, i.e. the remainder function 
is finite

Iterative Structure

M(2)
4 − 1

2

(
M(1)

4

)2
= finite +O(ε)



• the full answer is
M(2)

4 − 1
2
(M(1)

4 )2 = −
(

κ
8π

)4
[
u2

[
k(y) + k(1/y)

]
+ s2

[
k(1− y) + k(1/(1− y)

]

+t2
[
k(y/(y − 1)) + k(1− 1/y)

]]
+ O(ε)

where

k(y) :=
L4

6
+

π2L2

2
− 4S1,2(y)L +

1
6

log4(1− y) + 4 S2,2(y)− 19π4

90

+i

(
−2

3
π log3(1− y)− 4

3
π3 log(1− y)− 4Lπ Li2(y) + 4πLi3(y)− 4πζ(3)

)

y = −s/t , L := log(s/t)and



• Properties of candidate Wilson loop:

• contour fixed by momenta of gravitons

• invariant under diffeos

• same symmetries as scattering amplitude

• As in eikonal approximation we do not expect to capture 
the helicity dependence

Wilson loops for gravity amplitudes



Holonomy

• Natural starting point would be the holonomy of the 
Christoffel connection Γ,                     with〈TrU(C)〉

Uα
β(C) := P exp

[
iκ

∮

C
dyµΓα

µβ(y)
]

• Studied by Modanese in perturbation theory

• Invariant under diffeos ...

• ... but answer has nothing to do with an amplitude.

κ2

∮

C
dxµdyν 〈Γα

µβ(x)Γβ
να(y)〉 ∼ κ2

∮

C
dxµdyµδ(D)(x − y)



Eikonal Wilson loop

• Try an expression that has been used in the past for 
calculations of amplitudes involving gravitons in the eikonal 
approximation (Kabat-Ortin, Fabbrichesi-Pettorino-Veneziano-Vilkovisky)

• In linearised approximation

W [C] :=
〈
P exp

[
iκ

∮

C
dτ hµν(x(τ))ẋµ(τ)ẋν (τ)

]〉
gµν(x) = ηµν + κhµν(x)

• The exponent can be written as                                     ,                                    
where the EM-tensor is that of a free point particle

• However, if the contour C has cusps, then the loop is not 
diffeomorphism invariant!

∫
dDxT µν(x)hµν(x)



• Try anyway!

• First, in order to implement the symmetries of the 
amplitude we propose to consider

• At one loop this becomes

W := W [C1234] W [C1423] W [C1342]

W (1) := W (1)[C1234] + W (1)[C1423] + W (1)[C1342]

where the contours         are constructed by 
connecting the momenta in the prescribed order

Cijkl



• There are two classes of diagrams as in N=4 SYM. (A sum 
over cyclic permutations in (234) is understood)

<W> at one loop

x1

x2

x3

x4

p1

p3

p2

p4 x1

x2

x3

x4

p1

p2

p3

p4

A. IR divergent B. Finite



• From diagrams in Class A we get:

• The leading divergence cancels since                       .

• Subleading terms as expected
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• From diagrams in Class B we get:

• This is the finite part of a zero mass box function. Sum over 
perms reproduces the finite part of amplitude                      
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• Tree level factor missing (as in N=4 SYM)

• Relative normalisation betwee IR divergent and finite terms 
is incorrect by a factor of (-2)

• a factor of 2 can be accounted for by an effective 
overcounting of cusp contributions in W; the minus sign 
is harder to explain

• The result is gauge dependent (so far we were using de 
Donder gauge), but close to the correct answer...

Summary of Results



Conformal Gauge

• Defined as the gauge where the cusp diagrams vanish

• have illustrated that earlier for Yang-Mills, where Wilson 
loop is gauge invariant

• Get the correct N=8 SUGRA amplitude !

• This gauge is a special case of de Donder gauge with an 
unusual value for the gauge fixing parameter α = − 2ε
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Note: in usual de Donder gauge α = −2



• Graviton propagator in x-space, conf. gauge
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• Gluon propagator in x-space, conf. gauge
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︸ ︷︷ ︸
Inversion Tensor



Conclusions

• Mysterious relation between planar MHV amplitudes in N=4 
SYM and light-like Wilson loops

• Why does this work? Dual conformal symmetry is insufficient 
to explain this, are there other symmetries?

• Unitarity for Wilson loop? 

• Possible relations to world line formalism?

• What about other theories/non-MHV amplitudes?

• 1-loop: Wilson loops insensitive to matter content of theory

• 2 loops: Wilson loops in any SCFT identical

• in N=1 SYM           depends on helicitiesM(1)
n



• Iterative structure in N=8 SUGRA amplitudes

• IR divergences iterate completely

• relatively simple finite remainder with uniform 
transcendentality

• Wilson loop reproduces almost the one-loop amplitude

• IR divergent and finite parts come out correctly

• cusps break the gauge invariance; can this be fixed?

• Conformal gauge gives the complete amplitude

Conclusions cont’d


