Introduction to Cluster DMFT methods

San Sebastian, July 26th 2007

O. Parcollet

Service de Physique Théorique

CEA-Saclay

France
Outline

1. Why? Motivations for cluster extensions of DMFT.
3. A selection of a few results.
General references for Cluster DMFT

- **DMFT (in particular section IX).**

- **Cluster DMFT (methods, results).**

- **Electronic structure calculations with DMFT (Cf cluster section IIB)**
Reminder: Mott transition

- Metal-Insulator transition due to interactions
- Hubbard model, a minimal model for theorists.

\[H = - \sum_{\langle ij \rangle, \sigma=\uparrow, \downarrow} t_{ij} c_{i\sigma}^{\dagger} c_{j\sigma} + U n_{i\uparrow} n_{i\downarrow}, \quad n_{i\sigma} \equiv c_{i\sigma}^{\dagger} c_{i\sigma} \]

- An intermediate coupling problem

How is the metal destroyed close to a Mott transition?

\(\delta = 1 - \langle n^{\uparrow} + n^{\downarrow} \rangle \)
Reminder : DMFT (I)

- Baym-Kadanoff functional of the Green function G_{ij}

$$\Gamma_{BK}[G_{ij}] = \text{Tr} \ln G_{ij} - \text{Tr}(g_{0ij}^{-1}G_{ij}) + \Phi_{BKLW}[G_{ij}]$$

$$G_{ij}(t) \equiv -\langle T c_i(t)c_j^\dagger(0) \rangle \quad \Sigma_{ij} = \frac{\delta\Phi_{BKLW}}{\delta G_{ij}}$$

g_{0ij}^{-1}: Free Green function

$$\Phi_{BKLW}[G_{ij}] \approx \phi_{AIM}(G_{ii})$$

- Exact in large dimension (Metzner-Vollhardt, 1989)
Reminder : DMFT (II)

- Self consistent Anderson impurity formulation *(Kotliar-Georges 1992)*

 =

 a method to solve the local approximation on Φ

Weiss

$$H = -J \sum_{ij} \sigma_i \sigma_j$$

$$m = \langle \sigma \rangle$$

$$H_{\text{eff}} = -J h_{\text{eff}} \sigma$$

$$m = \tanh(\beta h_{\text{eff}})$$

$$h_{\text{eff}} = z J m$$

DMFT

$$H = - \sum_{ij\sigma} t_{ij} c_{i\sigma}^\dagger c_{j\sigma} + U n_{i\uparrow} n_{i\downarrow}$$

$$G_c(\tau) = - \langle T c(\tau) c^\dagger(0) \rangle_{S_{\text{eff}}f}$$

$$S_{\text{eff}} = - \int_0^\beta c_{\sigma}^\dagger(\tau) G_0^{-1}(\tau - \tau') c_{\sigma}(\tau') + \int_0^\beta d\tau U n_{\uparrow}(\tau)n_{\downarrow}(\tau)$$

$$\Sigma = G_0^{-1} - G_c^{-1}$$

$$G_0^{-1}(i\omega_n) = \left(\sum_k \frac{1}{i\omega_n + \mu - t(k) - \Sigma(i\omega_n)} \right)^{-1} + \Sigma(i\omega_n)$$
Reminder: DMFT (III)

• Lattice quantities versus impurity quantities.

\[G_{\text{latt}}(k, \omega) = \frac{1}{\omega + \mu - \epsilon_k - \Sigma_{\text{latt}}(k, \omega)} \]

\[\Sigma_{\text{latt}}(k, \omega) = \Sigma(\omega) \equiv G_0^{-1} - G_c^{-1} \]

• In DMFT, \(\Sigma_{\text{latt}} \) is independent of \(k \).

• Consequences:
 • Effective mass and \(Z \) are linked \(Z = \frac{m}{m^*} \)
 • Finite temperature lifetime, \(Z \) are constant along the FS.
When is single-site DMFT not sufficient?
Mott transition in DMFT

- Cf. D. Vollhardt’s lecture. Compares nicely to some experiments.

Schematic DMFT phase diagram (with frustration)

Valid beyond DMFT? e.g. Paramagnetic insulator

PRL 91, 016401 (2003)
High temperature superconductors

- A family of copper oxides: \(\text{La}_{2-x}\text{Sr}_x\text{CuO}_4 \), \(\text{Bi}_2\text{Sr}_2\text{CaCu}_2\text{O}_{8+\delta} \), with 2d Cu-O planes
High Tc cuprates are doped Mott Insulators

• A generic phase diagram, with 5 regions:

AF Mott insulator

No FL strange metal

AF order

AF

PG

SC

FL

Tc

under doped

over doped

A Mean Field picture of cuprates based on DMFT?
Superconducting phase

- d-wave gap (with nodes)

\[\Delta(k) \propto \Delta_0 (\cos(k_x) - \cos(k_y)) + \Delta'_0 (\cos(2k_x) - \cos(2k_y)) + \ldots \]

![Graph showing the d-wave gap](image)

Antinodal direction

Nodal direction

ARPES

Ding et al, 1996
One site is not enough!

- d-wave superconductivity: need 4 sites cluster
- 1 site: a trivial representation of the lattice group
- Same would be true for a (spin) Peierls phase. Cf. Lecture by S. Biermann on VO$_2$

Clusters fix this problem (e.g. allowing d-SC order)
Pseudo-gap region

- Fermi “arcs” (ARPES)
 - Fermi liquid below and above coherence scale
 - Variations of along the Fermi surface of Z, m^*, T_{coh}

\[Z, m^*, T_{coh} \]

\[T \]

\[M \]

\[ky \]

\[0 \]

\[kx \]

\[\pi \]

\[\text{Bi2212 : Kanigel et al. 2,447 (2006)} \]

\[\text{Ca}_{2-x}\text{Na}_x\text{CuO}_2\text{Cl}_2 \]

\[A(k, \omega = 0^+) \]

\[T = 110K \quad T_c = 70K \]

\[k_z (\pi, \pi) \]

\[k_z (0,0) \quad x = 0.05 \]

\[x = 0.10 \]

\[\text{Shen et al. Science 307, 901 (2005)} \]
Why a Dynamical Mean Field?

- Fermi liquid with low coherence scale: \(\epsilon_F^* = ZD \)
- Coherent and incoherent part
- Transfer of spectral weight from low to high \(\omega \)
- Beyond a low energy quasi-particle description (slave bosons)
- Price: solve a quantum impurity model.

Hubbard model, DMFT, (IPT), \(T=0, \delta=0 \)

\[
\rho(\omega) \equiv -\frac{1}{\pi} \text{Im} G(\omega)
\]

\(U/D = 1 \)
\(U/D = 2 \)
\(U/D = 2.5 \)
\(U/D = 3 \)
\(U/D = 4 \)

Metal
Mott insulator
Hubbard band (incoherent)
QP peak (coherent)
• \(T > T_{coh} \) : the Kondo peak “melts” \(\rightarrow \) bad metal.

• DMFT can describe a metal with a low coherence temperature, and above this coherence temperature.
Local self-energy is not enough!

- In DMFT: no k-dependence of the self-energy.
- Finite temperature lifetime, Z are constant along the FS.
- Effective mass m^* has to diverge when $Z \rightarrow 0$ \[Z = \frac{m}{m^*} \]

Clusters reintroduce some k-dependence in Σ

Shen et al. Science 307, 901 (2005)
Summary of motivations for cluster DMFT

- Describe orders that single-site DMFT can not handle (e.g. d-SC)
- Some k-dependence of the self-energy : variations of Z, effective mass, lifetime along the Fermi surface.
- Non trivial paramagnetic insulators (frustrated magnets ?)
- Keep short range correlations (e.g. AF fluctuations).
- Effect of J in the paramagnet not in DMFT
e.g. cut divergence of the effective mass
(See slave-bosons or large N, e.g. G. Kotliar, Les Houches 1991).
- Systematic corrections beyond mean field for Mott transition.
Clusters : an interpolation between mean field and d=2,3
Outline

1. Motivations for cluster extensions of DMFT.
2. Introduction to cluster methods.
3. A few results...
Cluster extensions of DMFT

- **Principle**: a finite number of sites in a self consistent bath.
 - *local quantum fluctuations* → *short range quantum fluctuations*

- Interpolate between DMFT and finite dimensions
- Finite size systems BUT with “boundary conditions” G0.
- **Many choices**:
 - Type of clusters (e.g. shape, size)
 - Self-consistency condition: \(G_0(i\omega_n) = \mathcal{F}_{\text{lattice}}[G_c](i\omega_n) \)
 - How to approximate lattice quantities from cluster quantities?

Cluster DMFT is not unique
How to build cluster extensions of DMFT?

• **Strategy**: Higher approximation on Φ than DMFT

\[\Phi \approx \phi_{AIM}(G_{ii}) \]

• Φ-derivability \Rightarrow conservative approximation (Baym-Kadanoff)

 In particular, Luttinger Theorem. (Cf. M. Katsnelson’s lecture).

• **Two of the main difficulties**:

 • Find impurity models to solve the approximation on Φ.

 • Do not break causality!
First attempt: Nested Scheme

- Approximate Luttinger Ward functional by:

\[\Phi = \sum_i \tilde{\phi}_1(G_{ii}) + \sum_{<ij>} \tilde{\phi}_2(G_{ii}, G_{jj}, G_{ij}) + \cdots \]

- Apply it to a 1 site and a 2 site problem:

\[
\begin{align*}
\phi_{1\text{site}}(G_{ii}) &= \tilde{\phi}_1(G_{ii}) \\
\phi_{2\text{sites}}(G_{ii}, G_{jj}, G_{ij}) &= \tilde{\phi}_2(G_{ii}, G_{jj}, G_{ij}) + \tilde{\phi}_1(G_{ii}) + \tilde{\phi}_1(G_{jj})
\end{align*}
\]

- Introducing z, the connectivity of the lattice:

\[\Phi_{\text{Nested}} \approx (1 - z) \sum_i \phi_{1\text{site}}(G_{ii}) + \sum_{<ij>} \phi_{2\text{sites}}(G_{ii}, G_{jj}, G_{ij}) \]

- Leads to Bethe-Kikuchi method in the classical limit

BUT...
Causality problem!

- **Causality** $= \text{Im } \Sigma < 0$ (definite negative matrix)
- **Strong Causality property**: guarantee that $\text{Im } \Sigma < 0$ for any bath G_0
 Hence there will not be any causality violation at any step in the DMFT iterative loop.
- Quantum impurity problem is causal by construction: the problem lies in the self-consistency.
- It is not obvious to have a causal scheme: **Nested schemes lead to causality violations** (Ingersent; Kotliar, Georges)
- **Origin of the causality problem**:
 See also A. Fuhrmann, S. Okamoto, H. Monien, and A. J. Millis PRB 75, 205118 (2007)
- So let’s try something else!
C-DMFT
(G. Kotliar et al. PRL 87 186401 2001)

• DMFT on a superlattice. Similar to a multiorbital model.

Superlattice

Cluster site labeling

1 ≤ μ, ν ≤ 4

• R, R′: position of the cluster.
 μ, ν= cluster site labels.

\[\Phi_{C\text{-DMFT}}(G) = \sum_{R} \Phi_{4\text{sites}}(G_{μ,R;ν,R} | G_{ρ,R;λR′} = 0) \]
C-DMFT equations

- 4 Anderson impurities coupled to an effective bath

\[S_{\text{eff}} = - \int \int_{0}^{\beta} d\tau d\tau' c_{\mu}^\dagger(\tau)G_{0,\mu\nu}^{-1}(\tau, \tau')c_{\nu}(\tau') + \int_{0}^{\beta} d\tau U(n_{i\uparrow}n_{i\downarrow})(\tau) \]

\[G_{c\mu\nu}(\tau) = -\langle T c_{\mu}(\tau)c_{\nu}^\dagger(0) \rangle_{S_{\text{eff}}} \]

\[\Sigma_{c} = G_{0}^{-1} \quad - G_{c}^{-1} \]

\[G_{0}^{-1}(i\omega_n) = \left[\sum_{K \in \text{R.B.Z.}}' \left(i\omega_n + \mu - \hat{t}(K) - \Sigma_{c}(i\omega_n) \right)^{-1} \right]^{-1} + \Sigma_{c}(i\omega_n) \]
DCA

• Cluster method in k-space: Σ piecewise constant on B.Z.

• Example for 2x2 cluster on square lattice.

$$\Sigma(k, i\omega_n) \approx \Sigma_c(k_c(k), i\omega_n)$$

Cluster momenta k_c

$$\Phi_{DCA}(G) = N_{sites} \Phi(G(k)) \bigg|_{U(k_1,k_2,k_3,k_4)} = U_{DCA}(k_1,k_2,k_3,k_4)$$

$$U_{DCA}(k_1, k_2, k_3, k_4) = \delta K_c(k_1) + K_c(k_2), K_c(k_3) + K_c(k_4) / N_{sites}$$

T. Maier et al, Rev. Mod. Phys. 77, 1027 (2005)
DCA equations

• Same multiple impurity problem than in C-DMFT.

\[S_{\text{eff}} = - \int \int_{0}^{\beta} d\tau d\tau' c_{\mu}^{\dagger}(\tau) G_{0,\mu\nu}^{-1}(\tau, \tau') c_{\nu}(\tau') + \int_{0}^{\beta} d\tau U n_{\mu \downarrow} n_{\mu \uparrow}(\tau) \]

\[G_{c\mu\nu}(\tau) = - \langle T c_{\mu}(\tau)c_{\nu}^{\dagger}(0) \rangle_{S_{\text{eff}}} \]

\[\Sigma_c = G_0^{-1} - G_c^{-1} \]

• \(G, \Sigma \) cyclic on the cluster

• Cluster translation invariance.

• Translation invariance not broken (k-space)

\[G_0^{-1}(k_c, i\omega_n) = \left(\sum_{\tilde{k}} \frac{1}{i\omega_n + \mu - t(\tilde{k}) - \Sigma(k_c, i\omega_n)} \right)^{-1} + \Sigma_c(k_c, i\omega_n) \]

\[T. \text{Maier et al, Rev. Mod. Phys. 77, 1027 (2005)} \]
DCA in real space

• Similar self-consistency as in CDMFT.
 Change the hopping function.

\[
S_{\text{eff}} = - \int \int_0^\beta d\tau d\tau' c_\mu^\dagger(\tau) G_{0,\mu\nu}^{-1}(\tau, \tau') c_\nu(\tau') + \int_0^\beta d\tau U n_{\mu \downarrow} n_{\mu \uparrow}(\tau)
\]

\[
G_{c\mu\nu}(\tau) = - \langle T c_\mu(\tau) c_\nu^\dagger(0) \rangle_{S_{\text{eff}}}
\]

\[
\Sigma_c = G_0^{-1} - G_c^{-1}
\]

\[
G_0^{-1}(i\omega_n) = \left[\sum_{K \in R.B.Z.} \left(i\omega_n + \mu - \hat{t}_{\text{DCA}}(K) - \Sigma_c(i\omega_n) \right)^{-1} \right]^{-1} + \Sigma_c(i\omega_n)
\]

\[
t_{\alpha\beta}^{\text{DCA}}(K) = \sum_{k_c} e^{i k_c (\alpha - \beta)} t(K + k_c)
\]

• It is “easy” to switch method.
Evaluation of lattice quantities.

- DCA: need to interpolate between the value at K_c.
- CDMFT: more severe, since it breaks translation invariance. Need to restore it by re-periodization.

- Which quantity should we periodize (or interpolate)?
 - Most irreducible (Σ rather than G!), most local.
 - NB: breaks Φ-derivability.
C-DMFT : Σ-Periodization

- The original proposal (G. Kotliar et al. PRL 87 186401 2001)
- Example : 2x2 cluster on a square lattice

$$\Sigma^{Lattice}(k) = \frac{1}{4} \sum_{i=1}^{4} \Sigma^{Cluster}_{ii} + \frac{1}{2} \left[(\Sigma^{Cluster}_{12} + \Sigma^{Cluster}_{34}) \cos(k_x) + (\Sigma^{Cluster}_{24} + \Sigma^{Cluster}_{13}) \cos(k_y) + \Sigma^{Cluster}_{14} \cos(k_x + k_y) + \Sigma^{Cluster}_{23} \cos(k_x - k_y) \right]$$

Cluster quantities \Leftrightarrow harmonics on the lattice

Size of cluster = resolution in k space
C-DMFT : Σ-Periodization (2)

- Σ- periodization generates spurious mid-gap states in Mott insulator
 \textit{(B. Kyung, A.M. Tremblay et al)}

- In fact Σ can be singular in an insulator.
 e.g. Atomic Green function (1 Hubbard site, ph symmetric)

\[
G(i \omega_n)_{\text{at}} = \frac{1/2}{i \omega_n + U/2} + \frac{1/2}{i \omega_n - U/2}.
\]

\[
\Sigma(i \omega_n) \sim \frac{U^2}{i \omega_n}
\]

- Σ is irreducible and simple in a perturbative expansion in the interaction.

- What is the analogous of Σ in an expansion in t?
C-DMFT : M-Periodization

- Definition of the irreducible cumulant:
 Sum of all diagrams 1-particle irreducible in an expansion around the atomic limit (i.e. in \(t \), not in \(U \)).

- For a presentation of this diagrammatics: *(W. Metzner, PRB 43, 8549 1991)*

- Relation with the self-energy:
 \[
 M^{-1}(k, \omega) = \omega + \mu - \Sigma(k, \omega)
 \]

- The Green function is:
 \[
 G(k, \omega) = \left(t(k) - M^{-1}(k, \omega) \right)^{-1}
 \]
C-DMFT : M-Periodization (2)

(T. Stanescu, G. Kotliar PRB 74, 125110, 2006)

- In DMFT, Σ and M are local.
- Hubbard, 1/2 filled, 2x2 CDMFT, U/D = 2, ED solver, cluster quantities

M is more localized than Σ.

![Diagram showing comparison of M and Σ](image-url)
C-DMFT : M-Periodization (3)

(T. Stanescu, G. Kotliar PRB 74, 125110, 2006)

⇒ Periodize the irreducible cumulant

• Same formula as for the self-energy:

\[
M^{\text{Lattice}}(k) = \frac{1}{4} \sum_{i=1}^{4} M_{ii}^{\text{Cluster}} + \frac{1}{2} \left[(M_{12}^{\text{Cluster}} + M_{34}^{\text{Cluster}}) \cos(k_x) + (M_{24}^{\text{Cluster}} + M_{13}^{\text{Cluster}}) \cos(k_y) + M_{14}^{\text{Cluster}} \cos(k_x + k_y) + M_{23}^{\text{Cluster}} \cos(k_x - k_y) \right]
\]

• A non-linear relation ⇒ \(\Sigma_{\text{lattice}}(k, 0) \) can have singularity!

Some CDMFT results rely on using this periodization
Many cluster methods!

- Nested Schemes, DCA (Reciprocal space), CDMFT : Real space
- Self-energy functional \((M. Potthoff \text{ et al. See e.g. condmat 0511729}) \)
- Extended cluster DMFT (Extended DMFT + cluster) \((\text{see e.g. K. Haule}) \)
- Cluster perturbation theory : CPT, VCPT (not self-consistent) \(\text{A.M. Tremblay, D. Sénéchal.} \)
- PCDMFT : use \(\Sigma(k,\omega) \) in the self-consistency \(\text{(G. Biroli et al. PRB, 69,205108 (2004); see also A. Lichtenstein and M. Katsnelson, PRB 62, R9283 (2000))} \)
- For a review, see : \(T. Maier \text{ et al, Rev. Mod. Phys. 77,1027 (2005)} \)
Can we test cluster methods?
Test the cluster method in one dimension

- One dimensional physics (*Cf Book by T. Giamarchi, Oxford University Press*).
- Low energy (large distance): Luttinger liquid physics, spin-charge separation.
- Some correlated models (e.g. Hubbard model) can be solved analytically (by Bethe Ansatz) for the thermodynamics.
- The dynamical correlations can be computed with DMRG.
- Let us solve the 1d Hubbard model with 1 and 2 site CDMFT and compare to the exact result.
- Computation of short range physics, thermodynamics.
- DMFT can NOT capture Luttinger liquid large distance physics.
Test the cluster method in one dimension (2)

- Occupation vs chemical potential (2 sites cluster)

BA = Bethe Ansatz
Test the cluster method in one dimension (3)

- Dynamical quantities.

Comparison to DMRG (in Matsubara, with Hallberg's algorithm)

How to solve (cluster) DMFT equations?
Impurity solvers

\[S_{\text{eff}} = -\int_{\beta}^{0} d\tau d\tau' c^{\dagger}_{\mu}(\tau) G_{0,\mu\nu}^{-1}(\tau, \tau') c_{\nu}(\tau') + \int_{0}^{\beta} d\tau U(n_{i\uparrow} n_{i\downarrow})(\tau) \]

\[G_{c\mu\nu}(\tau) = -\langle T c_{\mu}(\tau) c^{\dagger}_{\nu}(0) \rangle_{S_{\text{eff}}} \]

- Many different solvers (Cf D. Vollhardt & M. Troyer’s lectures).
 - Quantum Monte-Carlo (Hirsch-Fye, CTQMC).
 \[P.\text{Werner et al. PRL 97, 076405 (2006)} \]
 - Exact diagonalisation (ED).
 - Renormalization group methods: NRG, DMRG.
 - Approximate methods (IPT, NCA,...)
- By far the hardest part in DMFT (will be hidden here).
- No “best” solver (T=0 or finite, real \(\omega \) or Matsubara, etc...)
Why is DMFT harder than usual impurity problems?

- Bath can have a structure at low energy ...
- ... while most analytical solvers (e.g. Bethe Ansatz, CFT) use a flat band!

Valid in universal regime \(T, \omega, T_K \ll D \)

Not sufficient to solve DMFT
Outline

1. Motivations for cluster extensions of DMFT.
2. Introduction to cluster methods.
3. A few results:
 - Cluster correction to DMFT picture of Mott transition
 - Phase diagram of Hubbard model
 - Two energy scales in the SC phase.
Is the DMFT picture of Mott transition corrected by clusters?
U-driven Mott transition

- Signature of Mott transition in double occupancy in 1 site DMFT. (A. Georges, W. Krauth, PRL 69, 1240 (1992))

\[d \equiv \langle n_i^\uparrow n_i^\downarrow \rangle \]

(Kotliar et al. condmat/0003016)
• Similar result in cluster. (See also B. Kyung, AM. Tremblay, 2005)

• Frustration is essential! (hard for QMC-Hirsch-Fye)

U-driven Mott transition

DMFT

C-DMFT (2x2)

(Kotliar et al. condmat/0003016)

O. P. et al. PRL 2003

But....
Cluster corrections close to Mott transition

- Fixed $T/D = 45 > T_c$, various U.
- Anisotropic Hubbard model

<table>
<thead>
<tr>
<th>DMFT metal</th>
<th>Metal. Hot-Cold spots</th>
<th>Finite T insulator</th>
</tr>
</thead>
</table>
| $U/D \leq 2.2$
$\Sigma''_{11} \sim c_1 + \left(1 - \frac{1}{Z}\right) i\omega_n$
$\Sigma''_{12}, \Sigma''_{14} \approx 0$
$\partial_k \Sigma_{\text{lattice}} \approx 0$ | $2.25 \leq U/D \leq 2.3$
$\Sigma''_{11} \sim c_2 + \left(1 - \frac{1}{Z}\right) i\omega_n$
$\Sigma''_{14} \neq 0$
Modulation of the finite T lifetime | $2.35 \leq U/D$
$\Sigma''_{11} \sim c_3$ |
Doping driven Mott : k-space differentiation.

$A(k, \omega = 0^+)$

$\text{Teff} = D/128, U=16t$

t,t' isotropic

Hubbard model
2x2 CDMFT

DMFT metal

Anisotropic metal

$n=1 : \text{Mott}$

Hole doped

Electron doped

Highly frustrated

$M. \text{Civelli, M. Capone, S. S. Kancharla, O.P and G. Kotliar} \quad \text{Phys. Rev. Lett. 95, 106402 (2005)}$
Generic features

• DMFT metal at small U, large doping : no cluster corrections.

• Approaching to Mott transition, cluster effects becomes more and more important.

• Observed also in other cluster methods :
 DCA (see e.g. T. Maier et al, Rev. Mod. Phys. 77, 1027 (2005)),
 CPT, VCPT (See A.M. Tremblay et al).

• .. and e.g. in Functionnal RG (W. Metzner et al.)
Phase diagram of the Hubbard model
Does the Hubbard model have d-SC?

- d-SC in 2x2 cluster

- DCA: M. Jarrell et al, PRL 85, 1524 (2001)

- 2x2 CDMFT (M. Civelli, K. Haule). \(T_c \approx \frac{t}{100} \ll T_c^{\text{DCA} \ 2x2} \)

- Large Clusters at U/D=1 (DCA), up to 26 sites: \(T_c \approx 0.023t \)
 T. Maier et al., PRL 95, 237001 (2005)

All cluster methods consistently predicts d-SC, AF, with different \(T_c \)
AF, d-SC : coexistence or competition?

- Hubbard model (various U, ED solver).
- Qualitative difference between large and small U.
 - Small U : coexistence between AF + d-SC
 - Higher U, first order transition.
Nature of the SC phase
“Standard” simplest RVB picture

\[
\Delta(k) \propto \Delta_0\left(\cos(k_x) - \cos(k_y)\right) \quad \text{with} \quad \Delta_0(\delta) \uparrow \quad \text{for} \quad \delta \to 0
\]

\[
\Delta_0(\delta) \propto T_c(\delta) \quad \text{unlike BCS}
\]
High-Tc SC phase

• Two energy scales in SC phase

• Raman experiments. *M. LeTacon et al., Nature Physics, 2, 537, 2006*

• See also ARPES experiments. *Tanaka., Science 314, 1910, (2006)*

• Gap at antinode (maximum) increases for $\delta \to 0$.

• Gap around node (slope) decreases for $\delta \to 0$, like T_c.

What does Cluster DMFT gives ?
2 gaps in high-Tc superconductors

- Solution of Hubbard model, 2x2 CDMFT, ED solver, SC phase
- Cluster quantities:

 \[\text{Re} \Sigma_{12}^{\text{ano}}/t \]

 \[\text{Im} G_{11}/\pi \]

- Anomalous self-energy non-monotonic in \(\delta \) and decreases at low \(\delta \)
- Gap of local \(G \) increases close to the Mott insulator.

\[\Rightarrow 2 \text{ energy scales} \]
2 gaps in high-T_c superconductors

- Analyze ARPES spectrum at (anti)node with/without anomalous Σ

![Graph A: Nodal spectrum](image)

![Graph B: Antinodal spectrum](image)

![Graph C: Anomalies at node and antinode](image)

![Graph D: Anti-nodal behavior](image)
Nodal region

\[A(k, \omega) \simeq Z_{nod} \delta \left(\omega - \sqrt{v_{nod}^2 k_\perp^2 + v_\Delta^2 k_\parallel^2} \right) \]

QP velocity \(\perp \) to FS

\[v_{nod} = Z_{nod} |\nabla_k \xi^0_k| \]

Anomalous velocity \(\parallel \) to FS

\[v_\Delta = Z_{nod} |\nabla_k \Sigma^{ano}(k)| \]

Slope of the gap at the node

\[\delta \]

\[v_{nod}/(a_0 t) \quad v_\Delta/(a_0 t) \]
Antinodal region: decomposition of the gap

- Nor: anomalous $\Sigma = 0$.
- Tot: full gap
- Sc: contribution of anomalous Σ

$$\Delta_{sc} = \sqrt{\Delta_{tot}^2 - \Delta_{nor}^2}$$
$$\Delta_{sc}(k) \sim Z_{anod} |\Sigma_{ano}(k, 0)|$$

$$G_{k\sigma}^{-1}(\omega) = \begin{pmatrix}
\omega - \varepsilon_k - \Sigma_{\sigma}^{nor}(k, \omega) & -\Sigma_{\sigma}^{ano}(k, \omega) \\
-\Sigma_{\sigma}^{ano}(k, \omega) & \omega + \varepsilon_k + \Sigma_{\sigma}^{nor}(k, -\omega)
\end{pmatrix}$$

Cluster DMFT and ab-initio methods.

- Cluster DMFT can be mixed with e.g. LDA, like DMFT. e.g.

- Dynamical Singlets and correlation-assisted Peierls transition in VO$_2$
 (S. Biermann, A. I. Poteryaev, A. I. Lichtenstein, A. Georges, PRL 94, 026404 (2005))
 Cf Lecture by S. Biermann.

- Metal-Insulator transition in Ti$_2$O$_3$
 (A. I. Poteryaev, A. I. Lichtenstein, G. Kotliar, PRL 93, 086401 (2004))
Conclusion

• **Good:**
 • More orders than DMFT (d-SC)
 • Node/Antinode dichotomy: some (limited) k-resolution
 • DMFT based: coherent, incoherent features.

• **Limitations:**
 • Still hard to solve (large size, large U).
 • k-resolution still limited. Various different cluster methods.
 • No “large distance” physics (e.g. Luttinger in 1d).

• **Open questions:**
 • 2 impurities have richer physics (RKKY vs Kondo). QCP?
 • Low energy effective theories. Simple picture of the “mechanism”.