The Landau-Yang theorem

Jean-Yves Ollitrault (IPhT Saclay)
Rencontres IPhT/SPP, Sept.26,2013

Selection Rules for the Dematerialization of a Particle into Two Photons
 C. N. Yang*
 Institute for Nuclear Studies, University of Chicago, Chicago, Illinois
 (Received August 22, 1949)

T has been pointed out ${ }^{1}$ that a positronium in the ${ }^{3} S$ state cannot decay through annihilation with the emission of two photons. Recent calculation ${ }^{2}$ shows that also a vector or a pseudovector neutral meson cannot disintegrate into two photons. It is the purpose of the present paper to show that these facts are immediate consequences of certain selection rules which can be derived from the general principle of invariance under space rotation and inversion.

Selection Rules for the Dematerialization of a Particle into Two Photons
 C. N. Yang*
 Institute for Nuclear Studies, University of Chicago, Chicago, Illinois
 (Received August 22, 1949)

TT has been pointed out ${ }^{1}$ that a positronium in the ${ }^{3} S$ state cannot decay through annihilation with the emission of two photons. Recent calculation ${ }^{2}$ shows that also a vector or a pseudovector neutral meson cannot disintegrate into two photons. It is the purpose of the present paper to show that these facts are immediate consequences of certain selection rules which can be derived from the general principle of invariance under space rotation and inversion.

Selection Rules for the Dematerialization of a Particle into Two Photons
 C. N. Yang*
 Institute for Nuclear Studies, University of Chicago, Chicago, Illinois
 (Received August 22, 1949)

IT has been pointed out ${ }^{1}$ that a positronium in the ${ }^{3} S$ state cannot decay through annihilation with the emission of two photons. Recent calculation ${ }^{2}$ shows that also a vector or a pseudovector neutral meson cannot disintegrate into two photons. It is the purpose of the present paper to show that these facts are immediate consequences of certain selection rules which can be derived from the general principle of invariance under space rotation and inversion.

This proves that the new 125 GeV particle (Higgs boson) discovered at the LHC in July 20I2 cannot have spin I

Selection Rules for the Dematerialization of a Particle into Two Photons
 C. N. Yang*
 Institute for Nuclear Studies, University of Chicago, Chicago, Illinois
 (Received August 22, 1949)

IT has been pointed out ${ }^{1}$ that a positronium in the ${ }^{3} S$ state cannot decay through annihilation with the emission of two photons. Recent calculation ${ }^{2}$ shows that also a vector or a pseudovector neutral meson cannot disintegrate into two photons. It is the purpose of the present paper to show that these facts are immediate consequences of certain selection rules which can be derived from the general principle of invariance under space rotation and inversion.

This proves that the new 125 GeV particle (Higgs boson) discovered at the LHC in July 20I2 cannot have spin I

The Landau-Yang theorem

- A spin I particle cannot decay into 2 photons
- A result which was already long known
- Landau (1948) and Yang (1949) proved independently that it is a consequence of rotational symmetry alone (does not involve parity)

The photon spin

Quantum

Classical

Photon $=$ spin I particle $\longrightarrow \underset{\vec{B}}{\text { Electromagnetic fields }}$ $\vec{E}, \vec{B}=$ vectors

For a photon moving in the \times direction, the spin component S_{x} can be $+\mathrm{I},-\mathrm{I}$, not 0

2 photon decay

In the rest frame of the decaying particle

Angular momentum along x :
Initial: spin of decaying particle J_{x}
Final: $S_{1 x}+L_{1 x}+S_{2 x}+L_{2 x}$

2 photon decay

In the rest frame of the decaying particle

Angular momentum along x :
Initial: spin of decaying particle J_{x}
Final: $S_{1 \times}+S_{2 x}$ because
orbital momentum $L_{x}=\mathrm{yP}_{z}-\mathrm{zPy}=0$
Conservation $\Rightarrow J_{x}=S_{1 x}+S_{2 x}$

2 photon decay

$S_{1 \times}$ and $S_{2 x}$ can be either +1 or -I: 4 spin states

$$
\begin{array}{ll}
|+I,+I\rangle & J_{x}=+2 \\
|-I,+I\rangle & J_{x}=0 \\
|+I,-I\rangle & J_{x}=0 \\
|-I,-I\rangle & J_{x}=-2
\end{array}
$$

2 photon decay

$S_{1 \times}$ and $S_{2 x}$ can be either +1 or -I: 4 spin states
$1+1 \rightarrow{ }_{x}=+2$

$$
|+I,-I\rangle \quad J_{x}=0 \quad 2 \text { states forbidden if } J=I
$$

$$
1-1 . \Rightarrow f_{x}=-2
$$

2 photon decay

$S_{1 \times}$ and $S_{2 x}$ can be either +1 or -I: 4 spin states

$$
\begin{array}{lll}
|-I,+I\rangle & J_{x}=0 & \text { Only } 2 \text { states allowed } \\
|+I,-I\rangle & J_{x}=0 & \text { if } J=I \text {. Both have } J_{x}=0
\end{array}
$$

Transformation under 180° rotation about z

- Spin $=$ vector: $S_{x} \leftrightarrow-S_{x}$
- Left-moving photon \leftrightarrow right-moving photon

$$
\left|s_{1}, s_{2}\right\rangle \rightarrow\left|-s_{2},-s_{1}\right\rangle
$$

Transformation under 180° rotation about z

- Spin $=$ vector: $S_{x} \leftrightarrow-S_{x}$
- Left-moving photon \leftrightarrow right-moving photon

$$
\begin{aligned}
\left|s_{1}, s_{2}\right\rangle & \rightarrow\left|-s_{2},-s_{1}\right\rangle \\
|-I,+I\rangle & \rightarrow|-|,+I\rangle \\
|+I,-I\rangle & \rightarrow|+|,-I\rangle
\end{aligned}
$$

Transformation under 180° rotation about z

- Spin $=$ vector: $S_{x} \leftrightarrow-S_{x}$
- Left-moving photon \leftrightarrow right-moving photon

$$
\begin{aligned}
\left|s_{1}, s_{2}\right\rangle & \rightarrow\left|-s_{2},-s_{1}\right\rangle \\
|-I,+1\rangle & \rightarrow|-|,+1\rangle \quad \text { Both allowed states } \\
|+1,-I\rangle & \rightarrow|+I,-I\rangle \quad \text { are unchanged }
\end{aligned}
$$

Transformation of $\mathrm{J}=\mathrm{I}$ states

$|m\rangle \equiv$ eigenstate of J_{z}
180° rotation about z:

$$
|0\rangle \rightarrow|0\rangle
$$

Transformation of

$\mathrm{J}=\mathrm{I}$ states

$|\mathrm{m}\rangle \equiv$ eigenstate of J_{z}
180° rotation about z:

In this basis, the $J_{x}=0$ state is
$|\Psi\rangle=(|-|\rangle-|+|\rangle) / \sqrt{ } 2$

Transformation of

$\mathrm{J}=\mathrm{I}$ states

$|\mathrm{m}\rangle \equiv$ eigenstate of J_{z}
180° rotation about z :
$|\mathrm{m}\rangle \rightarrow \mathrm{e}^{\mathrm{i} m \pi}|\mathrm{~m}\rangle$
[recall $\mathrm{J}_{\mathrm{x}}=(\mathrm{J}+\mathrm{+} \mathrm{~J}) / 2 \mathrm{l}$.

$|0\rangle \rightarrow|0\rangle$

Hence $|\Psi\rangle \rightarrow-|\Psi\rangle$

In this basis, the $\mathrm{J}_{\mathrm{x}}=0$ state is
$|\Psi\rangle=(|-|\rangle-|+|\rangle) / \sqrt{ } 2$

Conclusion

- Allowed two-photon states have $\mathrm{J}_{\mathrm{x}}=0$ and are even under a rotation by 180° around z
- $\mathrm{J}=\mathrm{I}, \mathrm{J}_{\mathrm{x}}=0$ state is odd under the same rotation
- Therefore $a \mathrm{~J}=\mathrm{I}$ particle cannot decay into two photons

