JIMWLK evolution for multi-particle production in Langevin form

Dionysios Triantafyllopoulos ECT* and FBK, Trento, Italy h3QCD, Trento, June 2013

E. Iancu, DNT, arXiv:1306.nnnn

Outline

\square JIMWLK evolution: dipoles, quadrupoles, ... or Langevin
\square Multi-gluon production at a given rapidity
\square Di-gluon production at different rapidities
\square Evolution of weight-function squared
\square Langevin for di-gluon production at different rapidities

Partonic "phase diagram"

Saturation momentum

\square Saturation when $\frac{x g\left(x, Q_{s}^{2}\right)}{Q_{s}^{2} R^{2}} \sim \frac{1}{\alpha_{s}}$

- $Q_{s}^{2}(x, A) \sim Q_{0}^{2} A^{1 / 3}\left(\frac{x_{0}}{x}\right)^{\lambda}$ with $\lambda=0.2 \div 0.3$

The CGC

\square Integrate "fast modes" with large lifetime

\square Classical average :
$\langle\hat{\mathcal{O}}\rangle_{Y}=\int[D U] W_{Y}[U] \hat{\mathcal{O}}$
Proper degrees of freedom: Wilson lines for scattering of propagating partons: $\quad U_{\boldsymbol{x}}^{\dagger}=\mathrm{P} \exp \left[\mathrm{i} g \int \mathrm{~d} x^{+} \alpha_{\boldsymbol{x}}^{a}\left(x^{+}\right) T^{a}\right]$

The JIMWLK equation

\square Quantum evolution:

$$
\partial W_{Y}[U] / \partial Y=H W_{Y}[U]
$$

$$
H=\frac{1}{8 \pi^{3}} \int_{\boldsymbol{u} \boldsymbol{v} \boldsymbol{z}} \mathcal{K}_{\boldsymbol{u} \boldsymbol{z}}^{i} \mathcal{K}_{\boldsymbol{v} \boldsymbol{z}}^{i}\left[L_{\boldsymbol{u}}^{a}-U_{\boldsymbol{z}}^{\dagger a b} R_{\boldsymbol{u}}^{b}\right]\left[L_{\boldsymbol{v}}^{a}-U_{\boldsymbol{z}}^{\dagger a c} R_{\boldsymbol{v}}^{c}\right]
$$

$K_{u z}^{i}$: Weizsacker-Williams kernel for emission of a soft gluon
\square Left and right derivatives act at largest and smallest x^{+}, after and before scattering.

$$
L_{\boldsymbol{u}}^{a} U_{\boldsymbol{x}}^{\dagger}=\mathrm{i} g \delta_{\boldsymbol{u} \boldsymbol{x}} T^{a} U_{\boldsymbol{x}}^{\dagger}, \quad R_{\boldsymbol{u}}^{a} U_{\boldsymbol{x}}^{\dagger}=\mathrm{i} g \delta_{\boldsymbol{u} \boldsymbol{x}} U_{\boldsymbol{x}}^{\dagger} T^{a}
$$

$1^{\text {st }}$ approach: projectile evolution

\square IBP and act on observable, e.g. forward scattering of color dipole off nuclear shockwave $\quad \hat{S}^{F}(\boldsymbol{x} \boldsymbol{y})=\frac{1}{N_{g}} \operatorname{Tr}\left[V_{\boldsymbol{y}} V_{\boldsymbol{x}}^{\dagger}\right]$

\square Leads to dipole (BK) equation. Similarly for quadrupole, etc.
\square Hierarchy. Take large- N_{c} and / or Gaussian approximation.

$2^{\text {nd }}$ approach: Langevin

\square Random walk in space of Wilson lines. Each step adds left and right layer to the Wilson line
$\left\langle\hat{S}_{\boldsymbol{x} \boldsymbol{y}}\right\rangle_{Y}=\frac{1}{N_{g}}\left\langle\operatorname{Tr}\left[U_{N, \boldsymbol{x}}^{\dagger} U_{N, \boldsymbol{y}}\right]\right\rangle_{\nu} \quad U_{n, \boldsymbol{x}}^{\dagger}=\mathrm{e}^{\mathrm{i} \epsilon g \alpha_{L, \boldsymbol{x}}^{n}} U_{n-1, \boldsymbol{x}}^{\dagger} \mathrm{e}^{-\mathrm{i} \epsilon g \alpha_{R, \boldsymbol{x}}^{n}}$
$\alpha_{L, \boldsymbol{x}}^{n}=\frac{1}{\sqrt{4 \pi^{3}}} \int_{\boldsymbol{z}} \mathcal{K}_{\boldsymbol{x} \boldsymbol{z}}^{i} \nu_{n, \boldsymbol{z}}^{i a} T^{a}, \quad \alpha_{R, \boldsymbol{x}}^{n}=\frac{1}{\sqrt{4 \pi^{3}}} \int_{\boldsymbol{z}} \mathcal{K}_{\boldsymbol{x} \boldsymbol{z}}^{i} \nu_{n, \boldsymbol{z}}^{i a} U_{n-1, \boldsymbol{z}}^{\dagger a b} T^{b}$
$\square v$: white noise $\left\langle\nu_{m, \boldsymbol{x}}^{i a} \nu_{n, \boldsymbol{y}}^{j b}\right\rangle=\frac{1}{\epsilon} \delta^{i j} \delta^{a b} \delta_{m n} \delta_{\boldsymbol{x} \boldsymbol{y}}$
\square Only R-field depends on previous Wilson line \rightarrow cascade

Wave-function squared (WFS)

■ "Physical" gluon: "mathematical" gluonic dipole

$$
\hat{S}_{12}(\boldsymbol{x} \overline{\boldsymbol{x}})=\frac{1}{N_{c}} \operatorname{Tr}\left[\bar{U}_{\overline{\boldsymbol{x}}} U_{\boldsymbol{x}}^{\dagger}\right]
$$

Different coordinates in DA and CCA: FT \rightarrow "measure gluons"
"Barred" Wilson line to keep track of WF in the CCA
Will act as a generating functional for observables

Resolving same rapidity gluons

\square For $\alpha\left(\eta_{p}-\eta_{k}\right) \ll 1$, no intermediate gluon radiation

$$
\frac{\mathrm{d} \sigma_{2 g}}{\mathrm{~d} \eta_{p} \mathrm{~d}^{2} \boldsymbol{p} \mathrm{~d} \eta_{k} \mathrm{~d}^{2} \boldsymbol{k}}=\frac{1}{(2 \pi)^{4}} \int_{\boldsymbol{x} \overline{\boldsymbol{x}}} \mathrm{e}^{-\mathrm{i} \boldsymbol{p} \cdot(\boldsymbol{x}-\overline{\boldsymbol{x}})}\left\langle\left. H_{\mathrm{prod}}(\boldsymbol{k}) \hat{S}_{12}(\boldsymbol{x} \overline{\boldsymbol{x}})\right|_{\bar{U}=U}\right\rangle_{Y}
$$

$H_{\mathrm{prod}}(\boldsymbol{k})=\frac{1}{4 \pi^{3}} \int_{\boldsymbol{y} \overline{\boldsymbol{y}}} \mathrm{e}^{-\mathrm{i} \boldsymbol{k} \cdot(\boldsymbol{y}-\overline{\boldsymbol{y}})} \int_{\boldsymbol{u} \boldsymbol{v}} \mathcal{K}_{\boldsymbol{y} \boldsymbol{u}}^{i} \mathcal{K}_{\overline{\boldsymbol{y}} \boldsymbol{v}}^{i}\left[L_{\boldsymbol{u}}^{a}-U_{\boldsymbol{y}}^{\dagger a b} R_{\boldsymbol{u}}^{b}\right]\left[\bar{L}_{\boldsymbol{v}}^{a}-\bar{U}_{\overline{\boldsymbol{y}}}^{\dagger a c} \bar{R}_{\boldsymbol{v}}^{c}\right]$
$\square H_{\text {prod }}$ reduces to JIMWLK if $\int d^{2} k$ and remove bars

$$
\left\langle\left. R_{\boldsymbol{u}}^{b} \bar{R}_{\boldsymbol{v}}^{c} \hat{S}_{12}(\boldsymbol{x} \overline{\boldsymbol{x}})\right|_{\bar{U}=U}\right\rangle_{Y}=\int[D U] W_{Y}[U] \frac{1}{N_{g}} \operatorname{Tr}\left[\left(R_{\boldsymbol{v}}^{c} U_{\overline{\boldsymbol{x}}}\right)\left(R_{\boldsymbol{u}}^{b} U_{\boldsymbol{x}}^{\dagger}\right)\right]
$$

\square Bars disappeared, new structures $R U, L U$

Inserting unresolved gluons

\square For $\alpha\left(Y-Y_{A}\right) \approx 1$, intermediate gluon radiation
\square Evolve (dress) gluon WFS from Y_{A} to Y
\square Initial condition at $Y_{A}: U_{A}$ and \bar{U}_{A}
$\left\langle\hat{S}_{12}(\boldsymbol{x} \overline{\boldsymbol{x}})\right\rangle_{Y-Y_{A}}^{A}=\int[D U D \bar{U}] W_{Y-Y_{A}}\left[U, \bar{U} \mid U_{A}, \bar{U}_{A}\right] \frac{1}{N_{g}} \operatorname{Tr}\left[\bar{U}_{\overline{\boldsymbol{x}}} U_{\boldsymbol{x}}^{\dagger}\right]$
\square Production of gluon at Y_{A}
$\frac{\mathrm{d} \sigma_{2 g}}{\mathrm{~d} \mathrm{~d}^{2} \boldsymbol{p} \mathrm{~d} Y_{A} \mathrm{~d}^{2} \boldsymbol{k}_{A}} \propto \int\left[D U_{A}\right] W_{Y_{A}}\left[U_{A}\right]\left[H_{\operatorname{prod}}^{A}\left\langle\hat{S}_{12}(\boldsymbol{x} \overline{\boldsymbol{x}})\right\rangle_{Y-Y_{A}}^{A}\right]_{\bar{U}_{A}=U_{A}}$

Evolution Hamiltonian

\square Conditional weight-function evolves as

$$
\frac{\partial}{\partial Y} W_{Y}\left[U, \bar{U} \mid U_{A}, \bar{U}_{A}\right]=(\underbrace{H_{11}+H_{22}+2 H_{12}}_{H_{\mathrm{evol}}}) W_{Y}\left[U, \bar{U} \mid U_{A}, \bar{U}_{A}\right]
$$

\square Viewed as projectile evolution

$1^{\text {st }}$ approach: evolution of projectile WFS

\square Large- N_{c} : closed diagonal system of two equations Stating the result up to a FT

$$
\begin{aligned}
& \frac{\partial\left\langle N_{\boldsymbol{k}}(\boldsymbol{x} \overline{\boldsymbol{x}})\right\rangle_{Y}}{\partial Y}=\frac{\bar{\alpha}}{2 \pi} \int_{\boldsymbol{z}}\left\{\left(\mathcal{K}_{\boldsymbol{x} \boldsymbol{x} \boldsymbol{z}}-\mathcal{K}_{\boldsymbol{x} \overline{\boldsymbol{x}} \boldsymbol{z}}\right)\left[\left\langle\hat{S}^{F}(\boldsymbol{x} \boldsymbol{z})\right\rangle_{Y}\left\langle N_{\boldsymbol{k}}(\boldsymbol{z} \overline{\boldsymbol{x}})\right\rangle_{Y}-\left\langle N_{\boldsymbol{k}}(\boldsymbol{x} \overline{\boldsymbol{x}})\right\rangle_{Y}\right]\right. \\
&+\left(\mathcal{K}_{\overline{\boldsymbol{x}} \overline{\boldsymbol{x}} \boldsymbol{z}}-\mathcal{K}_{\boldsymbol{x} \overline{\boldsymbol{x}} \boldsymbol{z})}\left[\left\langle\hat{S}^{F}(\boldsymbol{z} \overline{\boldsymbol{x}})\right\rangle_{Y}\left\langle N_{\boldsymbol{k}}(\boldsymbol{x} \boldsymbol{z})\right\rangle_{Y}-\left\langle N_{\boldsymbol{k}}(\boldsymbol{x} \overline{\boldsymbol{x}})\right\rangle_{Y}\right]\right. \\
&\left.+\mathcal{K}_{\boldsymbol{x} \overline{\boldsymbol{x}} \boldsymbol{z}}\left[\left\langle\hat{S}^{F}(\boldsymbol{x} \overline{\boldsymbol{x}})\right\rangle_{Y}\left\langle N_{\boldsymbol{k}}(\boldsymbol{z} \boldsymbol{z})\right\rangle_{Y}-\left\langle N_{\boldsymbol{k}}(\boldsymbol{x} \overline{\boldsymbol{x}})\right\rangle_{Y}+\left\langle N_{\boldsymbol{k}}^{(2)}(\boldsymbol{x} \overline{\boldsymbol{x}} \boldsymbol{z} \boldsymbol{z})\right\rangle_{Y}\right]\right\}
\end{aligned}
$$

with S^{F} solving BK and where ...

$$
\begin{aligned}
\frac{\partial\left\langle N_{\boldsymbol{k}}^{(2)}(\boldsymbol{x} \overline{\boldsymbol{x}} \boldsymbol{z} \boldsymbol{z})\right\rangle_{Y}}{\partial Y}=\frac{\bar{\alpha}}{4 \pi} & \int_{\boldsymbol{y}}\left(\mathcal{M}_{\boldsymbol{x} \boldsymbol{z} \boldsymbol{w}}+\mathcal{M}_{\boldsymbol{x} \overline{\boldsymbol{x}} \boldsymbol{w}}-\mathcal{M}_{\overline{\boldsymbol{x}} \boldsymbol{z} \boldsymbol{w}}\right)\left\langle\hat{S}^{F}(\boldsymbol{x} \boldsymbol{w})\right\rangle_{Y}\left\langle N_{\boldsymbol{k}}^{(2)}(\boldsymbol{w} \overline{\boldsymbol{x}} \boldsymbol{z} \boldsymbol{z})\right\rangle_{Y} \\
& +\left(\mathcal{M}_{\overline{\boldsymbol{x}} \boldsymbol{z} \boldsymbol{w}}+\mathcal{M}_{\boldsymbol{x} \overline{\boldsymbol{x}} \boldsymbol{w}}-\mathcal{M}_{\boldsymbol{x} \boldsymbol{z} \boldsymbol{w}}\right)\left\langle\hat{S}^{F}(\boldsymbol{w} \overline{\boldsymbol{x}})\right\rangle_{Y}\left\langle N_{\boldsymbol{k}}^{(2)}(\boldsymbol{x} \boldsymbol{w} \boldsymbol{z} \boldsymbol{z})\right\rangle_{Y} \\
& -\left(\mathcal{M}_{\boldsymbol{x} \boldsymbol{z} \boldsymbol{w}}+\mathcal{M}_{\overline{\boldsymbol{x}} \boldsymbol{z} \boldsymbol{w}}+\mathcal{M}_{\boldsymbol{x} \overline{\boldsymbol{x}} \boldsymbol{w}}\right)\left\langle N_{\boldsymbol{k}}^{(2)}(\boldsymbol{x} \overline{\boldsymbol{x}} \boldsymbol{z} \boldsymbol{z})\right\rangle_{Y} \\
& -\left(\mathcal{M}_{\overline{\boldsymbol{x}} \boldsymbol{z} \boldsymbol{w}}+\mathcal{M}_{\boldsymbol{x} \boldsymbol{z} \boldsymbol{w}}-\mathcal{M}_{\boldsymbol{x} \overline{\boldsymbol{x}} \boldsymbol{w}}\right)\left\langle N_{\boldsymbol{k}}^{(2)}(\boldsymbol{x} \overline{\boldsymbol{x}} \boldsymbol{w} \boldsymbol{w})\right\rangle_{Y} \\
& -\left(\mathcal{M}_{\overline{\boldsymbol{x}} \boldsymbol{z} \boldsymbol{w}}+\mathcal{M}_{\boldsymbol{x} \boldsymbol{z} \boldsymbol{w}}-\mathcal{M}_{\boldsymbol{x} \overline{\boldsymbol{x}} \boldsymbol{w}}\right)\left\langle\hat{S}^{F}(\boldsymbol{x} \overline{\boldsymbol{x}})\right\rangle_{Y}\left\langle N_{\boldsymbol{k}}^{(2)}(\boldsymbol{w} \boldsymbol{w} \boldsymbol{z} \boldsymbol{z})\right\rangle_{Y}
\end{aligned}
$$

$2^{\text {nd }}$ approach: Langevin (finite- N_{c})

\square Building the generating functional

$$
\left\langle\hat{S}_{12}(\boldsymbol{x} \overline{\boldsymbol{x}})\right\rangle_{Y-Y_{A}}^{A}=\frac{1}{N_{g}}\left\langle\operatorname{Tr}\left[\bar{U}_{N_{A}, \overline{\boldsymbol{x}}} U_{N_{A}, \boldsymbol{x}}^{\dagger}\right]\right\rangle_{\nu}
$$

In DA same as standard JIMWLK. In CCA

$$
\bar{U}_{n, \boldsymbol{x}}^{\dagger}=\exp \left[\mathrm{i} \epsilon g \bar{\alpha}_{L, \overline{\boldsymbol{x}}}^{n}\right] \bar{U}_{n-1, \overline{\boldsymbol{x}}}^{\dagger} \exp \left[-\mathrm{i} \epsilon g \bar{\alpha}_{R, \overline{\boldsymbol{x}}}^{n}\right]
$$

Left and right fields

$$
\bar{\alpha}_{L, \boldsymbol{x}}^{n}=\frac{1}{\sqrt{4 \pi^{3}}} \int_{\boldsymbol{z}} \mathcal{K}_{\boldsymbol{x} \boldsymbol{z}}^{i} \nu_{n, \boldsymbol{z}}^{i a} T^{a}, \quad \bar{\alpha}_{R, \boldsymbol{x}}^{n}=\frac{1}{\sqrt{4 \pi^{3}}} \int_{\boldsymbol{z}} \mathcal{K}_{\boldsymbol{x} \boldsymbol{z}}^{i} \nu_{n, \boldsymbol{z}}^{i a} \bar{U}_{n-1, \boldsymbol{z}}^{\dagger a b} T^{b}
$$

Same noise, only initial condition differs
\square Not enough for cross section

$2^{\text {nd }}$ approach: Langevin (finite- N_{c})

\square Building the cross section. For instance, one of the 4 terms

$$
\left.R_{A, \boldsymbol{u}}^{a} \bar{R}_{A, \boldsymbol{v}}^{b}\left\langle\hat{S}_{12}(\boldsymbol{x} \overline{\boldsymbol{x}})\right\rangle_{Y-Y_{A}}^{A}\right|_{\bar{U}_{A}=U_{A}}=\frac{1}{N_{g}}\left\langle\operatorname{Tr}\left[\left(R_{A, \boldsymbol{v}}^{b} U_{N_{A}, \overline{\boldsymbol{x}}}\right)\left(R_{A, \boldsymbol{u}}^{a} U_{N_{A}, \boldsymbol{x}}^{\dagger}\right)\right]\right\rangle_{\nu}
$$

\square R-derivatives act at U_{A} and \bar{U}_{A} at Y_{A}. Need a recurrence formula

$$
\begin{aligned}
R_{A, \boldsymbol{u}}^{a} U_{n, \boldsymbol{x}}^{\dagger}= & \exp \left[\mathrm{i} \epsilon g \alpha_{L, \boldsymbol{x}}^{n}\right]\left(R_{A, \boldsymbol{u}}^{a} U_{n-1, \boldsymbol{x}}^{\dagger}\right) \exp \left[-\mathrm{i} \epsilon g \alpha_{R, \boldsymbol{x}}^{n}\right] \\
& -\frac{\mathrm{i} \epsilon g}{\sqrt{4 \pi^{3}}} \int_{\boldsymbol{z}} \mathcal{K}_{\boldsymbol{x} \boldsymbol{z}}^{i} \nu_{n, \boldsymbol{z}}^{i c}\left(R_{A, \boldsymbol{u}}^{a} U_{n-1, \boldsymbol{z}}^{\dagger}\right)^{c b} \exp \left[\mathrm{i} \epsilon g \alpha_{L, \boldsymbol{x}}^{n}\right] U_{n-1, \boldsymbol{x}}^{\dagger} T^{b}
\end{aligned}
$$

\square Initially local $R_{A, \boldsymbol{u}}^{a} U_{A, \boldsymbol{x}}^{\dagger}=\mathrm{i} g \delta_{\boldsymbol{u x}} U_{A, \boldsymbol{x}}^{\dagger} T^{a}$ becomes bi-local already after $1^{\text {st }}$ step.

Putting all together

PROJECTILE		
$\cdots \times 1$,		
	Bilocal Langevin	
000000000000		
10000000000		
10000000 ¢ $Y_{A}, \boldsymbol{k}_{A}$		
Normal Langevin for $U_{\boldsymbol{x}}$		
TARGET	,$U_{\text {in }}(\mathrm{MV})$	

Conclusion

\square Di-gluon production at different rapidities in pA collisions, e.g. forward-central
\square Langevin equation with bi-local structures. Looks feasible. No alternative...
\square Generalization: three separated gluons \rightarrow tri-local structures,...

