Corrections to Gaussian color charge fluctuations and their effect on the dipole and KNO scaling

Elena Petreska

Baruch College \& Graduate Center, CUNY
h3QCD
ECT*, Trento, June 17-21, 2013

$Q_{s}(x)$

$$
\ln \frac{1}{x}
$$

- High-energy limit of nuclear collisions;
- Saturation scale $Q_{s}(x)$
- The Color Glass Condensate is an effective theory describing the partonic behavior in the saturation region.

Confront CGC with experiment:

Transverse momentum integrated yields, single inclusive hadron yields, nuclear modification factors, azimuthal correlations.

- Dipole scattering amplitude;
- Particle multiplicity distributions.

Sources at large-x

Gaussian distribution of sources (McLerran-Venugopalan model):
L. D. McLerran and R. Venugopalan,

Phys. Rev. D49, 2233 (1994); 49, 3352 (1994)

$$
\begin{aligned}
W[\rho] & =\exp \left[-\int d^{2} x_{\perp} \frac{\delta^{a b} \rho^{a}\left(x_{\perp}\right) \rho^{b}\left(x_{\perp}\right)}{2 \mu^{2}}\right] \\
\mu^{2} & =\frac{g^{2} A}{\pi R^{2}} \quad \text { - Color charge squared per unit transverse area. }
\end{aligned}
$$

The model is valid for a large nucleus, $A^{1 / 3} \rightarrow \infty$

Higher order corrections to the MV model:
 - Cubic term

S. Jeon and R. Venugopalan, Phys. Rev. D70, 105012 (2004); 71, 125003 (2005)

- Quartic action:

$$
\begin{aligned}
S[\rho(x)] \simeq \int d^{2} x[& \frac{\delta^{a b} \rho^{a} \rho^{b}}{2 \mu^{2}}-\frac{d^{a b c} \rho^{a} \rho^{b} \rho^{c}}{\kappa_{3}} \\
& \left.+\frac{\delta^{a b} \delta^{c d}+\delta^{a c} \delta^{b d}+\delta^{a d} \delta^{b c}}{\kappa_{4}} \rho^{a} \rho^{b} \rho^{c} \rho^{d}\right]
\end{aligned}
$$

$$
\begin{aligned}
\mu^{2} & \sim O\left(g^{2} A^{1 / 3}\right) \\
\kappa_{3} & \sim O\left(g^{3} A^{2 / 3}\right)
\end{aligned}
$$

A. Dumitru, J. Jalilian-Marian, E.P. Phys.Rev.D84 (2011) 014018

$$
\kappa_{4} \sim O\left(g^{4} A\right)
$$

Apply quartic action for calculating:

- Dipole scattering amplitude

Global fits to e+p require initial dipole scattering amplitude with steeper fall off than MV.

J. L. Albacete, N. Armesto, J. G. Milhano and C. A. Salgado, Phys. Rev. D80, 034031 (2009)
J. L. Albacete, N. Armesto, J.G. Milhano, P. Quiroga-Arias and C. A. Salgado, Eur. Phys. J. C71, 1705 (2011)

- Particle multiplicity distributions (KNO scaling)

Dipole picture: The virtual photon fluctuates into a color dipole, which then probes the wavefunction of the target.

Dipole operator:

$$
D\left(\mathbf{r}_{\perp}\right) \equiv \frac{1}{N_{c}}\left\langle\operatorname{tr} V\left(\mathbf{x}_{\perp}\right) V^{\dagger}\left(\mathbf{y}_{\perp}\right)\right\rangle
$$

Dipole size:

$$
\mathbf{r}_{\perp}=\mathbf{x}_{\perp}-\mathbf{y}_{\perp}
$$

Dipole scattering amplitude:

$$
N\left(\mathbf{r}_{\perp}\right)=1-\frac{1}{N_{c}}\left\langle\operatorname{tr} V\left(\mathbf{x}_{\perp}\right) V^{\dagger}\left(\mathbf{y}_{\perp}\right)\right\rangle
$$

rcBK evolution equation:

$$
\frac{\partial N_{F}(r, x)}{\partial \ln \left(x_{0} / x\right)}=\int d^{2} r_{1}^{\prime} K^{r u n}\left(r^{\prime}, r_{1}^{\prime}, r_{2}^{\prime}\right)\left[N_{F}\left(r_{1}, x\right)+N_{F}\left(r_{2}, x\right)-N_{F}(r, x)-\right.
$$

$$
\left.N_{F}\left(r_{1}, x\right) N_{F}\left(r_{2}, x\right)\right]
$$

MV result:

$$
N(r)=1-\exp \left[-\frac{r^{2} Q_{s}^{2}\left(x_{0}\right)}{4} \ln \left(\frac{1}{\Lambda r}+e\right)\right]
$$

AAMQS (Albacete-Armesto-Milhano-Quiroga-Salgado) fits:

$$
N_{\mathrm{AAMQS}}\left(r, x_{0}=0.01\right)=1-\exp \left[-\frac{1}{4}\left(r^{2} Q_{S}^{2}\left(x_{0}\right)\right)^{\gamma} \ln \left(e+\frac{1}{r \Lambda}\right)\right]
$$

$$
\gamma>1
$$

Dipole operator calculation

 Perturbative expansion to first order in $1 / \kappa_{4}$:$$
\langle O[\rho]\rangle \equiv \frac{\int \mathcal{D} \rho O[\rho] e^{-S_{G}[\rho]}\left[1-\frac{1}{k_{4}} \int d^{2} u \rho_{u}^{a} \rho_{u}^{a} \rho_{u}^{b} \rho_{u}^{b}\right]}{\int \mathcal{D} \rho e^{-S_{G}[\rho]}\left[1-\frac{1}{\kappa_{4}} \int d^{2} u \rho_{u}^{a} \rho_{u}^{a} \rho_{u}^{b} \rho_{u}^{b}\right]}
$$

Expectation value of the Wilson lines order by order:

$$
V\left(\mathbf{x}_{\perp}\right)=\mathcal{P} \exp \left\{-i g^{2} \int_{-\infty}^{\infty} d z^{-} \int d^{2} \mathbf{z}_{\perp} G_{0}\left(\mathbf{x}_{\perp}-\mathbf{z}_{\perp}\right) \rho_{a}\left(z^{-}, \mathbf{z}_{\perp}\right) t^{a}\right\}
$$

Correction diagrams:

Quartic action result

$$
N(r)=\frac{Q_{s}^{2} r^{2}}{4} \log \frac{1}{r \Lambda}-\frac{C_{F}^{2}}{6 \pi^{3}} \frac{g^{8}}{\kappa_{4}}\left[\int_{-\infty}^{\infty} d z^{-} \mu^{4}\left(z^{-}\right)\right]^{2} r^{2} \log ^{3} \frac{1}{r \Lambda}
$$

Gaussian part
A. Dumitru, E.P.

Nucl.Phys. A879 (2012) 59-76

Comparison of results

$$
N(r)=\frac{Q_{s}^{2} r^{2}}{4} \log \frac{1}{r \Lambda}-\beta Q_{s}^{2} r^{2} \log ^{3} \frac{1}{r \Lambda} \quad \beta \simeq \frac{1}{100},(A=1)
$$

ρ^{4} operator may explain AAMQS model.

Apply quartic action for calculating:
-Dipole scattering amplitude
-Particle multiplicity distributions (KNO scaling)

Particle multiplicity distributions in the central region of inelastic pp collisions follow a negative binomial distribution (NBD) and exhibit Koba-Nielsen-Olesen (KNO) scaling.

NBD:

$$
P(n)=\frac{\Gamma(k+n)}{\Gamma(k) \Gamma(n+1)} \frac{\bar{n}^{n} k^{k}}{(\bar{n}+k)^{n+k}}
$$

$P(n)$ - Probability to produce n particles;
\bar{n} - Mean multiplicity;
k - Fluctuation parameter.

KNO scaling

- Requires explanation in terms of small-x gluons;
- pT-integrated multiplicities (no external hard scale) involve saturation dynamics.

How to get KNO from NBD?

For k constant and $k \ll \bar{n}$
NBD leads to KNO scaling:

$$
\bar{n} P(n) d z \sim z^{k-1} e^{-k z} d z, \quad z \equiv \frac{n}{\bar{n}}
$$

- k not exactly constant;
- Why is $k \ll \bar{n}$?

$$
\left\langle N_{c h}\right\rangle P\left(N_{c h}\right) \equiv \Psi(z)
$$

$$
z \equiv \frac{N_{c h}}{\left\langle N_{c h}\right\rangle}
$$

NBD from MV model in the Glasma flux tube picture

F. Gelis, T. Lappi and L. McLerran, Nucl. Phys. A828, 149 (2009)

- Factorial cumulants for NBD:

$$
m_{n}=\frac{(n-1)!}{k^{n-1}} \bar{n}^{n}
$$

n - number of produced gluons

$$
\bar{n}=\left\langle\frac{d N}{d^{2} \mathbf{p}_{\perp} d y_{p}}\right\rangle \text { - mean multiplicity }
$$

- Cross section for producing q gluons:

$$
\left\langle\frac{d N}{d y_{1} \cdots d y_{n}}\right\rangle_{\text {conn. }}=\beta_{n}\left\langle\frac{d N}{d y_{1}}\right\rangle \cdots\left\langle\frac{d N}{d y_{n}}\right\rangle
$$

Calculation

- Single inclusive production (first cumulant, m_{1}):

- Two gluon production (second cumulant, m_{2}) :

$$
=\left\langle\frac{d N}{d^{2} \mathbf{p}_{\perp 1} d y_{1} \mathbf{p}_{\perp 2} d y_{2}}\right\rangle
$$

MV model result

$$
\left\langle\frac{d N}{d y_{1} \cdots d y_{n}}\right\rangle_{\text {conn. }}=\beta_{n}\left\langle\frac{d N}{d y_{1}}\right\rangle \cdots\left\langle\frac{d N}{d y_{n}}\right\rangle
$$

$$
\begin{gathered}
\beta_{n}=(n-1)!k^{1-n} \longrightarrow \mathrm{NBD} \\
\bar{n} \sim \frac{N_{c}\left(N_{c}^{2}-1\right)}{\alpha_{s}} Q_{s}^{2} \pi R^{2} \\
k \sim \frac{N_{c}^{2}-1}{2 \pi} Q_{s}^{2} \pi R^{2}
\end{gathered}
$$

- Why KNO?

$$
\frac{\bar{n}}{k} \sim \frac{N_{c}}{\alpha_{s}} \gg 1
$$

-Why is $k=\mathcal{O}\left(\alpha_{s}^{0}\right)$?
Second cumulant: $m_{2}=\frac{1}{k} \bar{n}^{2}$

Same order in α_{s}

\otimes

Calculation with quartic action

Two gluon production:

$$
\left\langle\frac{d N}{d p d y_{p} d q d y_{q}}\right\rangle=\frac{1}{k}\left\langle\frac{d N}{d p d y_{p}}\right\rangle\left\langle\frac{d N}{d q d y_{q}}\right\rangle
$$

Quartic action result

A. Dumitru, E.P. arXiv:1209.4105

$$
\frac{\bar{n}}{k} \sim \frac{N_{c}}{\alpha_{s}}\left(1-3 \beta\left(N_{c}^{2}+1\right)\right)
$$

$$
\beta \equiv \frac{C_{F}^{2}}{6 \pi^{3}} \frac{g^{8}}{Q_{s}^{2} \kappa_{4}}\left[\int_{-\infty}^{\infty} d z^{-} \mu^{4}\left(z^{-}\right)\right]^{2} \approx 0.01 A^{-2 / 3}
$$

$\beta>0$ makes $\frac{\bar{n}}{k}$ smaller by a factor of 1.43 .

$\beta>0$ makes $\frac{\bar{n}}{k}$ smaller.

- NBD fits to data show that $\frac{\bar{n}}{k}$ increases with energy \Rightarrow might indicate flow towards a Gaussian theory;
- KNO scaling constrains the deviation of the small-x effective action from a Gaussian.

Summary

- Higher dimensional operators in the effective action may not be highly suppressed for $\mathrm{p}+\mathrm{p}$ collisions;
- They may provide theoretical understanding of the AAMQS fits.
- They bring corrections to the negative binomial distribution and are constrained by the KNO scaling.

Two-particle correlations

(2011)

Two-gluon production diagram that gives an angular collimation al $\Delta \phi=0 \quad$ over several units in

$$
\left|y_{p}-y_{q}\right| \gtrsim 1
$$

rapidity
(ridge). Dumitru et al.
Phys. Lett. B 697, 21

$$
\frac{\left\langle\frac{d N_{2}}{d^{2} p d y_{p} d^{2} q d y_{q}}\right\rangle}{\left\langle\frac{d N}{d^{2} p d y_{p}}\right\rangle\left\langle\frac{d N}{d^{2} q d y_{q}}\right\rangle}-1 \sim \frac{1}{N_{c}^{2}-1}
$$

Non-Gaussian initial conditions for high-energy evolution

- Odderon operator $-d^{a b c} \rho^{a} \rho^{b} \rho^{c} / \kappa_{3}$
S. Jeon and R. Venugopalan,

Phys. Rev. D70, 105012 (2004); 71, 125003 (2005)

- Effective action for a system of $k \gg 1$ valence quarks in $\mathrm{SU}(3)$;
- Random walk of SU(3) color charges in the space of representations (m,n);
- Probability $P(m, n) \quad P(m, n)=e^{-S(m, n)}$

$$
S(m, n ; k) \simeq \frac{N_{c}}{k} C_{2}(m, n)-\frac{1}{3}\left(\frac{N_{c}}{k}\right)^{2} C_{3}(m, n)+\frac{1}{6}\left(\frac{N_{c}}{k}\right)^{3} C_{4}(m, n)
$$

C_{2}, C_{3}, C_{4} - Casimir operators for the representation (m,n)

- Define color charge per unit area $\quad \rho^{a} \equiv g Q^{a} / \Delta^{2} x$ where $|Q|=\sqrt{Q^{a} Q^{a}} \equiv \sqrt{C_{2}}$

Two-point and four-point functions

- Perturbative expansion in $\frac{1}{\kappa_{4}}$, expectation values are computed as:

$$
\langle O[\rho]\rangle \equiv \frac{\int \mathcal{D} \rho O[\rho] e^{-S_{G}[\rho]}\left[1-\frac{1}{\kappa_{4}} \int d^{2} u \rho_{u}^{a} \rho_{u}^{a} \rho_{u}^{b} \rho_{u}^{b}\right]}{\int \mathcal{D} \rho e^{-S_{G}[\rho]}\left[1-\frac{1}{\kappa_{4}} \int d^{2} u \rho_{u}^{a} \rho_{u}^{a} \rho_{u}^{b} \rho_{u}^{b}\right]}
$$

- Two-point function

$$
\left\langle\rho^{* a}(k) \rho^{b}\left(k^{\prime}\right)\right\rangle=\tilde{\mu}^{2} \delta^{a b}(2 \pi)^{2} \delta\left(k-k^{\prime}\right) \quad \tilde{\mu}^{2} \equiv \mu^{2}\left(1-4 \frac{\mu^{4}}{k_{4}} \frac{N_{c}^{2}+1}{\Delta^{2} x}\right)
$$

- Four point function
$\left\langle\rho^{* a}\left(k_{1}\right) \rho^{* b}\left(k_{2}\right) \rho^{c}\left(k_{3}\right) \rho^{d}\left(k_{4}\right)\right\rangle=$
$(2 \pi)^{4} \tilde{\mu}^{4}\left[\delta^{a b} \delta^{c d} \delta\left(k_{1}+k_{2}\right) \delta\left(k_{3}+k_{4}\right)+\delta^{a c} \delta^{b d} \delta\left(k_{1}-k_{3}\right) \delta\left(k_{2}-k_{4}\right)+\delta^{a d} \delta^{b c} \delta\left(k_{1}-k_{4}\right) \delta\left(k_{2}-k_{3}\right)\right.$
$\left.+\frac{2}{\pi^{2}} \frac{\tilde{\mu}^{4}}{\kappa_{4}}\left(\delta^{a b} \delta^{c d}+\delta^{a c} \delta^{b d}+\delta^{a d} \delta^{b c}\right) \delta\left(k_{1}+k_{2}-k_{3}-k_{4}\right)\right]$

Generating function: $\quad F(z) \equiv \sum_{n=0}^{\infty} z^{n} P_{n}$
Factorial cumulants:
$m_{q} \equiv\langle n(n-1) \cdots(n-q+1)\rangle-$ disconnected $=\frac{d^{q} \ln F(z)}{d z^{q}}$
Factorial moments:
$\langle n(n-1) \cdots(n-q+1)\rangle=\int \mathcal{D} \rho W[\rho](n[\rho])^{q}$
$n[\rho]=\frac{d N}{d^{2} \mathbf{p}_{\perp} d y_{p}} \quad$ is multiplicity corresponding to fixed configuration of sources.

Two-gluon production:

$$
C(\mathbf{p}, \mathbf{q})=\left\langle\frac{d N}{d^{2} \mathbf{p}_{\perp 1} d y_{1} p_{\perp 2} d y_{2}}\right\rangle-\left\langle\frac{d N}{d^{2} \mathbf{p}_{\perp} d y_{p}}\right\rangle\left\langle\frac{d N}{d^{2} \mathbf{q}_{\perp} d y_{q}}\right\rangle
$$

$$
C(\mathbf{p}, \mathbf{q})=\frac{g^{12}}{4(2 \pi)^{6}} f_{g a a^{\prime}} f_{g^{\prime} b b^{\prime}} f_{g c c^{\prime}} f_{g^{\prime} d d^{\prime}} \int \prod_{i=1}^{4} \frac{d^{2} k_{i}}{(2 \pi)_{i}^{2} k_{i}^{2}} \frac{L_{\mu}\left(\mathbf{p}, k_{1}\right) L^{\mu}\left(\mathbf{p}, k_{2}\right) L_{\nu}\left(\mathbf{q}, k_{3}\right) L^{\nu}\left(\mathbf{q}, k_{4}\right)}{\left(\mathbf{p}-k_{1}\right)^{2}\left(\mathbf{p}-k_{2}\right)^{2}\left(\mathbf{q}-k_{3}\right)^{2}\left(\mathbf{q}-k_{4}\right)^{2}} \times
$$

$$
\left\langle\rho_{1}^{* a}\left(k_{2}\right) \rho_{1}^{* b}\left(k_{4}\right) \rho_{1}^{c}\left(k_{1}\right) \rho_{1}^{d}\left(k_{3}\right)\right\rangle\left\langle\rho_{2}^{* a^{\prime}}\left(\mathbf{p}-k_{2}\right) \rho_{2}^{* b^{\prime}}\left(\mathbf{q}-k_{4}\right) \rho_{2}^{c^{\prime}}\left(\mathbf{p}-k_{1}\right) \rho_{2}^{d^{\prime}}\left(\mathbf{q}-k_{3}\right)\right\rangle
$$

Connected two-gluon diagrams from the quartic action:

$$
\begin{aligned}
& =\frac{16 g^{12}}{(2 \pi)^{8} \pi^{2} \kappa_{4}}\left[\int d v^{-} \tilde{\mu}^{2}\left(v^{-}\right)\right]^{2}\left[\int d v^{-} \tilde{\mu}^{4}\left(v^{-}\right)\right]^{2} \frac{S_{\perp} N_{c}^{2}\left(N_{c}^{2}-1\right)\left(N_{c}^{2}+1\right)}{p^{2} q^{2}} \times \\
& \qquad \int \frac{d^{2} k_{1}}{k_{1}^{2}} \frac{1}{\left(p-k_{1}\right)^{2}} \int \frac{d^{2} k_{2}}{k_{2}^{2}} \frac{1}{\left(q-k_{2}\right)^{2}} \\
& =\frac{g^{12}}{4 \pi^{8} \kappa_{4}}\left[\int d v^{-} \tilde{\mu}^{2}\left(v^{-}\right)\right]^{2}\left[\int d v^{-} \tilde{\mu}^{4}\left(v^{-}\right)\right]^{2} \frac{S_{\perp} N_{c}^{2}\left(N_{c}^{2}-1\right)\left(N_{c}^{2}+1\right)}{p^{4} q^{4}} \ln \frac{p}{Q_{s}} \ln \frac{q}{Q_{s}}
\end{aligned}
$$

$$
C(p, q)=\frac{2 \pi-\frac{4 Q_{s}^{2}\left(N_{c}^{2}+1\right)}{\kappa_{4}} \frac{\left[\int d v^{-} \tilde{\mu}^{4}\right]^{2}}{\left[\int d v^{-} \tilde{\mu}^{2}\right]^{2}}}{q_{s}^{2}\left(N_{c}^{2}-1\right) S_{\perp}}\left\langle\frac{d N}{d p d y_{p}}\right\rangle\left\langle\frac{d N}{d q d y_{q}}\right\rangle
$$

Second cumulant: $m_{2}=\frac{1}{k} \bar{n}^{2}$

$$
C(p, q)=\frac{1}{k}\left\langle\frac{d N}{d p d y_{p}}\right\rangle\left\langle\frac{d N}{d q d y_{q}}\right\rangle
$$

